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Tan, Ting Rei (Ph.D., Physics) 

High-Fidelity Entangling Gates with Trapped-Ions 

Thesis directed by Dr. David J. Wineland 

Quantum entangling logic gates are key ingredients for the implementation of a quantum 

information processing device. In this thesis, we focus on experimental implementations of three 

types of entangling geometric-phase gates with trapped ions, which rely on the effective spin-spin 

interactions generated with state-dependent forces. First, a mixed-species entangling gate is demon-

strated using a 9Be+ and a 25Mg+ ion to create a Bell state with a fidelity of 0.979(1). Combined 

with single-qubit gates, we use this mixed-species gate to implement controlled-NOT and SWAP 

gates. Second, we implement a high-fidelity universal gate set with 9Be+ ions. Single-qubit gates 

with error per gate of 3.8(1) × 10−5 are achieved. By creating a Bell state with a deterministic 

two-qubit entangling gate, we deduce a gate error as low as 8(4) × 10−4 . Third, a novel two-qubit 

entangling gate with dynamical decoupling built-in is demonstrated with a fidelity of 0.974(4). 

This gate is robust against qubit dephasing errors and offers simplifications in experimental imple-

mentation compared to some other gates with trapped ions. Errors in the above implementations 

are evaluated and methods to further reduce imperfections are discussed. In a separate experi-

ment, correlated measurements made on pairs of ions violate a “chained” Bell inequality obeyed 

by any local-realistic theory. The lowest chained Bell inequality parameter determined from our 

measurements is 0.296(12), this value is significantly lower than 0.586, the minimum value derived 

from a perfect Clauser-Horne-Shimony-Horne (CHSH) Bell inequality experiment. Furthermore, 

our CHSH Bell inequality results provide a device-independent certification of the deterministically 

created Bell states. 
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Figure 

1.1 One proposal to scale up the QIP device with a trapped-ion system: a quantum 

charge coupled device (QCCD) architecture [Wineland 98, Kielpinski 02] consists of 

multiple, interconnected trapping zones. Each trapping region could be dedicated for 

certain operations. This enables parallel processing and handling of a small subset of 

qubits at any trapping location. The information transport is achieved by physically 

shuttling the ions between different trapping regions by applying well-controlled, 

time-varying electric fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

2.1 Relevant energy level structure (not to scale) of the 9Be+ ion. Transitions to the 

electronic excited states are used for Doppler cooling, repumping, and qubit state 

measurement as described in the text. The “blue Doppler detuned” (BDD) beam, 

which is red shifted ' 400 MHz with respect to the “blue Doppler” (BD) beam (see 

Sec. 2.1.1), is not shown in this figure. We label the qubit |1, 1i = |↑i and the 

|2, 0i = |↓i states as the “computational qubit manifold”. The “measurement qubit 

manifold” consists of the |2, 2i as the “bright” state, and the |1, −1i or |1, 0i state 

as the “dark” state (see Sec. 2.1.7). The laser for stimulated-Raman transitions is 

red detuned from the 2S ↔ 2P1/2 transition. The decay rate of the 2P3/2 state 

is 2π × 19.4(5) MHz [Poul

1/2 

sen 75]. See Fig. A.1 for details energy levels diagram in 

the 9Be+ electronic ground state. The state labels correspond to the states at low 

magnetic field, which evolve to the states indicated at non-zero magnetic field. . . . 16 



xviii 

2.2 Coherence time of the 9Be+ qubit is investigated with a Ramsey sequence. We 

repeat the experiments with and without the presence of the 25Mg+ laser beams, 

which have a wavelength of approximately 280 nm. In this experiment, one 9Be+ 

and one 25Mg+ ion are trapped together in a harmonic well with a separation of 

' 5 µm; the laser beams (with beam waists ' 30 µm.) illuminate both ions. We 

do not observe a significant difference between these two sets of experiments, which 

indicates that the 25Mg+ laser radiation causes negligible additional decoherence. . 17 

2.3 Schematic diagram indicating laser beams access into the ion trap apparatus. Four 

ports are available, each aligned ∼ 45◦ relative to the trap (z) axis. The external 

magnetic field (provided by coils in the Helmholtz-like configuration) is set to be 

45◦ with respect to the trap axis. The radial confinement of the ions is in the 

plane normal to the z axis. Laser beams for the Doppler cooling, repumping, and 

fluorescence detection of the 9Be+ and 25Mg+ ions are coaligned with the magnetic 

field direction, and are set to be σ+ polarized. With this configuration, motional 

modes in all three directions can be cooled by the Doppler beams. Each species 

Raman laser beams are sent into the vacuum chamber via two ports after being 

combined with dichroic mirrors. For 9Be+, the laser beam exiting the UV fiber of 

path 1 (2) depicted in Fig. 3.8 is sent into the port labeled as “9Be+ 90” (9Be+ Co) 

in this figure. For the 25Mg+, the laser beams labeled as path 1 (2) in Fig. 3.10 

corresponds to “25Mg+ 90” (“25Mg+ Co”) in this figure. The laser beam entering the 

bottom-right port (i.e., the Mg PI beam in this figure) and directed toward zone L is 

blocked by an oven shield installed behind the alumina wafers after passing through 

the center of the trap (details in Ref. [Blakestad 10]). The boundary of the vacuum 

chamber is indicated by blue lines. Details of apparatus are described in Chap. 3. . 19 
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2.4 The laser beams setup to drive stimulated-Raman transitions. Laser beams are fo-

cused onto ions from two paths, which intersect at 90◦ such that the difference in 

their k vectors, Δk, is aligned along the axial direction. These two beams corre-

sponds to the Co and 90 beams in Fig. 2.3. This figure is simplified for the relevant 

illustrations in this section. Details of Raman beam lines setup are discussed in Sec. 

3.4.3, Sec. 3.5.2, and the respective chapters describing implementation of different 

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

2.5 A typical single 9Be+ ion detection histogram for the population to be either in the 

|2, 2i state (blue) or the |1, −1i state (red). With a detection duration of 330 µs and 

a saturation parameter s of ∼ 0.5, we detect on average ' 30 photon counts for the 

ion in the |2, 2i state, and ' 2 counts when the ion is in the |1, −1i state. Overlap 

of the two distributions is shown in dark color. . . . . . . . . . . . . . . . . . . . . . 29 

2.6 Relevant energy level structure (not to scale) for the 25Mg+ ion at an external mag-

netic field of approximately 119.446 G. The “blue Doppler detuned” (BDD) beam, 

which is red shifted ' 500 MHz with respect to the “blue Doppler” (BD) beam (see 

Sec. 2.2.1), is not shown in this figure. The 25Mg+ ion qubit is encoded in the 

|3, 1i = |↑i state and |2, 0i = |↓i state, they constituent the “computational qubit 

manifold”. The qubit transition frequency has a magnetic-field sensitivity of ' 43 

kHz/G at the applied magnetic field. The “measurement qubit manifold” consists 

of the |3, 3i state as the “bright” state and the |2, −2i state as the “dark state” 

(see Sec. 2.2.6). The decay rate of the 2P3/2 state is 2π × 41.3(3) MHz [Clos 14]. 

See Appendix B.1 for a more detailed energy level diagram in the 25Mg+ electronic 

ground state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

2.7 Coherence time of the 25Mg+ qubit investigated with a Ramsey sequence with and 

without the presence of the λ ' 313 nm laser beam used for the manipulations of 

the 9Be+ ion. The shorter qubit coherence time compared to the 9Be+ qubit is due 

to the non-zero linear component of magnetic field sensitivity. . . . . . . . . . . . . 32 
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2.8 The ratio of spin-motion transition Rabi rates between different Fock states (Ωn,n0 ) to 

carrier Rabi rate Ω is plotted as a function of the Fock state number n for different 

0values of Lamb-Dicke parameters. The first-order (n = n − 1) and second-order 

0(n = n − 2) sideband transition rates are shown. The Rabi rates of the first-order 

sideband transitions vanish at relatively low values of n, which means that spin-

motion transitions between these different Fock states cannot be driven. This can 

be problematic for the motional cooling to the ground state if only the first-order 

sideband transitions are used in the cooling sequence. At the Rabi rate vanishing 

points of the first-order sideband transitions, the second-order sideband transition 

Rabi rates are non zero. Thus, they can be inserted to improve the cooling. . . . . 35 

2.9 A typical detection histogram of a 25Mg+ ion for the population to be either in 

the |3, 3i state (blue) or the |2, −2i state (red). The fluorescing “bright” state cor-

responds to the qubit |↑i while the “dark” state corresponds to the the |↓i state. 

Overlap of the two distributions is shown in dark color. . . . . . . . . . . . . . . . . 38 

3.1 The schematic of the X-junction trap. The trap is constructed with two gold-coated, 

stacked wafers. (b) Top view of the trap showing the load zone L and experiment 

zone E . Ions are transported from L to E with time-varying potentials applied to 

the segmented control electrodes (colored orange hues). The positions of RF and 

control electrodes are exchanged in the lower layer (a). The details of the junction 

are illstrated in (c). Coherent manipulations are implemented on ions confined in E . 

See Ref. [Blakestad 11] for details of this trap. . . . . . . . . . . . . . . . . . . . . . 40 
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3.2 Mock up of the vacuum chamber housing the X-junction trap. A glass envelope 

with fused-silica view ports is attached to a stainless-steel vacuum chamber. The 

fused-silica view ports are used for the access of laser beams and collection of fluo-

rescence photons emitted by ions. In addition to an ion pump which maintains the 

system under ultra-high vacuum condition of ∼ 3×10−11 torr (measured with an ion 

gauge), the vacuum system includes a titanium sublimation pump which is turned on 

infrequently (approximately once per month). Multiple electrical feedthroughs are 

used to connect to RF and control electrodes, and neutral beryllium and magnesium 

resistively-heated ovens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

3.3 Schematic of the magnetic field coils that are used to provide a static magnetic 

field of ' 0.0119446 T in a Helmholtz-like configuration. The main coils (orange 

color) which have an approximate rectangular dimension of 40 cm × 20 cm, and 

are separated by approximately 8 cm, are held in position by custom parts made 

of anodized aluminum. The field coils assembly also consists of compensation coils 

which allow fine tuning of magnetic field in three dimensions. Wire in compensation 

coils are not shown. See also Fig. 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

3.4 Schematic of the Schwarzchild objective. The first element is a lenses pair made of 

CaF2 and fused silica, it is designed to compensate for the chromatic aberration for 

313 nm and 280 nm caused by the vacuum windows. Photons collected are then 

bounced of the primary mirror followed by the secondary mirror, which is cemented 

onto the lenses pair, before being sent of to the rest of the imaging system and 

also providing a common focus for the two wavelengths (see Fig. 3.5). The overall 

magnification of this objective lens is ∼ 10×. All components are held together by an 

enclosure which is not shown in this figure. The refractions of rays passing through 

different materials are not shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
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3.5 Schmatic of the imaging system. The light collected from the Schwarzschild objective 

is focused onto an intermediate image point which is located at the center of the bore 

hole of a mirror. With a relay mirror of a focal length of 50 mm, the intermediate 

image is then imaged onto a PMT. A flipper mirror is used to direct the light onto a 

EMCCD camera, as needed. The relay optics are setup with a magnification factor of 

5×, which results in a magnification of the entire imaging system of 50×. The optics 

depicted inside the dashed box are held in place together with custom machined 

parts which are attached to a three-dimensional translation stage. . . . . . . . . . . 47 

3.6 The picture showing the vacuum system containing the trap, and the apparatus 

surrounding it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

3.7 Three UV laser sources are generated with four fiber lasers in the infrared wave-

lengths by employing sum frequency generation (SFG) and second harmonic genera-

tion (SHG) stages. The frequency of the Raman laser can be tuned from ∼ −2π ×10 

GHz to ∼ −2π × 900 GHz with respect to the 2S1/2 ↔ 2P1/2 electronic transi-

tions. This tuning range is provided by the tuning capabilities of the fiber lasers. 

The SFGs are accomplished with magnesium-oxide doped periodically-poled lithium-

niobate (MgO:PPLN) crystals while barium borate (BBO) crystals are used for the 

SHGs. The frequency of the blue Doppler and red Doppler lasers are stabilized to 

iodine transitions with Doppler-free saturated-absorption spectroscopy setups. . . . 50 
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3.8 Schematic of the laser beam line setup used to drive stimulated-Raman transitions in 

9Be+ ions. The 313 nm generated with SFG followed by SHG is split into two paths, 

sent through AOMs, coupled into fibers, and aligned onto the ions. Path 2 contains a 

double-passed 600 MHz AOM that, when switched on, produces an additional beam 

shifted by approximately the qubit frequency (∼ 1.2 GHz), that is coaligned with 

the unshifted beam for high-fidelity single-qubit gates. Another AOM tunable in the 

range of 260 to 360 MHz is used to shift the relative laser frequency in path 2 with 

respect to beam 1 for spin-motion stimulated-Raman transitions. For the Mølmer-

Sørensen gate, two RF tones with relative frequency difference close to twice the 

frequency of the addressed motional mode are injected into the 200 MHz AOM in 

path 2. In combination with the beam in path 1, these two beams simultaneously 

produce blue and red sideband transitions. A pickoff on the output of each fiber 

directs a small fraction of the light onto a photodiode, which is used for active power 

stabilization. Each beam is centered on the ions with a motorized mirror mount 

before the final lens that focuses the beam on the ions. . . . . . . . . . . . . . . . . 53 

3.9 Schematic of the setup to generate laser beams for the optical pumping, Doppler 

cooling, and repumping of the 25Mg+ ion. The 280 nm laser beam is generated with 

a SHG using a dye laser source at ∼ 560 nm. Three individually controllable UV 

beams with different laser frequencies are generated: (i) a blue Doppler (BD) beam 

for Doppler cooling and fluorescence detection, (ii) a blue Doppler detuned (BDD) 

beam for Doppler cooling of hot ions, and (iii) a repumper beam. All three beams 

are overlapped before they are coupled into a UV fiber, which directs the light to 

the location of the ions. The power of the BD beam is actively stabilized. . . . . . . 58 
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3.10 Schematic of the laser beams setup for inducing stimulated-Raman transitions in 

the 25Mg+ ions. A polarizing beam splitter is used to split the UV output beam 

after the SHG stage. The frequency of the laser beam in each path is shifted by two 

AOMs before injected into an UV fiber. The relative frequency difference between 

these two beams can be tuned with a range of approximately ± 200 MHz. This 

enables us to induce spin-motion transitions on (i) the |3, 3i ↔ |2, 2i sideband-

cooling transitions and (ii) the |3, 1i ↔ |2, 0i qubit transitions. Two frequency tones 

can be injected into the single-passed AOM (with 200 MHz center frequency) in path 

1. This configuration is used for the application of the mixed-species entangling gate 

as described in Chap. 5. A small fraction of laser power is sampled at each UV 

fiber’s output for power stabilization. Each beam is combined with the 9Be+ ion’s 

Raman laser beam with a dichroic mirror as depicted in Fig. 2.3. . . . . . . . . . . . 61 

3.11 Schematic of the laser power stabilization and shaping of laser pulses employed in 

the 9Be+ qubit manipulation laser beam lines. Each laser beam is sampled at the 

output of the UV fiber with a photodiode (see Fig. 3.8). A digital servo is then used 

to provide the feedback for the power stabilization by adjusting the radio frequency 

power level injected into an AOM positioned upstream of the fiber. One advantage of 

using the fiber is that laser beam pointing fluctuations occuring before the fiber are 

translated into laser power fluctuations at the fiber output, which is then corrected 

with the servo system. With the feedback engaged, the time profile of the laser 

beam is dynamically modulated by adjusting the servo reference potential using the 

high-speed arbitrary waveform generator described in Sec. 3.7. . . . . . . . . . . . . 66 

4.1 Quantum circuit using the Cirac-Zoller protocol to produce the controlled-Z gate. 

A blue-sideband (BSB) π pulse is applied to the “control” qubit before and after a 

red-sideband (RSB) 2π pulse is applied to the “target” qubit. The RSB transition 

couples one of the target’s qubit states to an auxiliary (Aux) state. . . . . . . . . . 69 
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4.2 Quantum circuit using the Cirac-Zoller protocol to produce the controlled-NOT gate. 

The overall pulse sequence implements the unitary operation given in Eq. 4.9. The 

notation R(θ, φ) is given in Eq. 2.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

4.3 By applying an effective spin-spin interaction, the motional wavepacket is displaced 

in phase space dependent on the internal qubit states. If displacements enclose a 

loop, the qubit states pick up a geometric phase, Φ, proportional to the area of the 

enclosed loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

4.4 Orientation of Raman laser beams used to drive two-qubit entangling gates. Beams 

1 and 2 are arranged such that their k vectors intersect at 90◦ and their Δk vector 

is aligned along the axial direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

4.5 This figure shows the different scattering probabilities and errors caused by sponta-

neous scattering of photons due to Raman laser beams for a two-qubit gate driven 

with the Mølmer-Sørensen protocol on 9Be+ ions. Spontaneous scattering of pho-

tons can be categorized into Raman and Rayleigh scattering, and they contribute 

errors to a two-qubit gate differently. The qubit’s coherence is lost after each Raman 

scattering event, while this is not the case for Rayleigh scattering. Both Raman and 

Rayleigh process contribute to motional dephasing error through a random trajec-

tory in the motional phase space caused by a uncontrolled momentum kick for each 

scattering event. The horizontal axis indicates the detuning of the Raman laser with 

respect to the 2S1/2 ↔ 2P1/2 transition of the 9Be+ ion. The second peak at ∼ +200 

GHz Raman detuning corresponds to scattering from the 2P3/2 electronic excited 

state. The dips between the two fine structure lines are caused by the cancellation 

effect as indicated in Eq. 4.29; the Raman laser is blue detuned relative to the 2P1/2 

levels while red detuned relative to the 2P3/2 levels. This figure is plotted with a 

Lamb-Dicke parameter of η = 0.19, NLoop = 1, and assuming equal laser intensity in 

each of the two laser paths as depicted in Fig. 4.4. The polarization of the k1 (k2) 

is set to be pure σ+ (π). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 
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 4.6 This figure is analogous to Fig. 4.5 but for 25Mg+ ions and with η = 0.165. The 

Raman detuning, Δ is plotted with respect to the 2P3/2 excited state, where the 

frequency of our 25Mg+ Raman laser is tuned near to. The two peaks correspond 

to the fine structure splitting between the 2P1/2 and 2P3/2 electronic excited states, 

which is ∼ 2.75 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

5.1 Configuration of laser  beams for the mixed-element entangling gate. For the 9Be+

ion, 313 nm laser beams (in red) simultaneously induce near-resonant red and blue 

sidebands transitions. Similarly, for 25Mg+, 280 nm beams (in green) induce side-

band transitions. When all beams are applied simultaneously, this implements 

the Mølmer-Sørensen spin-spin interaction [Sørensen 99, Sørensen 00]. Each set 

of qubit addressing laser beams is set up such that the wave vector differences 

Δkj,r = kj,90 − kj,Co1 and Δkj,b = kj,90 − kj,Co2 (j = 1, 2) are aligned in the same 

direction along the trap axis. With this configuration, only the motional modes along 

this axis can  be excited. The frequencies of the 9Be+ ion’s Raman beams are set to 

drive the spin-motion transition on the second order micromotion sideband, this is 

to maximize transition Rabi rates in the presence of axial micromotion (details see 

Sec. 2.1.3.  Spin-motion transitions in the 25Mg+ ion are driven on the micromotion 

carrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

5.2 A Ramsey sequence implemented to remove laser phase sensitivity of the MS interac-

tion. The “90 Carrier” π/2 pulses are implemented by Raman laser beams induced 

by kj,Co1 and kj,90 (see Fig. 5.1). The overall sequence produces a phase gate Gb
which is given in Eq. 5.7. The rotation R(θ, φ) is defined in Eq. 2.13. . . . . . . . . 106 

5.3 Population evolution as we apply the MS interaction starting from the |↑↑i state. 

The Bell state |ΦBelli (Eq. 5.6), which corresponds to (ideally) equal population in 

the |↑i |↑iBe Mg and |↓i |↓iBe Mg, is created at tgate ' 33µs. Error bars correspond to 

standard error of the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 
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5.4 The pulse sequence using the bG gate to create the entangled state 1√ (|↑↑i − i|↓↓i)
2 

(up to a global phase of eiπ/4) with both ions initialized to their respectively |↑i 

state. The Bell state |Φ+i = 1√ (|↑↑i + |↓↓i) (up to a global phase of eiπ/2) can 
2 

be created by applying a Rz(π/2) rotation to one of the qubits at the end of this 

sequence. Likewise, applying a Rz(−π/2) rotation to one of the qubits at the end of 

the sequence creates the Bell state |Φ−i = 1√ (|↑↑i − |↓↓i). The definition of Rz2 
is 

given in Eq. D.5. The notation “µWv” is used to represents rotations implemented 

with a microwave field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 

5.5 Parity (P↑↑ + P↓↓ − P↑↓+↓↑) flopping of the Bell state created by the sequence shown 

in Fig. 5.4. To demonstrate laser-phase insensitivity of our entangling operation 

and the deterministic creation of entanglement, we use microwave fields to induce 

the “analysis” pulses with variable phases in this parity oscillation experiment. The 

phases of the microwave fields are not synchronized with those of the laser fields. . 111 

5.6 Pulse sequence for the CHSH-type Bell inequality experiment on the mixed-species 

Bell state. The black dashed box denotes the “black box” which prepares the two 

particles of different species. The measurement settings αi, βj are applied (with mi-

crowave fields) before making fluorescence measurements. The laser pulse sequence 

bfor the implementation of G is shown in Fig. 5.2. The rotations R(θ, φ) and Rz(ξ) 

are defined in Eq. 2.13 and Eq. D.5, respectively. Rz(ξ) rotation is accomplished by 

adjusting the phase of the DDS which is used to produce the microwave fields. . . . 113 

5.7 (a) Pulse sequence for the CNOT gate (Eq. 4.9) with 9Be+ qubit as the “control” 

and 25Mg+ qubit as the “target”. (b) Pulse sequence for the CNOTinvert gate (Eq. 

5.12), where the two qubits change roles, i.e. the 25Mg+ qubit as the “control” and 

the 9Be+ qubit as the “target”. The rotations R(θ, φ) and Rz(ξ) are defined in 

Eq. 2.13 and Eq. D.5, respectively. Here, the Rz(ξ) rotations are accomplished by 

adjusting the phase of the DDS used to induce microwave transitions (see footnote 

2), which can be absorbed into the microwave-induced R(π 
2 , −

π ) pulses. 2 . . . . . . . 116 
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5.8 Pulse sequences of performing Rabi flopping on the 9Be+ (spectroscopy) ion as de-

tected with the 25Mg+ (logic) ion using (a) conventional quantum logic spectroscopy 

[Schmidt 05], and (b) the controlled-NOT gate based procedure. The CNOT gate 

implemented here is defined by the matrix in Eq. 4.9, with the pulse sequence of 

bthe G gate shown in Fig. 5.2. Ground state cooling which was applied prior to the 

qubit state preparations, are not shown in this figure. . . . . . . . . . . . . . . . . . 118 

5.9 Rabi flopping of the 9Be+ ion detected on the 25Mg+ ion with the motional modes 

cooled to near the ground state (n̄ ' 0.05). P(|↑iMg) is the probability of finding the 

25Mg+ qubit in the |↑i state. In this case, both the QLS and our controlled-NOT 

gate mapping procedures performed approximately equally. Error bars correspond 

to standard error of the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

5.10 Rabi flopping of the 9Be+ ion detected on the 25Mg+ ion with the motional modes 

cooled to the Doppler temperature of n̄ ' 4. The controlled-NOT mapping tech-

nique, which makes use of the mixed-species gate, performed better than the original 

QLS procedure due to the relative low sensitivity to motional excitations [Sørensen 99, 

Sørensen 00]. Error bars correspond to standard error of the mean. . . . . . . . . . 121 

5.11 The pulse sequence for a Ramsey experiment with a SWAP gate. We used three 

controlled-NOT gates to construct a SWAP gate. The first and third controlled-

NOT gates were implemented with the CNOT gate (Eq. 4.9) with the 25Mg+ ion as 

the target, with pulse sequence indicated in Fig. 5.7.(a). The second controlled-NOT 

gate was implemented as depicted in Fig. 5.7.(b), with the 9Be+ ion as the target of 

the CNOTinvert gate. The overall operation inside the red dashed box implements 

the SWAP gate as shown in Eq. 5.16. . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

5.12 The Ramsey fringes measured on the 25Mg+ ion after applying the SWAP gate as 

depicted in Fig. 5.11. This shows that the phase information is preserved between 

the two species and transferred from the 9Be+ ion to the 25Mg+ ion. Error bars 

correspond to standard error of the mean. . . . . . . . . . . . . . . . . . . . . . . . 125 
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15.13 Pulse sequence for creating a Bell state √ (|↑↑i − i|↓↓i) using a combination of 
2 

single-qubit pulses and the Cirac-Zoller gate [Cirac 95]. For high fidelity, this pro-

tocol requires the motional mode to be prepared in its ground state. The nota-

tions “BSB” and “RSB” denote blue and red-sideband transitions, respectively. The 

controlled-phase gate and the controlled-NOT gate are defined in Eq. 4.6 and Eq. 

4.9, respectively. The definition of the R(θ, φ) rotation is in Eq. 2.13. Except for 

the “RSB to Aux” pulse, all other pulses are driven between the qubit |↑i and |↓i 

states. The pulse sequence corresponding to ground state cooling of the motional 

modes (applied prior to the operations shown) are not shown in this figure. . . . . . 125 

5.14 Parity oscillation of the Bell state created by the Cirac-Zoller gate [Cirac 95]. The 

analysis pulses were microwave-induced π/2 pulses with variable phase φ. Error bars 

correspond to standard error of the mean. . . . . . . . . . . . . . . . . . . . . . . . 126 

6.1 Laser beam geometry for stimulated-Raman transitions. Each of the k2a and k2b 

beams when paired with the k1 beam give a wave vector difference Δk aligned along 

the axial z direction, and separately excite the blue and red sideband transitions on 

the axial stretch mode. All three beams are applied to implement the Mølmer-

Sørensen interaction on the second micromotion sideband. Copropagating beams 

k2a and k2b are used to implement single-qubit gates described in Sec. 6.7. Details 

of laser beam setup is given in Sec. 3.4.3. . . . . . . . . . . . . . . . . . . . . . . . . 131 
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6.2 ML-Bell-state error (red dots) as a function of gate duration tgate for a constant 

Raman beam detuning Δ ' −2π × 730 GHz. The black line shows the separately 

determined error and uncertainty (gray shade) due to the microwave pulses used for 

|2, 2i ↔ |↑i state transfer. The three dashed lines show the sum of the expected gate 

errors including photon scattering and mode frequency fluctuations (which are slow 

compared to gate durations shown) for three different r.m.s. magnitudes of mode 

frequency fluctuations. Errors due to these errors are discussed below. The gate 

error increases quadratically with increasing tgate due to such frequency fluctuations; 

however, for tgate ' 30 µs the error due to frequency fluctuations is approximately 

1 × 10−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

6.3 ML-Bell-state error (red dots), plotted as a function of −2π/Δ for a constant gate 

duration of approximately 30 µs, where Δ is detuning of the Raman laser beams 

relative to the 2S1/2 ↔ 2P1/2 electronic transitions. The simulated contributions 

to the Bell state error from Raman and Rayleigh scattering (for details see Sec. 

4.4.2) are shown with the blue and purple dashed lines respectively. For large |Δ|, 

the Raman scattering error approaches zero, however, the Rayleigh scattering error 

remains approximately constant at 1.7×10−4 . The black line is the sum of the Raman 

and Rayleigh scattering errors, and the composite microwave pulses used for qubit 

state preparation and detection (uncertainty indicated by the gray band). Error 

bars for the measured Bell state fidelity are determined from parametric bootstrap 

resampling [Efron 93] of the data and represent a 1-σ statistical confidence interval. 136 
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6.4 The photon-counts histogram for two 9Be+ ions prepared into an equal superposition 

of |↑i and |↓i states of each ion before making joint fluorescence measurements. (a) 

Data is plotted in a linear scale. (b) Same data plotted in a log scale. Count 

distributions corresponding to the |↑↓i or the |↓↑i states (on average 30 photon 

counts) and the |↑↑i state (on average 60 photon counts) overlap significantly. These 

overlapping distributions cause errors in the determination of the quantum state 

using a single detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

6.5 Typical photon-counts histograms for two 9Be+ ions prepared in the (a.) |2, 2i 

state and (b.) the “shelved” states of |1, −1i or |1, 0i state. Both distributions 

exhibit non-standard photon-count distribution (e.g., the Poissonian distribution). 

For (a), this is caused by depumping process due to imperfect detection laser beam 

polarization. For (b), finite frequency separation between the atomic states allows 

population to leak from the dark state to the bright state (via optical pumping); in 

which case the ions start to fluoresce. See Fig. 2.1 for 9Be+ energy level structure; 

see also Fig. 6.6 for the detection behavior of each of the Zeeman states in the 

9Be+ ion’s electronic ground state. These issues render simple fitting models, e.g. 

to Poissonians, incapable of extracting accurate quantum state information. . . . . 147 
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6.6 Simulated detection histograms for a 9Be+ ion initialized to each of the eight Zee-

man states in the 2S1/2 electronic ground state of the 9Be+ ion (see Fig. 2.1). Each 

histogram is obtained with 1, 000 detection events. Except for the |2, 2i state, all 

other figures are shown in log scale. Each state responds differently and uniquely 

when the detection beam is applied. Besides the |2, 2i state, all other Zeeman states 

are detected as dark to a high degree. Furthermore, the F = 1 manifold states 

(|F = 1,mF = 0, ±1i) have smaller fluorescence compared to the F = 2 manifold 

states. The bright state of the measurement qubit is the |2, 2i state (which cor-

responds to the qubit |↑i state), and the dark state is the |1, −1i and the |1, 0i 

states (which corresponds to the qubit |↓i state). See Sec. 2.1.7 for details on the 

fluorescence detection of the 9Be+ ions. The simulation here uses the saturation 

parameter, s = I/Isat = 0.5 and assumes that the detection laser beam is pure σ+ 

with its frequency tuned on resonance with the 2S1/2|2, 2i ↔ 2P3/2|3, 3i transition. 

The detection efficiency (which experimentally relates to the sum of the quantum 

efficiency of the PMT and the collection efficiency of the imaging system) is set so 

that the |2, 2i state fluorescence counts equal to 30 on average in our simulation. . . 153 

6.7 Average fidelity for single-qubit-gate randomized benchmarking sequences, plotted 

as a function of sequence length. We determine the average error per computational 

gate to be �gate = 3.8(1) × 10−5 and state preparation and measurement error to be 

�SPAM = 2.0(3) × 10−3 for these data sets. Error bars show the standard error of the 

mean for each point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 
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6.8 Two-qubit gate errors (or the errors of the created Bell state) reported in the lit-

erature over time. This figure is not comprehensive but shows the best two-qubit 

gate results, as well as two other type of two-qubit gate results presented in this 

thesis. Gate implementations in three platforms are shown, i.e. (i) laser-driven 

gates on ion qubits [Turchette 98, Sackett 00, Rowe 01, Leibfried 03, Benhelm 08, 

Tan 13, Tan 15, Ballance 16, Gaebler 16], (ii) microwave-driven gates on ion qubits 

[Ospelkaus 11, Weidt 16, Harty 16], and (iii) superconducting qubits [Steffen 06, 

DiCarlo 09, Chow 12, Barends 14]. The highest fidelity achieved with ion qubits 

using a microwave-based implementation is 0.997(1) [Harty 16] and 0.9944(5) with 

superconducting qubits [Barends 14]. Data in this figures are of courtesy from Prof. 

David Lucas (University of Oxford) who collected and consolidated the data. . . . . 159 

7.1 The electrodes of the ion trap used for the experiment described in this chapter. The 

ions are loaded in zone L and transported to zone E for the entangling gate to be 

implemented. See Ref. [Jost 10] for details of the design and construction of this 

trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 

7.2 Laser beam setup to drive the two-qubit gate with the Bermudez protocol in the case 

of a microwave-induced carrier excitation. Two lasers beams labeled as kCo1 and k90 

are used to excite the detuned spin-motion sideband transitions. Their wave vector 

difference Δk is aligned such that only the axial motional mode can be coupled. . . 164 

7.3 The laser beam setup where carrier excitation is induced by stimulated-Raman pro-

cess. This setup is very similar to that depicted in Fig. 7.2. Here, the microwave 

antenna is turned off and an additional beam labeled as kCo2 is adjusted such that 

its frequency is shifted ω0 relative to beam kCo1. Together, these two beams excite 

carrier transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 
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7.4 Simulated population evolution of Hamiltonian in Eq. 7.1 with both qubits initialized 

to the |↑i state. Although a maximally entangled state can be created at t = tgate, 

due to the finite ratio between the carrier transition Rabi rate ΩC and the sideband 

transition Rabi rate Ω = Ω1 = Ω2, the populations undergo oscillations at the 

carrier Rabi frequency, making the target state highly sensitive to the interaction 

time. Here, the simulation parameter is ΩC = 15Ω. . . . . . . . . . . . . . . . . . . 169 

7.5 Pulse timing sequence for the microwave-induced-carrier gate. A π rotation with 

a π/2 phase with respect to the previous pulse refocuses the fast spin population 

oscillations induce by the carrier excitation (see Fig. 7.4). This pulse can suppress 

miscalibrations and errors in the gate duration and detuning, δ [Hayes 12]. . . . . . 169 

7.6 Pulse timing sequence for the laser-induced-carrier gate. The phase of the carrier 

excitation is shifted by π during the second half of the gate. . . . . . . . . . . . . . 170 

7.7 Evolution of the populations of |↓↓i (blue points), |↑↑i (red) and anti-aligned spin 

states (green) as a function of the duration of simultaneous application of laser-

induced carrier and detuned sideband excitations. The phase of the carrier is 

shifted by π at half of the interrogation time for each point (see Fig. 7.6). The 

gate time for this case is approximately 105 µs, at which point the Bell state 

1|Φ+i = √ (|↓↓i + |↑↑i) (in the ideal case) is created. The solid lines show the 
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results of numerical master equation simulation that include contributions from (i) 

spontaneous scattering of photon induced by the Raman laser beams, and (ii) state 

preparation and detection error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 

7.8 The coherence of the state produced by the microwave-induced-carrier gate is inves-

tigated by applying an analysis π/2-pulse with a variable phase. The contrast of the 

parity oscillation is determined by fitting A cos(2φ + φ0) + B to the data points. . . 173 
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7.9 Master equation simulations are used to study the Bell state fidelity as a function of 

carrier Rabi rate (ΩC ) to sideband Rabi rate (Ω) ratio. The Hamiltonian described 

in Eq. 7.1 and the motional dephasing Lindblad term described by Eq. 4.39 are 

included. Four different motional dephasing rates, Γ, are considered and color coded 

in this figure. Two groups of the gate implementations are shown: (i) solid lines 

(marked with the asterisk symbol (∗) in the legend) indicate a spin-echo sequence 

using a π-pulse rotation with π/2 phase shift as depicted in Fig. 7.5, and (ii) dashed 

lines represent spin-echo sequence implemented by shifting the phase of the carrier 

drive at the middle of the gate, as shown in Fig. 7.6. Each simulation begins with 

the ions in the |↑↑i state and with the interactions turned on for a gate time of 

tgate. The duration of the single-qubit gate for the π-pulse rotation used in spin-echo 

sequence (i) is not included in tgate to provide a straightforward comparison. For (i), 

δ 1Ω is set to be and the fidelity of the created Bell state is evaluated at tgate = δ .2 

For (ii), the spin-echo sequence produces a two-loop gate. In this case, Ω is set to 

δ 2be √ and tgate = δ . A total of 11 Fock states are used in the simulation. . . . . . 176 
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8.1 (a) Illustration of a Bell inequality experiment. A source emits two systems a and 

b, here two 9Be+ ions. After choosing measurement settings ak and bl, the ex-

periment implements Hilbert-space rotation operations (which are controlled with 

classical variables) on the ions respectively. Then a standard fluorescence based 

measurement in a fixed basis is applied to each ion. This is equivalent to choosing 

the measurement basis for the state that is present before the measurement settings 

are applied. Each system’s measurement outcome is labeled B for “bright” or D 

for “dark”, corresponding to the observation of fluorescence or not. From the joint 

measurement we record “c = 1” if the outcomes are the same and “c = 0” if they 

are not. (b) “Chaining” of the measurement settings for the Nth CBI experiment. 

The measurement settings can be visualized as a chain where akbk and ak+1bk+1 

are linked by akbk+1, and the chain is closed by the settings aN b1. The CHSH Bell 

inequality experiment corresponds to the special case of N = 2. . . . . . . . . . . . 181 

8.2 Layout of the relevant segmented trap electrodes. Each CBI experiment begins 

with one ion located in zone E and the other in zone E 0 . The blue dots, which 

indicate the ions, are overlaid on a photograph showing the trap electrodes (gold). 

By transporting the ions in and out of zone S, we individually implement settings 

and measure each ion sequentially. The ions are separated by at least ∼ 340 µm 

when settings akbl are applied, a distance much larger than the laser beams waist of 

∼ 25 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 
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18.3 Pulse sequence for generating the entangled state |Φ+i = √ (|↑↑i + |↓↓i). The 
2 

notation R(θ, φ) represents the rotation with angle θ about an axis in the x-y plane 

of the Bloch sphere, and φ is the azimuthal angle of the rotation axis. Operation 

Rz(ξ) is the rotation with an angle ξ around the z axis of the Bloch sphere. The 

angle θ is adjusted by varying the length of the laser pulse, and φ and ξ are adjusted 

with the phases of the RF signal driving the AOMs that controls the laser beams. 

Laser pulses in the dashed box all use the same set of laser beams, which makes 

the sensitivity of the created state to slow phase drifts between the two Raman 

beam paths negligible [Lee 05, Tan 15]. The two laser beams used to drive the 

stimulated-Raman transitions for the pulses outside of the dashed box (labeled as 

“Co Carrier”) are copropagating (the laser beams labeled as k2a and k2b in Fig. 6.1) 

which eliminates phase drifts due to path length differences in the beams [Gaebler 16] 

(see also Sec. 6.7). The Rz rotation is implemented by shifting the phase of the 

direct digital synthesizer controlling the laser pulses that implement the subsequent 

measurement settings bl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 

8.4 Experimental sequence for one trial. The notation ELS refers to transport to place 

the ion b in zone EL and ion a in zone S. Similarly for the operation SER. The 

entangled state is generated as shown in Fig. 8.3 with the ions located in zone S. 

Time-varying potentials are applied to control electrodes for the separation, shuttling 

and recombination of the ions [Blakestad 11, Bowler 12]. The total duration of the 

entire sequence shown here is approximately 3 ms. The initial optical pumping, 

Doppler cooling and ground-state cooling which are applied prior to the Bell state 

generation are not shown here. The total duration of one trial is approximately 8 ms. 190 
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8.5 Typical detection photon histograms that were obtained when we apply the state-

dependent fluorescence detection on each ion sequentially. During the state mea-

surement of ion a (b) at zone S, ion b (a) is located in zone EL (ER) such that it 

does not interact with the detection laser beam. We choose the threshold of 6 for 

the differentiation of the “bright” and “dark” measurement outcomes. . . . . . . . . 191 

8.6 Experimentally measured values b and IbA as a function of N . Data represented by IN N 

black and blue dots are obtained with two 9Be+ ions, with black (blue) dots corre-

sponding to tests on |Φ+i (|Φ−i). These two data sets were obtained approximately 

six months apart. The difference between them and the finer features within each 

data set are probably due to miscalibrations and our inability to reproduce exact 

experimental conditions. Orange dots are data from test on |Φ+i prepared on a 

9Be+-25Mg+ pair. The dashed line indicates the lowest upper bound on the local 

content attainable in a perfect CHSH-type experiment. . . . . . . . . . . . . . . . . . 193 

9.1 Schematic showing the cross section of a potential linear Paul trap with multiple 

shim electrodes. Our X-junction trap (see Sec. 3.1) consists of two pairs of RF 

electrodes and two pairs of control electrodes (inside the grey dashed box), as well as 

a single bias electrode. The control electrodes are segmented along the z direction. 

In the proposed design, in addition to the electrodes inside the dashed box, two 

segmented “shim” electrodes that run parallel to the RF and control electrodes 

along the z axis will also be included. This design enables excess micromotion at 

different locations along the z-axis to be better compensated simultaneously. In 

addition to being important for the implementations of motional mode cooling and 

fluorescence detection, better compensation of excess micromotion is particularly 

crucial for implementing two-qubit entangling gates and shuttling of ions. Shuttling 

operations include transporting, separating, and recombining ions. . . . . . . . . . . 199 
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Chapter 1 

Introduction 

Physical systems that cannot be modeled efficiently with even the most powerful supercom-

puters exist in many different fields of science (e.g., quantum chemistry, condensed matter physics, 

cosmology, quantum field theory, cryptography, statistical mechanics). This is because the num-

ber of resources and parameters needed to keep track of the entire system grows exponentially 

with the system size. A many-body quantum mechanical system is an example of such a complex 

system. Therefore, if we have access to another well-controlled quantum system, we can offset 

this exponential explosion and use such a “quantum simulator” to model other complex systems 

[Feynman 82]. 

An important general goal is to realize a universal quantum information processing (QIP) 

device — the so-called “quantum computer,” which could be used for algorithms having a quantum 

advantage [Shor 97, Grover 97] over processing on conventional bits as well as to simulate other 

quantum systems of interest [Feynman 82, Deutsch 85, Lloyd 96]. By using a small set of universal 

operations that are well controlled, a quantum computer can simulate other systems and execute 

computations by simple programming of such a processor [Deutsch 85]. 

Many experimental platforms are currently being investigated for building a large-scale 

quantum computer [Ladd 10] (e.g., photon systems, nuclear magnetic resonances, neutral atoms, 

trapped-ions, nitrogen vacancy (NV) centers, quantum dots, and superconducting circuits). Each 

of these physical platforms offers different advantages as well as drawbacks. For example, compared 

to other systems, photons are robust against decoherence even over long distances. However, imple-
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menting interactions between photons for deterministic entangling operations has proven challeng-

ing. A trapped-ion system currently offers the highest fidelity of universal elementary operations, 

with a number of architecture proposals being pursued to tackle the enormous task of scaling up. 

Solid-state based systems, such as quantum dots, NV center, and superconducting circuits, may 

eventually offer better prospects to be scaled up. However, the performance of elementary opera-

tions demonstrated with these platforms are still arguably insufficient for realizing a practical QIP 

device. One dominant issue is the imperfections due to the intrinsic bulk properties of the material 

used for the realization of quantum bits (qubit). 

In recent years the possibilities of hybrid architectures to be used for QIP and quantum 

networks have been discussed in various proposals (see for example Ref. [Wallquist 09] and Ref. 

[Kurizki 15]). By interfacing and integrating different platforms, unique advantages of each platform 

can be exploited in a single setting and different QIP tasks can be delegated to the best suited 

system. Any such hybrid implementation is an ambitious challenge. Efforts are being made to tackle 

this challenge [Daniilidis 09, Kotler 16]; nevertheless, quantum information processing is still in its 

infancy at its current state. Various challenges remain to be addressed within each platform before 

a larger hybrid system and a working QIP device can be realized. 

My PhD career has been concentrated on developing and improving the techniques for the 

realization of a QIP device with trapped-ions. By applying a combination of static and radio-

frequency electric fields to provide a pseudo-harmonic potential in three dimensions [Paul 90, 

Wineland 98], charged ions can be trapped and stored over long periods of time. The physics 

of ion trapping is well understood, and the motional degree of freedom provided by the harmonic 

potential, as well as the internal (atomic) states of the ions, can be controlled with high precision 

[Wineland 98]. 

QIP based on trapped-ion systems started in the mid-90s with the first experimental realiza-

tion of a quantum logic gate [Monroe 95a] on individual qubits based on the proposal by Cirac and 

Zoller [Cirac 95]. Taking advantage of the expertise and techniques developed in atomic and laser 

physics, particularly those associated with the developments of atomic clocks [Chou 10, Ludlow 15], 
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QIP based on trapped-ions has since emerged as one of the most promising platforms. 

Fundamental building blocks needed to build a large-scale quantum computer have been 

demonstrated in trapped-ion systems. The remaining challenges of building a useful, practical 

quantum computer are (i) reducing and controlling the errors of the elementary operations and 

(ii) combining all elementary operations in a scalable system while maintaining the performance of 

each operation. For QIP to be practical, the error per operation has to be below certain threshold 

[Preskill 98, Knill 10, Ladd 10], often taken to be 10−4 probability per gate, so that error correction 

schemes can be implemented [Nielsen 00]. Among all the elementary operations, the most techni-

cally challenging operation is the implementation of a deterministic quantum entangling gate — 

which produces, “on demand,” an entangled state of two separate qubits. It requires high preci-

sion coherent control of the two degrees of freedom inside a trapped-ion system (i.e., the internal 

atomic states degree of freedom and the external motional degree of freedom). Both are subjected 

to noise, which includes environmental noise and noise present in the control fields used for the 

manipulations of qubits. 

A number of trapped-ion architectures for the scaling of operations have been proposed and 

pursued [Wineland 98, Kielpinski 02, Monroe 14]. The traps used in this thesis work are designed to 

implement the quantum charge coupled device (QCCD) architecture [Wineland 98, Kielpinski 02]. 

Figure 1.1 provides an illustration of the working principle of this architecture in which a large 

number of ions can be trapped in a trap array with multiple trapping zones. Ions can be shuttled 

between different zones by applying time-varying control potentials. Certain zones can be delegated 

for certain tasks (e.g., state measurement, addressing of single-qubits, and multi-qubit entangling 

gates). With this architecture, one only has to deal with a small subset of ions and operations at 

a given locations, and parallel processing can be performed in different zones. 

Using two different QCCD traps, this thesis focuses on the implementations of two-qubit 

entangling gates based on effective spin-spin interactions driven by stimulated-Raman transitions 

[Wineland 98]. Three chapters are dedicated to describing three different two-qubit entangling gate 

experiments. 
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Figure 1.1: One proposal to scale up the QIP device with a trapped-ion system: a quantum charge 
coupled device (QCCD) architecture [Wineland 98, Kielpinski 02] consists of multiple, intercon-
nected trapping zones. Each trapping region could be dedicated for certain operations. This 
enables parallel processing and handling of a small subset of qubits at any trapping location. The 
information transport is achieved by physically shuttling the ions between different trapping regions 
by applying well-controlled, time-varying electric fields. 
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Chapter 5 describes the implementation of a mixed-species entangling gate, demonstrated 

with a hybrid system consisting of a 9Be+ and a 25Mg+ ion. In trapped-ion QIP, a hybrid ar-

chitecture can be implemented by using different species of ions; this enables extra degrees of 

freedom to be introduced that can be exploited to expand and refine the control of the system. 

Trapped ions of different elements vary in mass, internal atomic structure, and spectral properties, 

features that make certain species suited for particular tasks such as storing quantum informa-

tion, high-fidelity readout, fast logic gates, or interfacing between local processors and photon 

interconnects. Ions of different elements have previously been used in QIP experiments for sym-

pathetic cooling [Barrett 03], creation of entanglement through dissipation [Lin 13a], and quantum 

non-demolition (QND) measurement of one species by using another [Hume 07]. As a multi-qubit 

quantum logic gate is one of the most important elementary operations for QIP, adding a mixed-

species entangling gate between multiple species of ions provides one important step toward a 

large-scale trapped-ion QIP device. Furthermore, a mixed-species entangling gate can also po-

tentially serve as an important building block for quantum networking [Moehring 07], precision 

spectroscopy [Schmidt 05], metrology [Schulte 16], and quantum simulation. The mixed-species 

entangling gate is realized through an effective spin-spin interaction generated by state-dependent 

forces [Sørensen 99, Milburn 00, Solano 99, Leibfried 03] using the Mølmer-Sørensen (MS) protocol 

[Sørensen 99, Sørensen 00]. The fidelity of creating a mixed-species Bell state with our gate scheme 

was evaluated to be 0.979(1) [Tan 15]. Error sources are investigated to study the possibilities of 

improving the gate performance. 

Operations in the high-fidelity regime are important for the realization of a practical quantum 

information processor. Individual quantum gate errors must be reduced below a certain threshold 

to achieve fault-tolerance [Preskill 98, Knill 10, Ladd 10] without excessive overhead in the number 

of physical qubits. In the trapped-ion QIP community, this error threshold is generally agreed to be 

around 10−4 . This level has been achieved in some experiments for elementary operations including 

single-qubit gates [Brown 11, Harty 14, Ballance 16, Gaebler 16] and state preparation and readout 

[Myerson 08], with the exception of two-qubit entangling gates, emphasizing the importance of 
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improving the fidelity of multi-qubit gates. 

Chapter 6 describes experiments that push the fidelity of laser-induced gates, especially 

a two-qubit entangling gate, toward the fault-tolerant goal. With a “clock” qubit composed of 

hyperfine states in a 9Be+ ion, which has a long coherence time (> 1 s) due to its robustness 

against fluctuating magnetic fields [Langer 05], a state-dependent force based on the MS protocol 

is applied directly to the qubits to implement an entangling geometric phase gate. The error of the 

Bell state created by the entangling gate scheme is measured to be 8(4) × 10−4 [Gaebler 16], this 

result is currently the highest two-qubit gate fidelity across all platforms. This result is about a 

factor of ∼ 50 improvement compared to the previous best result of an entangling gate applied on 

a magnetic-field insensitive qubit [Tan 13] (see also Chapter 7). This improvement is partly made 

by reducing various noise sources and taking advantage of a number of recent developments in laser 

technology [Wilson 11, Colombe 14] and digital electronics [Bowler 13, Leibrandt 15]. 

Similar two-qubit gate performance has also been demonstrated by the Oxford trapped-ion 

group [Ballance 16]. In this case, the gate is applied on a magnetic-field sensitive qubit state using 

a different implementation of a geometric phase gate [Leibfried 03]. The Oxford group is working 

toward implementing the Mølmer-Sørensen protocol on a clock qubit so that the qubit dephasing 

error can be suppressed (private communication). Chapter 4 gives a brief overview of different 

two-qubit gate schemes and discusses their respective advantages and disadvantages. 

Section 6.7 describes characterization of a single-qubit gate using a randomized benchmarking 

technique [Knill 08]. Single-qubit gates are implemented with the same apparatus and errors are 

evaluated to be 3.8(1) × 10−5 [Gaebler 16], this error is lower than the 10−4 fault-tolerant thresh-

old. This result appears to be one of the highest single-qubit gate fidelity based on laser-driven 

stimulated-Raman transitions [Ballance 16]. 

One of the most important aspects of implementing high-fidelity gates is the study of error 

mechanisms. Here, these errors are investigated with a combination of analytic methods, calibration 

measurements, and numerical simulations. This allows for better strategies and novel gate schemes 

to be developed that target certain error mechanisms for the further improvement of quantum 
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gates. 

As qubit dephasing errors are one of the most important error sources, certain techniques 

and gate schemes targeting this error have been proposed in the recent years. One such example 

is the technique of dynamical decoupling (DD) [Viola 98]; based on an extension of spin-echos 

[Hahn 50]. Dynamical decoupling relies on applying certain operations to the quantum system 

of interest that provides protection against environment noise such as magnetic field fluctuations. 

Most implementations of DD schemes have been focused on the protection of quantum memories 

against external noise [Du 09, de Lange 10, Ryan 10, Szwer 11]. However, as most quantum gates 

require the application of external controlled fields, a decoupling scheme that is compatible with 

quantum gate is a non-trivial challenge. These DD-compatible quantum gates should be designed to 

be immune to fields associated with environmental noise but still able to be implement interactions 

induced by the controlled fields required to apply the coherent gate operations. 

Chapter 7 describes an experimental demonstration of an entangling gate based on state-

dependent forces with built-in continuous dynamical decoupling. This implementation is a modified 

scheme based on the theoretical proposal presented by Bermudez et al. [Bermudez 12]. By apply-

ing a strong carrier excitation that continuously flips the qubit states, the qubit is dynamically 

decoupled from certain qubit dephasing mechanisms such as external magnetic field fluctuations, 

fluctuating AC Stark shifts, or AC Zeeman shifts. Simultaneously, a spin-motional “sideband” ex-

citation is applied. In the limit that the carrier Rabi rate is significantly greater than the sideband 

Rabi rate, the combined interaction is a state-dependent force that can be engineered to imple-

ment a geometric phase gate. This protocol shares certain similarities with the Mølmer-Sørensen 

protocol in the sense that they can both be directly applied to a clock state qubit. In addition 

to the built-in feature of dynamical decoupling, this gate scheme has certain further advantages 

compared to the Mølmer-Sørensen protocol, which are discussed in Chapter 4. With this DD gate 

scheme, a gate fidelity of 0.974(4) was achieved. Gate errors were dominated by sources associated 

with a legacy experimental setup used for this demonstration, which can be suppressed in the futre. 

Together with other quantum entanglement generation schemes, it provides an additional tool kit 
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to the study of quantum physics. 

The properties of quantum entanglement are at the heart of the promising power of QIP. 

The peculiar properties of quantum entanglement’s spukhafte Fernwirkungen, which is translated as 

“spooky action at a distance” [Einstein 71], prompted heated philosophical debates and motivated 

various interpretations of quantum physics. Spooky action at a distance refers to the counter-

intuitive implication that quantum entanglement seems to allow faster-than-light communication 

between the partners of the entangled state. This is in direct conflict with local-realistic theory, as 

well as human beings’ experiences with the surrounding physical world. 

John Bell formulated a relatively simple mathematical inequality describing the incompatibil-

ity between quantum physics and local realistic theories [Bell 64]. This was followed by proposals 

enabling the experimental examination of Bell inequality, notably the one proposed by Clauser, 

Horne, Shimony, and Holt (CHSH) [Clauser 69], which is performed by making joint measurements 

on a pair of entangled particles to draw inferences about the nonlocal nature of quantum physics. 

Since the pioneering work in the 70s performed with photon pairs [Freedman 72] and a number 

of experiments using various platforms in the following decades made possible by technological 

advancements, the quest for confirming the non-local nature of quantum mechanics reached an 

important milestone with three different “loophole-free” CHSH-type Bell inequality experiments 

performed in 2015 [Hensen 15, Shalm 15, Giustina 15]. See Ref. [Brunner 14] for a general review 

on Bell nonlocality. 

However, the quest to fully understand local/non-local properties of quantum physics is far 

from finished. Although the loophole-free Bell inequality experiments have rejected with high 

confidence theories of local realism, they are limited in the extent to which their data differs from 

local realism. In general, a CHSH-type Bell inequality experiment is limited in the extent to which 

the experimental data may assert nonlocality exhibited by a quantum state. Therefore, one of 

the next quests in the study of the foundation of quantum physics is to experimentally show that 

quantum state can exhibit maximum nonlocal properties. One such experiment is the chained 

Bell inequality (CBI) [Pearle 70] test, which can be used to further quantify and assert a larger 
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departure of quantum physics from local realism. 

Elitzur, Popescu, and Rohrlich [Elitzur 92] described a model of the distribution of outcomes 

measured from a quantum state as a mixture of a local-realistic distribution, which obeys Bell’s 

inequalities, and another distribution which does not. A perfectly executed Bell inequality ex-

periment of the CHSH type, with two particles and two measurement settings per particle, could 

only show with a maximally entangled state exhibits a nonlocal properties with pnonlocal ' 0.414 

(maximum nonlocality corresponds to pnonlocal = 1). A CBI experiment can be viewed as a gen-

eralized version of the CHSH-type Bell inequality test. There is a hierarchy in which the Nth 

CBI experiment involves 2N different combinations of measurement settings. The N = 2 CBI 

experiment is equivalent to the CHSH Bell inequality experiment. In the limit of N →∞ and with 

perfect experimental conditions, CBI experiments can be used to show a quantum state’s complete 

departure from local realism [Barrett 06, Bierhorst 16]. 

Similar to a CHSH-type experiment, a CBI experiment may be subject to “loopholes” 

[Brunner 14, Å. Larsson 14] that, in principle, allow a local system to show violation of the inequal-

ity. Previous CBI experiments [Pomarico 11, Aolita 12, Stuart 12, Christensen 15] employed entan-

gled photon pairs with the highest nonlocal properties shown to be pnonlocal ' 0.874 [Christensen 15]. 

However, the detectors’ efficiencies in these experiments are low, such that the fair sampling as-

sumption has to be made, thus not closing the so-called detection loophole [Pearle 70, Clauser 74]. 

To my knowledge, all previous CBI experiments with N ≥ 3 suffer from the locality [Bell 85], 

detection, and memory loopholes [Barrett 02]. 

The detection efficiency of a trapped-ion system can be near 100 %, making it an excellent 

platform to perform Bell inequality experiments while closing the detection loophole. The detection 

loophole was first closed in a CHSH-type Bell inequality experiment performed with a trapped-ion 

system [Rowe 01]. Other CHSH Bell inequality experiments performed with trapped-ion systems 

include Ref. [Matsukevich 08, Pironio 10, Ballance 15, Tan 15], with each of them successfully 

closing the detection loophole. 

Chapter 8 presents detection-loophole-closing CBI experiments that are realized by employ-
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ing techniques developed for trapped-ion QIP, particularly the high-fidelity deterministic gener-

ation of Bell states with an entangling gate and single-qubit gate, robust state preparation and 

measurement, long qubit memory storage time, and shuttling and transport of ions for the separate 

addressing and measurement of individual ions. 

The CBI experiments presented here employ up to 15 different measurement settings per 

particle. The highest nonlocal fraction attainable by a quantum distribution is determined to be 

pnonlocal ' 0.704(12) for the N = 9 CBI experiment. Although the experiments here close the 

detection loophole, the CBI experiments are performed with each ion’s measurement inside the 

lightcone of the event where the other ion’s measurement setting choice is made, thus not able to 

close the other important loophole, i.e. locality or lightcone loophole. 

Historically, a Bell inequality experiment is primarily designed and performed to inves-

tigate the incompatibility between quantum physics and local-realistic theory. The possibili-

ties of using a Bell inequality experiment for certain applications had also been discussed. For 

example, while the Bell inequality experiments presented here are made possible by the tech-

nique developed for QIP with trapped-ions, the experimental protocols can in turn provide a 

“black box” certification of the created Bell state [Bardyn 09, Bancal 15, Kaniewski 16] as well 

as a device-independent, single-number, conservative benchmark for the QIP device. Such a 

characterization with minimal assumptions on the physical system and measurements is formal-

ized by the self-testing framework [Mayers 04, McKague 12], which enables an experimentalist 

to quantify the quality of an entangled state given the amount of violation of a Bell inequality 

[Bardyn 09, Yang 14, Bancal 15, Kaniewski 16]. 

Our N = 2 measurements corresponds to a CHSH inequality parameter (sum of correlations) 

of BCHSH = 2.80(2). According to Kaniewski’s formulation [Kaniewski 16], the self-tested Bell 

state fidelity is inferred to be 0.980, with lower bounds of ∼ 0.958 at the 95% confidence level. This 

result appears to be the highest self-tested fidelity on a deterministically created Bell state across 

all platforms that are being considered for QIP, demonstrating a trapped-ion system’s capabilities 

for the realization of a QIP device. 
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During the course of my PhD, I have worked with two trapped-ion apparatuses in two different 

laboratories, chronologically. The first apparatus, which is referred in this thesis as the “legacy 

system,” was retired in the spring of 2013. The second system was set up in a laboratory inside 

the Katherine Gabbie building at National Institute of Standards and Technology, and became 

operational in the fall of 2013. Although the two systems share many similarities, unless specified 

otherwise, this thesis refers to the newer system. 

The three two-qubit entangling gate experiments described in this thesis resulted in the 

following peer-reviewed publications: 

(i) “Multi-element logic gates for trapped-ion qubits” 

T. R. Tan, J. P. Gaebler, Y. Lin, Y. Wan, R. Bowler, D. Leibfried, and D. J. Wineland, 

Nature 528, 380 (2015). 

 (ii) “High-fidelity universal gate set for 9Be+ ion qubits” 

J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. Keith, K. Coakley, E. Knill, D. 

Leibfried, and D. J. Wineland, Phys. Rev. Lett. 117, 060505 (2016). 

(iii) “Demonstration of a dressed-state phase gate for trapped ions” 

T. R. Tan, J. P. Gaebler, R. Bowler, Y. Lin, J. D. Jost, D. Leibfried, and D. J. Wineland, 

Phys. Rev. Lett. 110, 263002 (2013). 

The manuscript for the chained Bell inequality experiment is being prepared at the moment. 

(iv) “Chained Bell inequality experiment with high-efficiency measurement” 

T. R. Tan, Y. Wan, S. Erickson, P. Bierhorst, D. Kienzler, S. Glancy, E. Knill, D. Leibfried, 

and D. J. Wineland, in preparation. 

I was primarily in charge of the planning, designing, and assembling the infrastructure of the 

new laboratory, as well as heavily involved in a number of other experiments using the apparatus 

described in this thesis. These other experiments were led by J. P. Gaebler, R. Bowler, Y. Lin, and 

Y. Wan, some of which resulted in the following publications: 
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(i) “Randomized-benchmarking of multi-qubit gates” 

J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. 

Home, E. Knill, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett. 108, 260503 (2012). 

(ii) “Coherent diabatic ion transport and separation in a multizone trap array” 

R. Bowler, J. P. Gaebler, Y. Lin, T. R. Tan, D. Hanneke, J. D. Jost, J. P. Home, D. 

Leibfried, and D. J. Wineland, Phys. Rev. Lett. 109, 080502 (2012). 

(iii) “Sympathetic electromagnetically-induced-transparency laser cooling of motional modes in 

an ion chain” 

Y. Lin, J. P. Gaebler, T. R. Tan, R. Bowler, J. D. Jost, D. Leibfried, and D. J. Wineland, 

Phys. Rev. Lett. 110, 153002 (2013). 

(iv) “Dissipative production of a maximally entangled steady state of two quantum bits” 

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and 

D. J. Wineland, Nature 504, 415 (2013). 

(v) “Preparation of entangled states by Hilbert space engineering” 

Y. Lin, J. P Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A Keith, E. Knill, S. 

Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett. 

117, 140502 (2016). 

1.1 Thesis Organization 

      9 +  25 + Chapter 2 describes the use of Be and Mg ions as qubits, including the qubit state 

preparation, measurement and coherent manipulations of the qubits. The apparatus relevant to 

this thesis is summarized in Chapter 3. This includes the ion trap, magnetic-field coil, laser systems, 

imaging system, and certain electronics. 

Chapter 4 gives a brief overview of two-qubit entangling gates with trapped-ions. Differ-

ent gate schemes will be discussed, and the relevant error mechanisms that prevent the perfect 

implementations of entangling gates are summarized. The objective of this chapter is to provide 
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background information for the two-qubit entangling gate experiments described in Chapters 5, 6, 

and 7. 

Chapters 5 and 6 describe experimental implementations of a mixed-species entangling gate 

and a universal gate set with 9Be+ ions, respectively. This is followed by Chapter 7, which describes 

the demonstration of a geometric phase gate with dynamic decoupling built-in. The chained Bell 

inequality experiment is presented in Chapter 8. Chapter 9 discusses prospective outlooks of the 

experiments presented in this thesis. 

Appendix A and B include the detailed hyperfine energy level diagrams of the 2S1/2 electronic 

ground states of the 9Be+ ion and the 25Mg+ ion, respectively. Certain atomic properties and their 

respective magnetic-field independent points of these species are also included. Appendix C includes 

Hamiltonians describing the atom-light interactions frequently used throughout the thesis. Lastly, 

Appendix D gives the matrix representations of state vectors and operators used in the numerical 

simulations of quantum systems. 



Chapter 2 

9Be+ and 25Mg+ Ion Qubits 

The 9Be+ ion, and two isotopes of magnesium ions (24Mg+ and 25Mg+) are used in this thesis 

work. The 24Mg+ isotope was used in a legacy system to take advantage of its relatively simple 

electronic structure. With the absence of nuclear spin, and thus the absence of hyperfine structure, 

the laser system required to manipulate the 24Mg+ isotope is relatively simple and straightforward. 

The 25Mg+ isotope was then used after the legacy system was retired. With a nuclear spin of 

5/2, which gives rise to hyperfine structure, the 25Mg+ isotope is more favorable to be used as a 

quantum bit (qubit) in terms of memory storage time, qubit state readout fidelity, and application 

of quantum gates. However, the laser system required to fully manipulate the 25Mg+ isotope is 

relatively more demanding than for 24Mg+ . 

The electronic structures of 9Be+ and 25Mg+ are qualitatively very similar. The wavelength 

of the lasers to manipulate 9Be+ are all centered around 313 nm, while the laser wavelengths for 

the 25Mg+ are centered around 280 nm. This chapter describes the electronic structure of 9Be+ 

and 25Mg+, the qubit preparation and readout, and the coherent operations for the manipulation 

of these ions. Detailed information about the 24Mg+ isotope can be found in Ref. [Jost 10]. 

2.1 9Be+ Ion Qubit 

The only stable isotope of beryllium is 9Be. Being an alkaline earth atom, the neutral Be 

atom has two valence electrons. By stripping off  one of the outer electrons, the 9Be+ ion’s electronic 

structure is very similar to alkali atoms. The electronic ground state is the 1s22s2SJ=1/2 state. The 
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two electronic excited states relevant to this thesis are the 1s22p2P1/2 state and the 1s22p2P3/2 state. 

The electronic transitions from the 2S1/2 state to either excited state have wavelengths around 313 

nm. The fine structure splitting between the two excited states is approximately 198 GHz. 

The nuclear spin, I of the 9Be+ ion is 3/2. The interactions between the nuclear and elec-

tronic spin give rise to hyperfine structure. The hyperfine levels in the electronic ground state of 

2S1/2 are labeled with the total angular momentum, F . The hyperfine splitting between the F = 1 

and F = 2 levels is approximately 1.2 GHz. We apply an external magnetic field of ∼ 119.446 

G (0.0119446 T) to further lift the degeneracy of different Zeeman levels. This magnetic field is 

chosen such that the |F = 2,mF = 0i ↔ |1, 1i transition is first-order insensitive to magnetic field 

fluctuations [Langer 05]. Furthermore, at this “intermediate magnetic field” regime, the combina-

tion of hyperfine and Zeeman effects is such that the transition frequencies of all transitions in the 

2S1/2 manifold are nondegenerate. Figure 2.1 shows the relevant energy levels of the 9Be+ ion. See 

Fig. A.1 for additional details of the 9Be+ electronic ground state. 

For the quantum information experiments described in this thesis, the qubit is stored in the 

magnetic-field insensitive states labeled as |2, 0i = |↑i and |1, 1i = |↓i. The coherence time of this 

qubit is investigated with a Ramsey sequence and the results are shown in Fig. 2.2. Due to the 

complicated mechanisms of dephasing sources, which can be correlated, the decay of the Ramsey 

contrast does not exhibit simple exponential behavior. Therefore, we choose the delay time in which 

the Ramsey contrast equal to 1 − 1/e ' 0.632 as the representative qubit coherence time. With 

this convention, the coherence time of the 9Be+ qubit is measured to be ∼ 1.5 s. The second-order 

magnetic field sensitivity of the qubit transition is approximately 6.097 kHz/G2 . 

Relevant atomic properties of the 9Be+ ion are shown in Table A.1. Table A.2 lists the 

magnetic-field insensitive transitions in the electronic ground state of the 9Be+ ion. 

2.1.1 Doppler Cooling 

Doppler cooling of 9Be+ ions is achieved with a σ+ polarized laser beam with frequency red 

detuned by approximately Γ/2 from the 2S1/2|2, 2i ↔ 2P3/2|3, 3i transition at ∼ 313.132 nm (see 
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 Figure 2.1: Relevant energy level structure (not to scale) of the 9Be+ ion. Transitions to the 
electronic excited states are used for Doppler cooling, repumping, and qubit state measurement 
as described in the text. The “blue Doppler detuned” (BDD) beam, which is red shifted ' 400 
MHz with respect to the “blue Doppler” (BD) beam (see Sec. 2.1.1), is not shown in this figure. 
We label the qubit |1, 1i = |↑i and the |2, 0i = |↓i states as the “computational qubit manifold”. 
The “measurement qubit manifold” consists of the |2, 2i as the “bright” state, and the |1, −1i or 
|1, 0i state as the “dark” state (see Sec. 2.1.7). The laser for stimulated-Raman transitions is red 
detuned from the 2S1/2 ↔ 2P1/2 transition. The decay rate of the 2P3/2 state is 2π × 19.4(5) MHz 
[Poulsen 75].  See Fig. A.1 for details energy levels diagram in the 9Be+ electronic ground state. 
The state labels correspond to the states at low magnetic field, which evolve to the states indicated 
at non-zero magnetic field. 
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Figure 2.2: Coherence time of the 9Be+ qubit is investigated with a Ramsey sequence. We repeat 
the experiments with and without the presence of the 25Mg+ laser beams, which have a wavelength 
of approximately 280   nm. In this experiment, one 9Be+ and one 25Mg+ ion are trapped together in a 
harmonic well with a separation of ' 5 µm; the laser beams (with beam waists ' 30 µm.) illuminate 
both ions. We do not observe a significant difference between these two sets of experiments, which 
indicates that the 25Mg+ laser radiation causes negligible additional decoherence. 
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Fig. 2.1), where Γ ' 2π ×19.4(5) MHz is the decay rate of the 2P3/2 state [Poulsen 75]. This beam, 

which is labeled as the “blue Doppler” (BD) beam, has a k-vector direction such that it can cool 

all modes of the ions’ motion. The BD beam is also used for the fluorescence detection of the 9Be+ 

ions (see Sec. 2.1.7). 

To maximize efficiency during Doppler cooling and detection in the presence of axial micro-

motion (see Sec. 3.1 and Ref. [Blakestad 10]), we apply a differential voltage of approximately 

± 0.15 V to the two control electrodes centered on zone E (Fig. 3.1). This shifts the ions away 

from the radial micromotion null point (trap axis) such that the vector sum of the radial and axial 

micromotions is perpendicular to the Doppler cooling beam’s wavevector. With this Doppler cool-

ing scheme, the lowest motional temperature is attainable when the heating and cooling process 

reach an equilibrium [Itano 82]. Heating mechanisms include recoil momentum kicks during photon 

absorption and emission, and background heating [Turchette 00a]. 

In the weak binding regime, where Γ � ων , with ων as the frequency of the motional mode, 

the temperature at the Doppler cooling limit, TD is given by [Wineland 79, Itano 82] � � 
~Γ Γ 2δ 

TD = (1 + χ) (1 + s) + , (2.1)
8kB 2δ Γ 

where kB is the Boltzmann constant, s and δ are the saturation parameter and the detuning of 

the laser beam associated with the cooling transition, and χ is a geometric factor which is related 

to the beam direction with respect to the motional modes’ vibrational directions. In our case, the 

polarization of the laser beam is set to be σ+ and with the alignment shown in Fig. 2.3, χ = 0.35 

for the axial modes, and ranges from 0.3 to 0.35 for radial modes [Itano 82]. 

For a single 9Be+ ion with an axial trapping frequency near 2π × 3.6 MHz, we measure 

the average axial occupation number after Doppler cooling to be approximately n̄ ' 4. Our 

Raman laser beam geometry does not permit direct diagnostics of the motional modes in the radial 

directions (see Sec. 2.1.3 and Sec. 2.1.5). To estimate the Doppler cooling limit for the 9Be+ ion’s 

radial motional modes, we first note that the radial trap frequency for one 9Be+ is relatively high, 

such that the weak binding condition is not rigorously satisfied. Using Eq. 2.1 in this case could 
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Figure 2.3: Schematic diagram indicating laser beams access into the ion trap apparatus. Four 
ports are  available, each aligned ∼ 45◦ relative to the trap (z) axis. The external magnetic field 

 (provided by coils in the Helmholtz-like configuration) is set to be 45◦ with respect to the trap 
axis. The radial confinement of the ions is in the plane normal to the z axis. Laser beams for the 
Doppler cooling, repumping, and fluorescence detection   of the 9Be+ and 25Mg+ ions are coaligned 
with the magnetic field direction, and are set to  be σ+ polarized. With this configuration, motional 
modes in all three directions can be cooled by the Doppler beams. Each species Raman laser beams 
are sent into the vacuum chamber via two ports after being combined with dichroic mirrors. For 
9Be+, the laser beam exiting the UV fiber of path 1 (2) depicted in Fig. 3.8 is sent into the port 
labeled as 9  Be+ “ 90” (9Be+ Co) in this figure. For the 25Mg+, the laser beams labeled as path 1 
(2)   in Fig. 3.10 corresponds to “25Mg+ 90” (“25Mg+ Co”) in this figure. The laser beam entering 
the bottom-right port (i.e., the Mg PI beam in this figure) and directed toward zone L is blocked 
by an oven shield installed behind the alumina wafers after passing through the center of the trap 
(details in Ref. [Blakestad 10]). The boundary of the vacuum chamber is indicated by blue lines. 
Details of apparatus are described in Chap. 3. 
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overestimate the cooling efficiency and erroneously give a lower motional temperature. Doppler 

cooling in the intermediate binding regime can be estimated by [Lindberg 84, Javanainen 84] 

~ 1 
TInter = × 

4δkB ων 
2 (δ2 + γ2 + 6κ2) + 4γ2 (δ2 + γ2 + 2κ2)h � �� �2 � �2 

ξ ω2 δ2 + 5γ2 + 4κ2 − ω2 + 4γ2 δ2 + γ2 + 2κ2 − 2ω2 
ν ν ν � � � � 

+ω2 δ2 + γ2 + 2κ2 δ2 + 5γ2 + 8κ2 + ω2 
ν ν ��i�� �2 � 

+4γ2 δ2 + γ2 + 2κ2 + 2κ2 δ2 − 3γ2 + 8κ2 − 3ω2 , (2.2)ν 

where γ = Γ/2 and κ is the Rabi rate of the laser-induced electronic cooling transition. 

Another laser beam, labeled as “blue Doppler detuned” (BDD), is derived from the same 

laser source as the BD beam but with its frequency red shifted by ' 400 MHz from the BD 

beam (details in 3.4). The power of the BDD beam is ∼ 1 mW, which power broadens the 

transition linewidth when the transition is shifted into resonance. This beam provides strong 

cooling for high temperature ions that might not be efficiently cooled by the BD beam. These 

occasional high temperature events are likely due to background gas collisions which occur at a 

rate of approximately one per minute. It was found that the dark ion (which does not fluoresce 

under the illumination of either the BD or the BDD beams) creation rate becomes faster when we 

increase the duty cycle of the BDD beam, likely due to BeH+ formation when the 9Be+ ion is in 

the electronic excited state [Wineland 98]. The BDD beam also provides optical pumping to assist 

initialize the population to the |2, 2i state. 

2.1.2 Repumping 

The 2S1/2 ↔ 2P3/2 (BD) Doppler cooling and detection laser beam will optically pump the 

9Be+ ions to the 2S1/2|2, 2i state as long as the beam has a pure σ+ polarization with respect to the 

applied magnetic field. To mitigate the effects of polarization impurity and to speed up the pumping 

process, two 2S1/2 ↔ 2P1/2 laser beams are added for the initial optical pumping to the 2S1/2|2, 2i 

state. All three beams are first applied, and the final stage of pumping uses only the 2S1/2 ↔ 2P1/2 

beams. These beams are formed from one beam that is split into two, which are also σ+ polarized 
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(details in Sec. 3.4). One beam is tuned near the 2S1/2|2, 1i ↔ 2P1/2|2, 2i transition, and the other 

is tuned near the 2S1/2|1, 1i ↔ 2P1/2|2, 2i transition (see Fig. 2.1). These two beams are labeled as 

the “RD red” beam and “RD blue” beam, respectively. To suppress electromagnetically-induced 

transparency effects that could lead to coherent trapping of populations in the 2S1/2|2, 1i and the 

2S1/2|1, 1i states when these two beams are applied simultaneously, one of these beams is detuned 

from the atomic resonance by approximately −Γ/2. 

These beams also serve to repump the population to the 2S1/2|2, 2i state during Raman 

sideband cooling [Monroe 95b] (see Sec. 2.1.5). During the repumping process in the sideband 

cooling sequence, we do not apply the differential voltage on control electrodes that maximizes the 

detection efficiency in the presence of axial micromotion. This is to minimize motional heating that 

might occur when transverse micromotion is induced. 

2.1.3 Stimulated-Raman Transitions 

Coherent manipulation of qubits are accomplished with stimulated-Raman transitions [Wineland 98] 

and microwave transitions. Although there are multiple energy levels present in the ions’ atomic 

structures (Fig. 2.1 and Fig. 2.6), we can restrict the coherent operations such that, to a high 

degree, they interact only with the two energy levels corresponding to the qubit |↑i and |↓i states. 

Another degree of freedom which is present in the trapped-ion system is the motion, which for each 

normal mode, can be described as a harmonic oscillator. The unperturbed Hamiltonian describing 

a single two-level ion in a harmonic well can be written 

3X 
H0 = ~ 

ω0 
(|↑ih↑| − |↓ih↓|) + ~ων,iâ

† âi, (2.3)i2 
i 

where ω0 is the qubit frequency, and the second term represents the three orthogonal motional 

modes, each with a harmonic oscillator frequency of ων,i, and âi represents the harmonic oscillator 

annihilation operator for the ith mode (see also Appendix C). 

The laser beams for qubit manipulation of 9Be+ ions with stimulated-Raman transitions 

(with wavelength λ ' 313 nm) are red detuned from the 2S1/2 ↔ 2P1/2 electronic transitions. To 
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Figure 2.4: The laser beams setup to drive stimulated-Raman transitions. Laser beams are focused 
onto ions   from two paths, which intersect at 90◦ such that the difference in their k vectors, Δk, is 
aligned along the axial direction. These two beams corresponds to the Co and 90 beams in Fig. 2.3. 
This figure is simplified for the relevant illustrations in this section. Details of Raman beam lines 
setup are discussed in Sec. 3.4.3, Sec. 3.5.2, and the respective chapters describing implementation 
of different experiments. 
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drive spin-motion transitions with stimulated-Raman excitations, two beams propagate along paths 

1 and 2 (see Fig. 2.4) and are focused and intersect at 90◦ such that the difference in their k vectors, 

Δk, is aligned along the axial (z) direction, in which case only the axial motion can be coupled 

with the Raman laser fields at the position of the ion. If we set the frequency difference of the two 

laser fields (Δω = ω1 − ω2) near to the qubit frequency of ω0, we can excite the carrier transitions 

|↓, ni ↔ |↑, ni that induce spin-flip oscillations without changing the motional Fock state quantum 

number n. Following the derivations in Appendix C, the interaction-frame Hamiltonian describing 

a detuned carrier excitation after dropping high-frequency terms has the form of Eq. C.20: � � 
i(δt+Δφ)HCarrier = ~Ω0 σ̂+ e −i(δt+Δφ) + σ̂− e , (2.4) 

σ+ 

conjugate is σ̂− = |↓ih↑|, δ = ω1−ω2−ω0 and Δφ are the detuning from the transition frequency and 

the phase difference between the two Raman laser fields, respectively. Resonant carrier excitations 

can be driven by setting δ = 0. 

If we tune the relative frequency difference of the two laser fields, Δω, to be the ω0 +ωz where 

ωz is the frequency of the normal mode along the z direction, we can drive blue-sideband transitions 

|↓, ni → |↑, n + 1i that drives |↓i to |↑i while adding a quantum of motion to the motional harmonic 

oscillator. After neglecting high-frequency terms, the blue-sideband excitation in the interaction 

frame of both the qubit and motion can be described by the Hamiltonian: 

where Ω0 is the transition Rabi rate which can be computed with Eq. C.11, ˆ = |↑ih↓| and its 

� � 
† i(δt+Δφ)HBSB = ~ΩBSB σ̂+â e −i(δt+Δφ) + σ̂−âe . (2.5) 

Likewise, we can also drive a red-sideband transition |↓, ni → |↑, n − 1i, described by the Hamilto-

nian � � 
† i(δt+Δφ)HRSB = ~ΩRSB σ̂+âe −i(δt+Δφ) + σ̂−â e . (2.6) 

The strength of the spin-motion coupling, and the sideband transitions Rabi rate are parametrized 

with the Lamb-Dicke parameter η such that ΩBSB and ΩRSB ' ηΩ0 (see Appendix C). For a single 

ion, 

η = |Δk|z0, (2.7) 
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where z0 = ~/(2mωz), is the zero-point amplitude of the ion’s motion, with m as the mass of the 

ion. For a single 9Be+ ion, η ' 0.35 for our laser beam setup. 

Due to inherent micromotion along the axial direction (see Sec. 3.1 and Ref. [Blakestad 10]), 

the actual carrier and spin-motion sideband Rabi rates are reduced for the laser beam geometry 

depicted in Fig. 2.4. For our typical applied RF trap potentials, the modulation index due to the 

micromotion-induced Doppler shift is approximately 2.9 along the z axis for 9Be+ ion such that 

the strongest Raman-laser-induced interaction is provided by the second micromotion sideband. 

This is a factor of J2(2.9) ' 0.48 smaller compared to a carrier in the absence of micromotion. 

Because of this, interactions induced by this laser beam geometry (Fig. 2.4) are driven on the 

second micromotion sidebands. We tune the frequency difference of the Raman beams to be near 

ω +2ωRF or ω − 2ωRF , where ω is the spin-motion transition frequency of interest, and ωRF is the 

radio frequency for the trapping of ions. We drive the |2, 2i ↔ |1, 1i (sideband cooling) transitions 

on the +2nd-order micromotion sideband, and the spin-motion qubit transition |1, 1i ↔ |2, 0i 

transitions on the −2nd-order micromotion sideband. 

When the spin-motion transitions are applied to multiple ions at the same time, the motional 

mode amplitudes of each ion for a given normal mode have to be taken into account. For example, 

for a blue-sideband excitation applied to two ions on a given motional mode, the Hamiltonian 

after dropping high-frequency terms and neglecting coupling to spectator transitions is given by 

[Wineland 98] (see also Eq. C.24) 

� �X 
HT wo σ+ † σ− i(δt+Δφj ) 

BSB = ~ ηkξk,jΩ0,j ˆj âke −i(δt+Δφj ) + ˆj âke . (2.8) 
j=1,2 

where ηk, âk, and ξk,j are the Lamb-Dicke parameter, the annihilation operator, and the motional 

mode amplitude of the jth ion for the kth motional mode, Ω0,j is the jth ion’s resonant carrier 

transition Rabi rate, and δ is the detuning from the sideband transition. Given two ions of the 
√ 

same species, ξC,1 = ξC,2 = 1/ 2 for the axial center-of-mass mode (where the ions oscillate in 
√ 

phase) and ξS,1 = −ξS,2 = 1/ 2 for the stretch mode of motion (where the ions oscillate out of 

phase with each other). 
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For the 9Be+ ion, the laser beams depicted in Fig. 2.4 are set up such that the frequency 

difference between paths 1 and 2 is approximately 1 GHz with a tuning range of approximately ±100 

MHz. With the laser alignments relative to the applied magnetic field and laser polarization settings 

as shown in Fig. 2.4, stimulated-Raman transitions induced by such a “Co-90” configuration are 

limited to ΔF = ±1, ΔmF = 0, ±1 transitions (see Fig. 2.1). 

Stimulated-Raman transitions can also be driven with two laser beams that are copropagat-

ing. In this case, because the wave vector difference vanishes to high degree, such a geometry can 

only excite carrier transitions and does not allow excitation of spin-motion transitions. The Hamil-

tonian describing this transition is in the form of Eq. 2.4. Furthermore, the Rabi rate of the carrier 

transitions excited by the copropagating laser beams are not affected by the axial micromotion. In 

our experiment setup, the two copropagating beams are overlapped and sent to the ions along the 

the path labeled as k2 in Fig. 2.4. The polarization of these two laser beams are set to contain 

components of π and σ+ or σ− polarizations with respect to the applied magnetic field. By setting 

the laser frequency difference between the two copropagating laser beams, we can either drive the 

ΔF = ±1, ΔmF = 0, ±1 transitions, or the ΔF = 0, ΔmF = ±1 transitions. 

Section 3.4.3 details the Raman laser setup and the generation of laser beams with different 

frequencies that induce different transitions in the electronic ground state of the 9Be+ ion. 

2.1.4 Microwave Transitions 

We also use microwave fields to induce magnetic-dipole transitions between different hyperfine 

states. The microwave field is delivered from dipole antenna located outside the vacuum chamber 

and a stub tuner is used to maximize the impedance matching at the qubit frequency. 

However, unlike stimulated-Raman transitions which can couple to both the spin-only and 

spin-motion, the gradient of the microwave field across the ion’s motional wavepacket is negligible 

so the microwave field can only drive the spin-only transitions. The Hamiltonian governing the 

microwave-driven excitations can be described by Eq. 2.4. 

The Rabi rates of both Raman-laser and microwave driven spin-flip operations are typically 
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on the order of a few 100 kHz. The microwave antenna is designed to work in the frequency range 

of ∼ 1 − 2 GHz, which corresponds to ΔF = ±1 and ΔmF = 0, ±1 transitions. With this same 

antenna, we measure the Rabi rates for RF-driven ΔF = 0 transitions to be on the order of a few 

100 Hz. Considering the relatively slow Rabi frequencies, microwave fields are not used to drive 

these ΔF = 0 transitions. 

2.1.5 Sideband Cooling 

Doppler cooling of the ions with the BD beam (see Sec. 2.1.1) results in a final average 

occupation number of approximately n̄ ' 4 for the axial center-of-mass modes, for both one and 

two 9Be+ ions. 

To further reduce the motional temperature to near the ground-state temperature, we employ 

Raman-sideband cooling [Monroe 95b]. It is accomplished by driving a series of red-sideband 

excitations on the |2, 2i → |1, 1i transitions each followed by repumping with the 2S1/2 ↔ 2P1/2 

(both the RD red and the RD blue) laser beams to reinitialize the ion back to the |2, 2i state. The 

spin-motion excitations on the |2, 2i to |1, 1i transition is driven on the second axial micromotion 

sideband. The relative laser frequency of laser beam in path 1 and 2 (Fig. 2.4) is set to be 

ω|2,2i↔|1,1i + 2ωRF − ωz). 

When multiple ions are trapped, multiple motional modes are cooled by interleaving the 

red-sidebands pulses. Final average occupation numbers of axial modes after sideband cooling are 

typically ∼ 0.01. Our Raman laser beam geometry does not give rise to interactions with the radial 

motional modes, so they are not ground-state cooled. 

Motional excitations are measured with the sideband asymmetry method [Turchette 00a]. 

This is performed by separately measuring the excitation strengths E for red and blue motional 

sidebands transitions, the mean occupation number n̄ is given by 

ERSB 

n̄ = EBSB , (2.9) 
1 − ERSB 

EBSB 

where ERSB and EBSB are the excitations of the red and blue sideband transitions, respectively. 
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Equation 2.9 assumes the motional states exhibit a thermal distribution, with population Pn in the 

Fock state n given by 
nn̄

Pn = . (2.10)
(n̄ + 1)n+1 

A temperature, T , can be related to n̄ with 

1 
n̄ = , (2.11) 

e ~ων /kB T − 1

where ων is the motional frequency of interest and kB is the Boltzmann constant. 

2.1.6 Qubit State Initialization 

After Doppler and Raman-sideband cooling, the ions have been optically pumped to the |2, 2i 

state. The initialization of qubit state is then accomplished by transferring the population in the 

|2, 2i state to the qubit |↑i = |1, 1i state by applying a composite microwave π pulse [Levitt 86] 

composed of a sequence of R(θ, φ) pulses 

� � � � � �π π π 
R (π, 0) , R π, , R π, , R π, , R (π, 0) , (2.12)

3 6 3 

where θ denotes the angle the state is rotated about an axis in the x-y plane of the Bloch sphere, 

and φ is the azimuthal angle of the rotation axis. In general, single-qubit and global rotations can 

be described in the matrix form of ⎛ ⎞� � � � 
cos θ −ie−isin θ ⎜ ⎟

R(θ, φ) = 
2 2 ⎝ ⎠ ,� � � � 

−ieisin θ θ 
(2.13) 

2 cos 2 

A different composite π pulse composed of a sequence of pulses � �� � � �π 3π π π 
R , 0 , R , , R , 0 (2.14)

2 2 2 2 

was used before changing to that shown in Eq. 2.12. It was found that the composite pulse of Eq. 

2.12 improved the fidelity of population transfer from the |2, 2i state to the |1, 1i state compared 

to shown in Eq. 2.14 by a factor of ∼ 2. Composite pulses of Eq. 2.12 offer higher robustness in 

gate duration error compared to composite pulses of Eq. 2.14 [Levitt 86]. 
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2.1.7 Qubit State Measurement 

Qubit state measurement is accomplished with the standard state-dependent resonance-

fluorescence detection technique. First, the composite microwave π pulse used for the qubit state 

initialization is applied to transfer the |↑i population back to the |2, 2i state. This is followed by 

a microwave π pulse that transfers (“shelves”) the |↓i state to the |1, −1i state. To further shelve 

any remaining |↓i population, we then apply a microwave π pulse from the |↓i state to the |1, 0i 

state. After these shelving pulses, the BD laser beam is tuned to resonance on the 2S1/2|2, 2i 

↔ 2P3/2|3, 3i cycling transition. With these conditions, the fluorescing or “bright” state of this 

protocol corresponds to the qubit |↑i state, and the qubit |↓i state will be detected as “dark”. 

With a detection duration of 330 µs and a saturation parameter s ∼ 0.5, we record on average 

approximately 30 photon counts in a photo-multiplier tube (PMT) for an ion in the bright state 

and 2 photons for a 9Be+ ion in the dark state (limited by background scattered light). 

To maximize the photon collection in the presence of the axial micromotion, we apply a 

differential voltage of approximately ± 0.15 V to the two DC electrodes centered on zone E (Fig. 

3.1). This operation is identical to that used during Doppler cooling process (see Sec. 2.1.1). Figure 

2.5 shows a typical detection histogram of a 9Be+ ion. 

2.2 25Mg+ Ion Qubit 

There are three stable isotopes of the magnesium atom, i.e. 24Mg, 25Mg, and 26Mg, with 

25Mg the only isotope that has a non-zero nuclear spin. The electronic structure of a 25Mg+ ion is 

very similar to that of a 9Be+ ion. The electronic ground state and the first two electronic excited 

states of a 25Mg+ ion are the 3s 2S1/2, 3p 2P1/2, and the 3p 2P3/2 states, respectively. The fine 

structure splitting between the two excited states is approximately 2.75 THz. 

The nuclear spin of of the 25Mg+ is 5/2. The hyperfine splitting between the F = 2 and 

F = 3 levels is approximately 1.75 GHz. Similar to the 9Be+ ion, it is possible to choose an 

external magnetic field to make certain transition frequencies in 25Mg+ first-order insensitive to 
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 Figure 2.5: A typical single 9Be+ ion detection histogram for the population to be either in the 
|2, 2i state (blue) or the |1, −1i state (red). With a detection duration of 330 µs and a saturation 
parameter s of ∼ 0.5, we detect on average ' 30 photon counts for the ion in the |2, 2i state, and 
' 2 counts when the ion is in the |1, −1i state. Overlap of the two distributions is shown in dark 
color. 
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magnetic field fluctuations. However, the magnetic field insensitive points for the two species are 

different and it is impossible to select a magnetic field to make both species insensitive to magnetic 

field fluctuations. For our experiments, we choose to make the 9Be+ qubit to be magnetic field 

insensitive, which occurs at B ' 119.446 G. This choice is based on the required laser intensity to 

reach a certain quantum gate error level and the 9Be+ ion is more favorable than the 25Mg+ ion 

[Ozeri 07]. Details of spontaneous scattering of photon is discussed in Sec. 4.4.2. At B ' 119.446 

G, the 25Mg+ ion’s |F = 3,mF = 1i ↔ |2, 0i transition has a magnetic field sensitivity of ' 43 

kHz/G, which is the lowest among all other hyperfine transitions in the electronic ground state 

by about two orders of magnitude. Magnetic-field insensitive and corresponding magnetic fields 

transitions in the electronic ground state of a 25Mg+ ion are tabulated in Table B.2. 

Here, we label the |3, 1i state as the qubit |↑i state and the |2, 0i state as the |↓i state. 

Figure 2.6 shows the energy level diagram of the 25Mg+ ion at a magnetic field of ∼ 119.446 G. 

See Appendix B.1 for a more detailed energy level diagram. By probing the Ramsey contrast as 

a function of wait time (Fig. 2.7), the coherence time of the 25Mg+ qubit was measured to be 

∼ 6 ms. Although this is much shorter than the coherence time of the 9Be+ ion (∼ 1.5 s), it is 

still significantly longer than the relevant time scale of experiments involving 25Mg+ ion that are 

presented in this thesis. The relevant atomic properties of the Mg+ ion are listed in Table B.1. 

2.2.1 Doppler Cooling 

Similar to that for the 9Be+ ion, we use a blue Doppler (BD) beam and a blue Doppler 

detuned (BDD) beam for the Doppler cooling of the 25Mg+ ion. The BD beam is σ+ polarized and 

red detuned by approximately ΓMg/2 from the 2S1/2|3, 3i ↔ 2P3/2|4, 4i cycling transition, where 

the decay rate of the 2P3/2 state is ΓMg ' 41.3(3) MHz [Clos 14]. The BD beam is also used for 

the fluorescence detection of the 25Mg+ ion (see Sec. 2.2.6). 

The BDD beam is red detuned ' 500 MHz from the 2S1/2|3, 3i ↔ 2P3/2|4, 4i transition, and 

has an optical power of ∼ 1 mW to provide a better cooling in the event of occasional high motional 

excitations including those caused by background gas collisions. 
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Figure 2.6: Relevant energy level structure (not to scale) for  the 25Mg+ ion at an external magnetic 
field of approximately 119.446 G. The “blue Doppler detuned” (BDD) beam, which is red shifted 
' 500 MHz with respect to the “blue Doppler” (BD) beam (see Sec. 2.2.1), is not shown in 
this figure. The 25Mg+ ion qubit is encoded in the |3, 1i = |↑i state and |2, 0i = |↓i state, they 
constituent the “computational qubit manifold”. The qubit transition frequency has a magnetic-
field sensitivity of ' 43 kHz/G at the applied magnetic field. The “measurement qubit manifold” 
consists of the |3, 3i state as the “bright” state and the |2, −2i state as the “dark state” (see Sec. 
2.2.6). The decay rate of the 2P3/2 state is 2π × 41.3(3) MHz [Clos 14]. See Appendix B.1 for a 
more detailed  energy level diagram in the 25Mg+ electronic ground state. 
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Figure  2.7: Coherence time of the 25Mg+ qubit investigated with a Ramsey sequence with and 
without the presence of the λ ' 313 nm laser beam used for  the manipulations of the 9Be+

ion. The shorter qubit coherence time compared to the 9  Be+ qubit is due to the non-zero linear 
component of magnetic field sensitivity. 
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2.2.2 Repumping 

A repump laser beam is used to improve  optical pumping of the 25Mg+ population into the 

2S1/2|3, 3i state. This laser is derived from the same laser source as the BD and BDD beams, with 

the laser frequency tuned on resonance with the 2S1/2|2, 2i ↔ 2P3/2|3, 3i transition. See Sec. 3.5 

for details on the laser beam setup. 

There are three possible spontaneous emission channels from the 2P3/2|3, 3i state, i.e. decay 

to the 2S1/2|2, 2i, 2S1/2|3, 2i, and 2S1/2|3, 3i states with branching ratios of 0.0765, 0.257, and 

0.667, respectively (see Fig. 2.6). Starting from the 2S1/2|2, 2i state, applying the repump laser 

beam can populate the |3, 2i state. To completely transfer the population to the the |3, 3i state, 

a microwave-driven spin-flip (π) transition is applied to transfer population from the |3, 2i state 

to the |2, 2i state (Fig. 2.6). After the first repump pulse, the (|3, 2i ↔ |2, 2i spin-flip π pulse + 

repump) sequence is repeated three times to ensure near complete depletion of the |3, 2i and |2, 2i 

states. 

Compared to the repump procedure implemented  on the 9Be+ ion where two lasers beams 

are used to transfer population to the |2, 2i state from the |1, 1i and |2, 1i states (see Sec. 2.1.2), the 

total duration required is longer due to the relatively slow Rabi rate of the |3, 2i ↔ |2, 2i spin-flip 

transition (a typical π pulse takes ∼ 10 µs), and the two-step process must be repeated. In the 

future, it would be advantageous to mitigate these issues by employing a laser which provides direct 

electronic 2S 2
1/2 ↔ P1/2 transitions. This multi-cycle repumping strategy is also used during the 

Raman-sideband cooling of the 25Mg+ ion. 

2.2.3 Coherent Operations 

Similar to the 9Be+ ions, the 25Mg+ ions are manipulated coherently by driving stimulated-

          25 + Raman transitions and microwave transitions. Coherent operations applicable to the Mg ions 

can be analogously described by the Hamiltonians presented in Sec. 2.1.3. 

The Raman laser for the manipulation of  the 25Mg+ ion has a wavelength λ ' 280 nm, and 
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the Raman detuning is set ∼ 160 GHz blue detuned from the 2S1/2 ↔ 2P3/2 electronic transition. 

The 25Mg+ Raman laser beam setup can be found in Sec. 3.5.2. The axial micromotion experienced 

by the 25Mg+ ion is less than that for the 9Be+ ion due to 25Mg+ ion’s heavier mass, At zone E (Fig. 

3.1), the axial micromotion index for the 25Mg+ is approximately 1.04. At this modulation index, 

the micromotion carrier is the strongest interaction with the stimulated-Raman-transition-induced 

coupling strength reduced by a factor of J0(1.04) ' 0.75 compared to when no micromotion is 

present. 

To maximize impedance matching at different frequencies compared to those corresponding 

to the 9Be+ ion’s transition frequencies, we use a separate dipole antenna (of different length) to 

drive microwave transitions in the 25Mg+ ion. 

2.2.4 Sideband Cooling 

Ground state cooling of the motional modes can be accomplished by driving stimulated-

Raman-induced sideband transitions and applying repumping operations on the 25Mg+ ion. In this 

case, the red-sideband excitations are applied on the |3, 3i|ni → |2, 2i|n − 1i transitions. 

The Rabi rates of spin-motion transitions between the Fock state n and n0 driven by stimulated-

Raman process, such as those described in Eq. 2.5 and Eq. 2.6, are given by [Wineland 98] s 
−η2/2 n<! 

η|n
0−n|L|n

0−n|Ωn,n0 = Ωe (η2), (2.15)n<n>! 

0where Lα is the generalized Laguerre polynomial, and n<(n>) is the lesser (greater) of n and n .n 

Depending on the value of the Lamb-Dicke parameter, η, the Rabi rate for certain spin-motion 

transitions can vanish. Figure 2.8 shows two sets of Ωn,n0 /Ω ratio as a function of the Fock state 

number, n, for three different values of η. The first and second set corresponds to first (n0 = n − 1) 

and second (n0 = n − 2) sideband transition, respectively. A singly-trapped 25Mg+ ion has a Lamb-

Dicke parameter η ' 0.3 with an axial secular trapping frequency of 2.15 MHz. The Rabi rate for 

red-sideband transitions vanishes according to the Laguerre polynomials at about n = 40. Cooling 

pulses driven on the second red-sideband excitations can be used to better remove motional Fock 
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Figure 2.8: The ratio of spin-motion transition Rabi rates between different Fock states (Ωn,n0 ) to 
carrier Rabi rate Ω is plotted as a function of the Fock state number n for different values of Lamb-
Dicke parameters. The first-order (n0 = n − 1) and second-order (n0 = n − 2) sideband transition 
rates are shown. The Rabi rates of the first-order sideband transitions vanish at relatively low 
values of n, which means that spin-motion transitions between these different Fock states cannot 
be driven. This can be problematic for the motional cooling to the ground state if only the first-
order sideband transitions are used in the cooling sequence. At the Rabi rate vanishing points of 
the first-order sideband transitions, the second-order sideband transition Rabi rates are non zero. 
Thus, they can be inserted to improve the cooling. 
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state population that can be trapped near these vanishing points and to provide a speed up of 

the sideband cooling process. Rabi rates of the second sideband transitions for the same set of 

Lamb-Dicke parameters are also shown in Fig. 2.8. 

By first applying 20 second-order red-sideband transitions, followed by 30 first-order red-

sideband transitions on the |3, 3i ↔ |2, 2i transitions (each sideband pulse is followed by the re-

pumping process described in Sec. 2.2.2), a singly-trapped 25Mg+ ion can be cooled to a mean 

occupation number of ∼ 0.08. 

For experiments involving cotrapping of the 9Be+ and the 25Mg+ ions, ground-state cooling 

is achieved by applying Raman sideband cooling on the 9Be+ ion. This is to take advantage of 

(i) lower spontaneous photon scattering rates due to a higher Raman detuning (coupled with the 

higher power available) and (ii) the faster repump process employed on the 9Be+ ion compared to 

that for the 25Mg+ ion. 

2.2.5 Qubit State Initialization 

Optical pumping prepares the population into the |3, 3i state. Qubit state initialization is 

accomplished by applying a microwave-induced composite π pulse on the |3, 3i ↔ |2, 2i transition, 

followed by an analogous composite π pulse on the |2, 2i ↔ |3, 1i = |↑i transition. Each composite 

π pulse composes of a sequence of pulses R(θ = π/2, φ = 0), R(3π/2, π/2), R(π/2, 0), where θ and 

φ denotes the rotation and azimuthal angle as described in Sec. 2.1.6. This composite π pulse is 

identical to that described in Eq. 2.14. 

2.2.6 Qubit State Measurement 

Before applying the detection (BD) laser beam, which is resonant with the 2S1/2|3, 3i ↔ 

2      25 + P3/2|4, 4i cycling transition, the Mg qubit initialization composite pulse sequences are applied 

in reverse order to transfer the |↑i population to the |3, 3iMg  state. Subsequently, microwave 

“shelving” (π) pulses are applied to first transfer the |2, 0i = |↓i population to the |3, −1i state 

followed by a transfer pulse that puts the |3, −1i state to the |2, −2i state. Therefore, the “bright” 
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state for 25Mg+ detection protocol corresponds to the |↑i, and the “dark” state corresponds to 

the |↓i state. To maximize detection photon counts in the present of axial micromotion, we apply 

an analogous procedure (see Sec. 2.1.7) that shifts the 25Mg+ ion’s position such that the overall 

micromotion experienced by the ion is perpendicular to the wavevector of the detection laser beam. 

We detect on average ∼ 30 photon counts for a detection duration of 200 µs when an ion is in the 

bright state, and about ∼ 4 photons counts for the ion in the dark state (see Fig. 2.9). 

When both 9Be+ and 25Mg+ ions are cotrapped, qubit state measurements are applied sub-

sequently for the fluorescing photons to be registered on the same PMT. Details on the photon 

collection setup is available in Sec. 3.3. 
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Figure 2.9: A typical detection histogram of a 25  Mg+ ion for the population to be either in the |3, 3i 
state (blue) or the |2, −2i state (red). The fluorescing “bright” state corresponds to the qubit |↑i
while the “dark” state corresponds to the the |↓i state. Overlap of the two distributions is shown 
in dark color. 



Chapter 3 

Apparatus 

3.1 Ion Trap 

The ion trap used for this thesis work is a linear Paul trap [Paul 90]. The schematic of this 

trap is shown in Fig. 3.1. Featuring multiple, segmented control electrodes to allow ions to be 

confined at different locations, this trap is designed to demonstrate the elements of scalable quan-

tum information processing with the “quantum charged-coupled-device” architecture [Wineland 98, 

Kielpinski 02, Blakestad 11]. It is constructed with two gold-coated, stacked wafers. Details about 

the design and assembly of this trap is given by Blakestad [Blakestad 11, Blakestad 10]. 

Radio frequency (RF) potentials, with frequency ωRF ' 2π × 83 MHz and amplitude VRF ' 

200 V, are applied to the RF electrodes to provide confinement transverse to the main trap channels. 

Static (DC) potentials are applied to the segmented control electrodes to create potential wells 

for trapping of ions at the desired locations in the channels. These potentials are dynamically-

controllable and are provided by a multi-channel arbitrary waveform generator (AWG) which is 

briefly discussed in Sec. 3.7 and detailed in [Bowler 13]. By applying time-dependent potentials 

to these electrodes, the ions can be transported deterministically between different trap zones. For 

the work described in this thesis, the ions are first loaded in L and then transported to E . Quantum 

logic experiment described in Chap. 5 and 6 were performed with ions confined in a fixed harmonic 

well at E (Fig. 3.1). The chained Bell inequality experiment described in Chap. 8 were performed 

with ions shuttled between different locations near zone E . One unique feature of this trap is the 

junction at C, which can be used for reordering of ion chains [Blakestad 11]. 
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Figure 3.1: The schematic of the X-junction trap. The trap is constructed with two gold-coated, 
stacked wafers. (b) Top view of the trap showing the load zone L and experiment zone E . Ions are 
transported from L to E with time-varying potentials applied to the segmented control electrodes 
(colored orange hues). The positions of RF and control electrodes are exchanged in the lower layer 
(a). The details of the junction are illstrated in (c). Coherent manipulations are implemented on 
ions confined in E . See Ref. [Blakestad 11] for details of this trap. 
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R C ωf 

Stage 1 3.3 kΩ 1 nF ∼ 48 kHz 
Stage 2 1 kΩ 1 nF ∼ 159 kHz 
Stage 3 240Ω 0.82 nF ∼ 882 kHz 

Table 3.1: Values of resistors, capacitors, and their corresponding cut-off frequencies (Eq. 3.1)for 
the three low-pass filtering stages connected between a multi-channel AWG (Sec. 3.7) and the 
control electrodes. 

Due to the particular design of the junction and imperfect construction of the trap wafers, the 

ions undergo residual RF “micromotion” [Wineland 98] at frequency ωRF along ẑ with amplitude 

' 105 nm at E for the typical transverse pseudo potentials used. This affects our implementation of 

logic gates, Doppler and ground state cooling, and qubit states measurement, which are described 

in Chap. 2. 

This ion trap apparatus is housed inside a vacuum system with fused-silica windows for laser 

beams access and collection of fluorescence photons. A mock up figure of the vacuum system is 

shown in Fig. 3.2 with details available in Ref. [Blakestad 10]. 

Three stages of low-pass filters have been implemented for the suppression of noise coupled 

to the segmented control electrodes. All three stages use the usual resistor-capacitor circuit where 

the cut-off frequency is defined as 

1 
ωf = , (3.1)

2πRC 

where R is the resistance and C is the capacitance. Table 3.1 lists the values of R, C, and the 

corresponding cut-off frequency for each stage. The first filtering stage is connected to the output 

of the AWG. The second filtering stage is attached to the electrical feedthrough located just outside 

of the vacuum chamber. Both these filtering stages are housed inside metal box to reduce electrical 

interferences. Their resistors and capacitors can be replaced straightforwardly. The third and final 

filtering stage is soldered on the filter board where the trap wafers are attached to. As this filtering 

stage is inside the vacuum chamber, it is not straightforward to be replaced. Details of this filtering 

stage is in Ref. [Blakestad 10]. We find that the first and second stages of filters are important 

to minimize the anomalous heating of motional modes [Turchette 00a]. With all three stages of 
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Figure 3.2: Mock up of the vacuum chamber housing the X-junction trap. A glass envelope with 
fused-silica view ports is attached to a stainless-steel vacuum chamber. The fused-silica view ports 
are used for the access of laser beams and collection of fluorescence photons emitted by ions. In 
addition to an ion pump which maintains the system under ultra-high vacuum condition of ∼ 3 × 
10−11 torr (measured with an ion gauge), the vacuum system includes a titanium sublimation pump 
which is turned on infrequently (approximately once per month). Multiple electrical feedthroughs 
are used to connect to RF and control electrodes, and neutral beryllium and magnesium resistively-
heated ovens. 
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filters, we measure the heating rate of the axial (ẑ) center-of-mass mode to be ∼ 40 quanta/s at a 

trap frequency of ωz ' 2π × 3.6 MHz in the E zone. With similar trapping parameters in S zone, 

the heating rate is measured to be ∼ 80 quanta/s. 

3.2 Magnetic Field Coil 

We apply an external magnetic field of ' 0.0119446 T (119.446 G) so that the 9Be+ 2S1/2|F = 2,mF = 0i 

↔ 2S1/2|F = 1,mF = 1i transition is first-order insensitive to magnetic-field fluctuations [Langer 05]. 

As shown in Fig. 3.3, two field coils are arranged in a Helmholtz-like configuration, with each coil 

made with 20 turns of square copper wire (outer dimension of ∼ 4 mm) with a hollow round bore 

(diameter of ∼ 2.54 mm). The hollow bore enables water to flow through each coil for cooling as 

we apply a static current of approximately 62 A to provide for the desired magnetic field. The 

temperature of the cooling water is actively stabilized with a chiller’s1 reservoir at approximately 

15 ◦C, which makes the coils operate at a steady state temperature close to the room temperature 

of approximately 20 ◦C. This strategy is to prevent an unwanted temperature gradient near to the 

ion trap apparatus that can cause potential air current fluctuations, which might in turn induce 

unwanted laser beams pointing fluctuations. 

The geometry of the main coils is designed to accommodate for (i) the relatively large size 

of a Schwarzschild objective for collection of ions’ fluorescence photons (detailed in Sec. 3.3), (ii) 

the access of laser beams into the vacuum chamber, (iii) the desired relatively uniform magnetic 

field across different trap zones (Fig. 3.1), and (iv) the water cooling process such that a laminar 

water flow condition is satisfied. The main current output from the power supply unit is actively 

stabilized by first detecting the current using a transducer2 and then allowing a small fraction of 

the current to leak from the positive terminal onto the negative terminal, which is connected to 

the earth ground. 

In addition to the main coils, additional coils made of smaller wire size are used to provide 

1 Thermo Scientific NESLAB MERLIN M33 
2 Danisense DS-200 
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Forms for 
compensation coils
(wires are not shown)

Main coils

Form for compensation coil for fields in the 
direction of the main field
(wires and the opposite form are not shown)

Figure 3.3: Schematic of the magnetic field coils that are used to provide a static magnetic field 
of ' 0.0119446 T in a Helmholtz-like configuration. The main coils (orange color) which have an 
approximate rectangular dimension of 40 cm × 20 cm, and are separated by approximately 8 cm, 
are held in position by custom parts made of anodized aluminum. The field coils assembly also 
consists of compensation coils which allow fine tuning of magnetic field in three dimensions. Wire 
in compensation coils are not shown. See also Fig. 3.6. 
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fine tuning of the magnetic field in three directions. We use these coils to compensate for unwanted 

field gradients, and to fine tune the alignment of the magnetic field with respect to the wave vectors 

of the Doppler cooling and detection laser beams to ensure that the laser beams are σ+ polarized. 

One pair of compensating magnetic field coil is arranged in the Helmholtz-like configuration 

with axis aligned along the main coil. The current provided by this coils pair is computer controlled 

to compensate for the slow magnetic field drift by probing the ion’s transition frequency such that 

magnetic-field insensitivity condition of the 9Be+ ion’s |2, 0i ↔ |1, 1i transition is satisfied. By 

probing the 9Be+ ion’s transition frequency over time, the amplitude of the slow magnetic field 

drift is deduced to be approximately few mG per minute. 

3.3 Imaging System 

A custom designed imaging system is used to collect the fluorescence photons from the 9Be+ 

ions and the 25Mg+ ions, with wavelengths of 313 nm and 280 nm, respectively. Photons are first 

collected with a Schwarzschild objective and imaged at an intermediate focus point, followed by a 

secondary relay imaging stage consisting of a concave mirror used to project this image onto either 

an electron-multiplying charge-coupled device (EMCCD) camera3 or onto a photonmultiplier tube 

(PMT)4 . 

The schematic of the Schwarzschild objective is shown in Fig. 3.4, with details available in 

Ref. [Huang 04]. The first element of the objective is a pair of lenses designed to compensate for 

the chromatic aberration caused by the vacuum windows (see Fig. 3.4), which was made of fused 

silica. This lenses pair is designed to be f/1 (f-number equal to 1). However, ∼ 30% of the total 

photons collected are blocked by the secondary mirror. 

The optics elements used in the relay imaging stage are all composed of reflective optics to 

minimize chromatic aberration which can be present when refractive optics are used. Both 313 nm 

and 280 nm photons are focused onto the same location on the PMT or the camera. The schematic 

3 Princeton Instruments PhotonMax 512B 
4 Hamamatsu R7600U-200 
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(fused silica)

Ion

Fused silica
CaF2

Primary mirror

Secondary mirror
(cemented to lens)

To the rest of the 
imaging system

Figure 3.4: Schematic of the Schwarzchild objective. The first element is a lenses pair made of 
CaF2 and fused silica, it is designed to compensate for the chromatic aberration for 313 nm and 
280 nm caused by the vacuum windows. Photons collected are then bounced of the primary mirror 
followed by the secondary mirror, which is cemented onto the lenses pair, before being sent of to 
the rest of the imaging system and also providing a common focus for the two wavelengths (see Fig. 
3.5). The overall magnification of this objective lens is ∼ 10×. All components are held together 
by an enclosure which is not shown in this figure. The refractions of rays passing through different 
materials are not shown. 
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Figure 3.5: Schmatic of the imaging system. The light collected from the Schwarzschild objective 
is focused onto an intermediate image point which is located at the center of the bore hole of a 
mirror. With a relay mirror of a focal length of 50 mm, the intermediate image is then imaged onto 
a PMT. A flipper mirror is used to direct the light onto a EMCCD camera, as needed. The relay 
optics are setup with a magnification factor of 5×, which results in a magnification of the entire 
imaging system of 50×. The optics depicted inside the dashed box are held in place together with 
custom machined parts which are attached to a three-dimensional translation stage. 

of the entire imaging system is shown in Fig. 3.5. The overall magnification of the system is 

approximately 50×, with the first 10× provided by the Schwarzschild objective and the remaining 

5× provided by the relay stage. 

   The PMT does not offer wavelength distinguishability, detection laser beams for the 9Be+

(313 nm) and 25Mg+ (280 nm) are turned on sequentially to allow fluorescence photons to be 

collected. We detect ' 30 313 nm (280 nm) fluorescence photons with a typical detection duration 

of 330 µs  (200 µs) for a single 9Be+ (25Mg+) ion in the bright state (see Chap. 2 for details on 

energy level structures and detections of the 9Be+ ion  and 25Mg+ ion). We also experimentally 

found that 235 nm photon (for the photo-ionization of the neutral 9Be atoms) can also be focused 

onto the same location as the 313 nm and 280 nm photons on the ECCCD camera. 

3.4 9Be+ Ion Laser Setup 

The laser wavelengths used for manipulation of  the 9Be+ ions are all approximately 313 nm. 

The ultraviolet (UV) light is generated by first employing sum-frequency generation (SFG) of a pair 

of infrared lasers (one near 1050nm and the other near 1550nm) in a single-passed, temperature-
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Figure 3.6: The picture showing the vacuum system containing the trap, and the apparatus sur-
rounding it. 
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tuned magnesium-oxide doped periodically-poled lithium-niobate (MgO:PPLN) crystal to obtain 

              5 visible light near 626 nm. The two infrared beams are combined with a dichroic mirror before 

begin  sent into the MgO:PPLN crystal6 . The visible light is then frequency doubled using a 

Brewster angle cut (38.4◦) barium borate (BBO) crystal in a bowtie cavity configuration. This 

scheme for generation of the 313 nm light is similar to that reported in Ref. [Wilson 11]. This 

setup takes advantage of turn-key infrared fiber laser sources available at industrial (1050 nm) and 

 telecom  (1550 nm) wavelengths7 ,8 ,9 to provide high power (up to ∼ 2 W in each UV beam), 

low-intensity noise (< 1% rms) laser beams. 

Four infrared lasers are used to create three separate UV sources: (i) 313.132 nm for the 2S1/2 

↔ 2P3/2 transitions, (ii) 313.196 nm for the 2S 2
1/2 ↔ P1/2 transitions, (iii) a variable wavelength 

source in the range of approximately 313.260-313.491 nm for Raman transitions. The pairing of 

the four infrared lasers is depicted in Fig. 3.7. 

A separate pulsed laser system near 235 nm is used for photo-ionization of the neutral 9Be 

atoms to be loaded into the ion trap. This is detailed in Sec. 3.4.4. 

 Table 3.2 lists the laser beams for the manipulation of the 9Be+ ion (see Sec. 2.1 for details 

of manipulation of the 9Be+ ions). Laser beam alignments into the vacuum chamber are depicted 

in Fig. 2.3. 

3.4.1 Blue Doppler Laser (2S 2
1/2 ↔ P3/2 Transition) 

The laser used to drive the 2S1/2 ↔ 2P3/2 transitions is labeled as “blue Doppler” laser. 

This laser is used for the Doppler cooling and  qubit state measurement of the 9Be+ ion. The laser 

frequency is stabilized by employing Doppler-free saturated-absorption spectroscopy with an iodine 

gas cell at room temperature at the visible wavelength of ∼ 626.265 nm. 

After the second harmonic generation (SHG) stage, two laser beams are derived: (i) the blue 

5 LASEROPTIK custom coating HR1050nmHT1550nm/45◦ 

6 Covesion SFG626-40 
7 Fiber seed laser: NKT Koheras Basik 
8 Fiber amplifier at 1050 nm: IPG YAR-10K-1050-LP-SF 
9 Fiber amplifier at 1550 nm: EAR-10K-C-LP-SF 
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Figure 3.7: Three UV laser sources are generated with four fiber lasers in the infrared wavelengths 
by employing sum frequency generation (SFG) and second harmonic generation (SHG) stages. 
The frequency of the Raman laser can be tuned from ∼ −2π × 10 GHz to ∼ −2π × 900 GHz 
with respect to the 2S1/2 ↔ 2P1/2 electronic transitions. This tuning range is provided by the 
tuning capabilities of the fiber lasers. The SFGs are accomplished with magnesium-oxide doped 
periodically-poled lithium-niobate (MgO:PPLN) crystals while barium borate (BBO) crystals are 
used for the SHGs. The frequency of the blue Doppler and red Doppler lasers are stabilized to 
iodine transitions with Doppler-free saturated-absorption spectroscopy setups. 
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Doppler (BD) beam and (ii) the blue Doppler detuned (BDD) beam. By adjusting the radio fre-

quency driving an acousto-optic modulator (AOM), the frequency of the BD beam can be adjusted 

for either Doppler cooling or the resonant fluorescence detection of the 9Be+ ion. For Doppler cool-

ing, the laser beam frequency is red detuned by approximately Γ/2 from the 2S1/2|2, 2i ↔ 2P3/2|3, 3i 

transition, where Γ ' 2π × 19.4(5) MHz is the decay rate of the 2P3/2 states [Poulsen 75]. The 

BDD beam is approximately 400 MHz red detuned from the 2S1/2|2, 2i ↔ 2P3/2|3, 3i transition. 

With a beam waist of ∼ 30 µm and an optical power of ∼ 1 mW, this beam serves as a strong 

Doppler cooling beam for occasional high thermal excitation caused by background gas collisions 

[Wineland 98] which is only weakly cooled by the BD beam. See 2.1 for details on the Doppler 

cooling and detection of the 9Be+ ion. 

The BD and BDD beams are combined with a 50 : 50 beam splitter before being coupled 

into an UV fiber [Colombe 14]. With a λ/4 waveplate mounted on a computer-controlled rotation 

stage10 , the polarization of the beams at the output of the fiber is set to be σ+ with respect to 

the applied magnetic field. 

3.4.2 Red Doppler Laser (2S1/2 ↔ 2P1/2 Transition) 

The laser used to drive the 2S1/2 ↔ 2P1/2 transitions is labeled as the “red Doppler” laser. 

It is used to improve the initialization of the ions’ internal state to the 2S1/2|2, 2i state during the 

optical pumping process. This laser also served as the repumping laser during Raman sideband 

cooling. 

This laser is split into two beams, i.e. (i) the red Doppler blue (RD blue), and (ii) the red 

Doppler red (RD red). They are set to be σ+ polarized. By using AOMs that shift the laser beams’ 

frequencies, the RD blue beam is tuned near the 2S1/2|2, 1i ↔ 2P1/2|2, 2i transition. The RD 

red is tuned to 2S1/2|1, 1i ↔ 2P1/2|2, 2i transition. To avoid electronically-induced-transparency 

effects that would cause the coherent population trapping in the 2S1/2|2, 1i and the 2S1/2|1, 1i 

states when both of these beams are applied simultaneously, the RD blue beam is tuned slightly 

Thorlabs PRM1-Z7 10 
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Laser beam Source Function 

BD 
BDD 
RD Red 
RD Blue 
Raman 90 
Raman Co 

PI 

Blue Doppler Laser 
Blue Doppler Laser 
Red Doppler Laser 
Red Doppler Laser 

Qubit manipulation laser 
Qubit manipulation laser 
Photo-ionization laser 

Doppler cooling and fluorescence detection 
Far detuned Doppler cooling 
Repumping to the |2, 2i state 
Repumping to the |2, 2i state 

Coherent operations 
Coherent operations 

Ionize neutral 9Be atoms 

 Table 3.2: Laser beams used for the manipulations of 9Be+ ion and the ionization 9Be atom. 
Each beam can be individually switched on/off. Doppler cooling, detection, repumping and qubit 
manipulations of the 9Be+ ions are detailed in Chap. 2. The laser beam alignment onto the ions is 
shown in Fig. 2.3. 

from the atomic resonance by approximately Γ/2. These two UV beams are combined with the 

BD and BDD beams and overlapped before being coupled into the UV fiber used for the BD and 

BDD beams (see previous section). At the output of the fiber, a computer-controlled λ/2 waveplate 

followed by a polarizing beam splitter is used to direct the beam between the L zone and the E 

zone (Fig. 3.1). 

Similar to the blue Doppler laser, the frequency of this laser is stabilized to an iodine tran-

sition. The laser beam line setup for the blue Doppler and red Doppler laser can be found in Ref. 

[Lin 15], Ref. [Bowler 15], and Ref. [Jost 10]. 

3.4.3 Qubit Manipulation Laser 

The laser system for the  coherent manipulations of the 9Be+ ions via stimulated-Raman 

transitions has undergone several changes and upgrades over the course of my dissertation work 

to accommodate the different requirements of different experiments. Here, we will describe the 

Raman laser beam setup used for the mixed-species entangling gate (Chap. 5) and the high-fidelity 

universal gate sets experiment (Chap. 6). 

The frequency of this qubit manipulation laser is red detuned from the 2S1/2 ↔ 2P1/2 elec-

tronic transitions. The 313 nm light generated by the BBO crystal is first split and sent down two 

different paths (see Fig. 3.8). The laser beam in path 1 is focused to a beam waist of ∼ 100 µm 
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Figure 3.8: Schematic of the laser beam line setup used to drive stimulated-Raman transitions in 
9Be+ ions. The 313 nm generated with SFG followed by SHG is split into two paths, sent through 
AOMs, coupled into fibers, and aligned onto the ions. Path 2 contains a double-passed 600 MHz 
AOM that, when switched on, produces an additional beam shifted by approximately the qubit 
frequency (∼ 1.2 GHz), that is coaligned with the unshifted beam for high-fidelity single-qubit 
gates. Another AOM tunable in the range of 260 to 360 MHz is used to shift the relative laser 
frequency in path 2 with respect to beam 1 for spin-motion stimulated-Raman transitions. For the 
Mølmer-Sørensen gate, two RF tones with relative frequency difference close to twice the frequency 
of the addressed motional mode are injected into the 200 MHz AOM in path 2. In combination with 
the beam in path 1, these two beams simultaneously produce blue and red sideband transitions. 
A pickoff on the output of each fiber directs a small fraction of the light onto a photodiode, which 
is used for active power stabilization. Each beam is centered on the ions with a motorized mirror 
mount before the final lens that focuses the beam on the ions. 
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and passes through an AOM; the first-order deflected beam is coupled into an UV fiber which is 

robust against formation of color centers [Colombe 14]. The laser beam output of the optical fiber 

is then focused to a beam waist of ∼ 25 µm at the location of the ion. The laser beam in path 2 is 

first sent through an AOM with center frequency of 600 MHz followed by an AOM with a center 

frequency of 310 MHz, each in a double-passed configuration. Then the laser is sent through a 

single-passed AOM in a setup analogous to that in path 1. 

Different frequency tones can be generated in the laser beam with the three AOMs in path 

2. The 600 MHz AOM is set up such that the double-passed laser beam (frequency shifted by 

∼ 2 × 600 MHz) is co-aligned with the unshifted beam. When switched on, the laser beam contains 

two frequency tones which have a relative frequency difference of ∼ 2 × 600 MHz. The unshifted 

beam from the 310 MHz AOM is blocked. The RF injected into this AOM is always kept on. This 

AOM provides relative frequency tuning with respect to the laser beam in path 1. The tuning 

range is approximately 200 MHz, provided by the tuning bandwidth of this AOM. 

A second RF signal can be injected into the 310 MHz AOM. By setting the two RF tones 

to be separated by ∼ 35 - 50 MHz, the laser beam generated with this configuration contains two 

frequency tones which is separated by ∼ 70 - 100 MHz. This allows us to induce Δm = ±1 Zeeman 

transitions in the electronic ground state of the 9Be+ ions (Fig. 2.1). 

The final single-passed AOM in path 2 is centered at approximately 220 MHz. This AOM 

serves as the switch for the overall path 2 laser beam. Furthermore, the RF injected into this AOM 

is actively controlled with a digital servo and a digital-to-analog convertor to provide high-speed 

laser power stabilization as well as the smooth turn on/off of the laser beam (see Sec. 3.8 for 

details). We also have the option of injecting a second RF tone into this AOM to generate laser 

beams with two frequency tones. With a single-passed configuration, the relative detuning of the 

two laser beams is determined by the frequency difference of the two RF injected into the AOM. 

Typically, these two RF tones have a frequency difference close to that of the motional normal 

mode frequency, ranging from ∼ 2 to 10 MHz. This configuration is particularly important for the 

implementation of the Mølmer-Sørensen gate which is detailed in Chap. 6 and 5. Although the 
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laser beams associated with these two RF tones are slightly misaligned, they can both be coupled 

into the UV fiber used in this beam line. They become coaligned at the output of the UV fiber. 

At the UV fiber output of each path, waveplates are used to adjust the laser beam polariza-

tions with respect to the quantization axis defined by the applied magnetic field. A pick-off mirror 

is used to sample a fraction of the laser beam for laser power stabilization (see Sec. 3.8). The laser 

beam is then reflected by a mirror which is mounted on a computer-controlled motorized stage11 

to adjust the laser beam alignment. A dichroic mirror12 with high transmittance at 313 nm and 

high reflectivity at 280 nm is used to combine laser beams for 9Be+ and 25Mg+ before focusing at 

the location of the ions. The UV laser beam line setup is contained in acrylic panels to suppress 

air current fluctuation that can cause beam pointing fluctuations at the location of the ions. 

3.4.4 Photo-Ionization Laser and the Loading of 9Be+ Ions 

A mode-locked laser centered around 235 nm is used to ionize neutral 9Be atoms. This is 

2a two-step photo-ionization (PI) process. The first step is accomplished by driving the 1s22s ↔ 

1s22s2p transition, with transition wavelength of ∼ 234.933 nm [Kramida 97]. The second step 

is the excitation from the 2s2p electronic state to the continuum, which requires photon with a 

minimum energy corresponding to a vacuum wavelength of ∼ 306.492 nm [Kramida 97]. 

The 235 nm laser beam is produced by a mode-locked Ti:Sapphire laser centered around 

705 nm13 . The Ti:Sapphire laser is pumped by a frequency-doubled Nd-YAG14 (with continuous 

wave power of ∼ 5.5 W at ∼ 532 nm). The Ti:Sapphire laser outputs ∼ 600 mW average power 

with a repetition rate of 100 MHz and a pulse duration of sub-100 femtoseconds. This laser beam 

is sent into a frequency tripler15 . The tripling process first doubles the fundamental 705 nm to 

352.5 nm with a lithium triborate (LBO) crystal, and then this second-harmonic beam is summed 

with the fundamental in a BBO crystal to produce the 235 nm light. Nominally ∼ 5 mW average 

11 Thorlabs Z812 
12 LASEROPTIK custom coating HR280nmHT313nm/45◦ 

13 LMLABS Griffin 705 nm 
14 Coherent Verdi 
15 AP&E HarmoniXX THG 
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power of 235 nm laser light is produced and sent into the vacuum chamber for the producing 9Be+ 

ions. On/off switching of the PI laser beam is accomplished with a computer-controlled mechanical 

shutter 

The neutral 9Be atoms are released from resistively-heated oven by passing a current through 

it, typically ∼ 1.1 A. The on/off switching of the current for the oven is computer controlled. An 

additional timer limits the on-duration for the oven to 90 s; it must be reset manually (with the 

computer) each time for the oven to be turned on. This provides a fail-safe that prevents the oven 

from being accidentally kept on for an extended period. 

The L zone and the E zone are separated by a distance larger than 2 mm, while the fluores-

cence photon collection apparatus (described in Sec. 3.3) is positioned to image ions located in the 

E zone with a field of view of approximately 50 µm. We employ an automatic loading procedure to 

streamline the loading process and the transport of ions into E zone. We allow a typical duration of 

∼ 2 s for ions to be loaded into the L zone while the potential is kept static. After this, a waveform 

designed for the transport of ions from the L to the E zone is applied. This transport procedure 

takes ∼ 2 ms. Following the overall successful loading and transport of ion, the presence of ion in 

the E zone is determined by the fluorescence photons counts detected on a PMT. 

3.5 25Mg+ Ion Laser Setup 

The lasers used for the manipulation of the 25Mg+ ions are centered around 280 nm. Two 

lasers are used: (i) a resonant laser and (ii) a stimulated-Raman laser. Another laser centered 

around 285 nm is used for photo-ionization of neutral magnesium atoms to be loaded into the trap. 

3.5.1 Resonant Laser 

This laser is used to drive 2S1/2 ↔ 2P3/2 transitions of the 
25Mg+ ion. It is used for the 

Doppler cooling, repumping, and state-dependent fluorescence detection. The source of this laser 

is a dye laser with wavelength centered around ∼ 560 nm, which is frequency doubled to generate 

the ∼ 280 nm beam. 
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The dye laser is a four-mirror unidirectional ring laser [Hollberg 90] which was custom de-

signed by J. Bergquist [Bergquist ]. The laser uses Rhodemine 560 laser dye in a closed-cycle dye jet 

configuration, pumped with ∼ 5 W of 532 nm laser light derived from a frequency-doubled Nd:Yag 

laser16 . The dye laser produces ∼ 400 mW of 560 nm light. The laser frequency is first stabilized 

to an external cavity using a Hansch-Couillaud lock [Hansch 80], followed by stabilization to an 

iodine transition in a Doppler-free saturated-absorption setup. 

The 560 nm laser beam generated by this laser is frequency doubled to the UV wavelength 

using a Brewster-angle cut barium borate (BBO) crystal inside a bowtie cavity. The BBO frequency 

doubling setup is very similar to that used for the Beryllium laser setup, except for mirror coatings 

and the brewster angle of this BBO crystal is 44.5◦ to maximize the mode-matching for the SHG 

from 560 nm to 280 nm. We obtain ∼ 20 mW of 280 nm power with ∼ 300 mW of visible power. 

As shown in Fig. 3.9, the UV beam is first split into two paths. In the first path, the laser 

beam is doubled passed through a AOM (referred to as the repumper AOM) with a RF frequency 

of ' 400 MHz that shifts the laser frequency red with respect to the input beam. This laser beam 

is labeled as the repumper beam. In path 2, the beam passes through an AOM driven with a 300 

MHz RF; the zeroth-order (undeflected) beam is sent to a single-passed AOM (referred to as the 

blue Doppler detuned AOM) such that the frequency is shifted by +200 MHz. This beam is labeled 

as the blue Doppler detuned (BDD) beam. The first-order deflected beam from the 300 MHz AOM 

is sent to a double-passed AOM (referred to as the blue Doppler AOM) with a tunable RF drive 

frequency centered at approximately 300 MHz. This laser beam is labeled as the blue Doppler 

(BD) beam. After combining the BD and the repumper beam with a 50:50 beam splitter, these 

two beams are overlapped with the BDD beam inside the BDD AOM (the single-passed +200 MHz 

AOM). All three beams are coupled into a UV fiber. The polarization at the fiber’s output is set 

with a combination of a λ/2 and a λ/4 waveplates to be σ+ with respect to the quantization axis 

defined by the applied magnetic field. The laser power of the BD is stabilized by first sampling 

the power at the output of the fiber with a 50:50 beam splitter. The sampled power is detected 

Coherent Verdi 16 
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Figure 3.9: Schematic of the setup to generate laser beams for the optical pumping, Doppler cooling, 
and repumping of the 25Mg+ ion. The 280 nm laser beam is generated with a SHG using a dye 
laser source at ∼ 560 nm. Three individually controllable UV beams with different laser frequencies 
are generated: (i) a blue Doppler (BD) beam for Doppler cooling and fluorescence detection, (ii) 
a blue Doppler detuned (BDD) beam for Doppler cooling of hot ions, and (iii) a repumper beam. 
All three beams are overlapped before they are coupled into a UV fiber, which directs the light to 
the location of the ions. The power of the BD beam is actively stabilized. 
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Laser beam Source Function 

BD 
BDD 

Repumper 
Raman 90 
Raman Co 

PI 

Doppler laser 
Doppler laser 
Doppler laser 

Qubit manipulation laser 
Qubit manipulation laser 
Photo-ionization laser 

Doppler cooling and fluorescence detection 
Far-detuned Doppler cooling 
Repumping to the |3, 3i state 

Coherent operations 
Coherent operations 

Ionize neutral 25Mg atoms 

Table 3.3: Laser beams used for the manipulation and loading of the 25Mg+ ion. Each beam can 
be individually switch on/off. Doppler cooling, detection, repumping and qubit manipulations of 
the 25Mg+ ions are detailed in Chap. 2. The laser beam alignments onto the ion are shown in Fig. 
2.3. 

using a photodiode, and the feedback loop is completed with an analog servo that controls the RF 

amplitude sent to the blue Doppler AOM. 

With this laser beam setup, the BDD beam and the repumper beam are red detuned ∼ 700 

MHz and ∼ 1.6 GHz from the BD beam, respectively. The BD beam is used for the Doppler cooling 

and fluorescence detection of the 25Mg+ ion. For Doppler cooling, the laser frequency is red detuned 

by approximately ΓMg/2 from the 2S1/2|3, 3i ↔ 2P3/2|4, 4i transition, where ΓMg ' 2π × 41.3(3) 

MHz is the natural decay rate of the 2P3/2 state [Clos 14]. The laser frequency is set on resonance 

with the Dopple cooling transition during fluorescence detection. 

The BDD beam has an optical power of ∼ 1 mW which, as for the 9Be+ ion, is used to 

provide Doppler cooling of hot ions. The repumper beam is set on resonance with the 2S1/2|2, 2i 

↔ 2P3/2|3, 3i transition. This beam is used to transfer the population from the 2S1/2|2, 2i state to 

the 2S1/2|3, 3i state during a Raman sideband cooling process as well as for the better initialization 

of the |3, 3i state during the optical pumping process. See 2.2 for details on the Doppler cooling, 

detection and the repumping process of the 25Mg+ ion. 

3.5.2 Qubit Manipulation Laser 

The coherent manipulation of the 25Mg+ ion can be accomplished by microwave fields, or 

by driving stimulated-Raman transitions. For the latter, the associated source’s wavelength is 

approximately 280 nm and blue detuned from the 2S1/2 ↔ 2P3/2 electronic transitions. The source 
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of this beam is derived from a commercially available fiber-laser system with its wavelength centered 

at approximately 1118 nm17 . The infrared laser beam is quadrupled to near 280 nm via two SHG 

stages. The first SHG process is accomplished by single passing through a PPLN waveguide18 . 

Approximately 400 mW of 560 nm is generated with ∼ 1.2 W of infrared laser coupled into the 

fiber input of the waveguide. The second SHG stage employs a BBO crystal inside a bowtie cavity 

setup similar to that described in the previous section, with a UV output power of ∼ 40 mW. The 

frequency tuning range of this system is ∼ ± 200 GHz with respect to the resonant 2S1/2 ↔ 2P3/2 

transition frequency. 

As shown in Fig. 3.10, the 280 nm laser beam generated by the BBO is split into two paths. 

Laser beam in path 1 is double passed (positive order) through an AOM with a drive frequency 

of 300 MHz; the beam is then focused down before passing through an AOM that shifts the beam 

frequency by ∼ +200 MHz before being coupled into an UV fiber. The laser beam at the output 

of the fiber is sampled for power stabilization before being focused onto the location of the ions. 

In path 2, the beam is sent through two AOMs subsequently with center frequency of ∼ 300 MHz 

and ∼ 200 MHz, respectively. Both AOMs are arranged in a double-passed configuration and set 

to red shift the input laser frequency. The beam is then coupled into an UV fiber with its output 

aligned perpendicular to the quantization axis. 

With this setup, the difference of the wave vectors of these two laser beam paths is aligned 

along the axial direction at the ions’ location (see Fig. 2.3). The relative frequency difference 

between laser beams in path 1 and 2 is ∼ 1.8 GHz, with a relative frequency tuning range of 

approximately ± 200 MHz. This allow us to drive the spin-motion excitation on the 2S1/2|3, 3i ↔ 

2S1/2|2, 2i sideband-cooling transitions as well as the qubit |3, 1i ↔ |2, 0i transitions (see section 

2.2 for details on electronic ground state energy levels of 25Mg+ ion). 

Similar to the 9Be+ ion’s coherent manipulation laser beam setup, the alignment of the laser 

beams generated in these two paths can be adjusted via computer-controlled motorized-stages. 

17 Menlo Systems Orange One 
18 NTT Photonics Laboratories Wavelength Conversion Module 
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559 nm
∼ 400 mW

SHG
(BBO)

280 nm 
∼ 40 mW

-310 MHz
AOM

(double pass)

Block

+300 MHz 
AOM

(double pass)

Photodiode
for power
stabilization

Path 1

Path 2

UV fiber

Alignment 
mirror

UV fiberBlock

Alignment 
mirror

Focusing 
lens

B field �̂�𝑧

Photodiode
for power
stabilization

+200 MHz 
AOM

Block

-200 MHz 
AOM

(double pass) Block

Figure 3.10: Schematic of the laser beams setup for inducing stimulated-Raman transitions in
the 25Mg+ ions. A polarizing beam splitter is used to split the UV output beam after the SHG 
stage. The frequency of the laser beam in each path is shifted by two AOMs before injected 
into an UV fiber. The relative frequency difference between these two beams can be tuned with 
a range of approximately ± 200 MHz. This enables us to induce spin-motion transitions on (i) 
the |3, 3i ↔ |2, 2i sideband-cooling transitions and (ii) the |3, 1i ↔ |2, 0i qubit transitions. Two 
frequency tones can be injected into the single-passed AOM (with 200 MHz center frequency) in 
path 1. This configuration is used for the application of the mixed-species entangling gate as 
described in Chap. 5. A small fraction of laser power is sampled at each UV fiber’s output for 
power stabilization.  Each beam is combined with the 9Be+ ion’s Raman laser beam with a dichroic 
mirror as depicted in Fig. 2.3. 
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Each of the 25Mg+ Raman laser beams is combined with each of the 9Be+ Raman beams with a 

dichroic mirror before being focused at the ions’ location (Fig. 2.3). 

3.5.3 Photo-Ionization Laser and Loading of 25Mg+ Ions 

A continuous-wave, frequency quadrupled laser with wavelength centered at ∼ 285 nm is used 

to ionize neutral Mg atoms to be loaded into the ion trap. Starting with a commercial external 

cavity diode laser with a wavelength of ∼ 1140 nm, the optical power is amplified to ∼ 1 W using a 

Raman fiber amplifier19 before injecting into a waveguide-PPLN crystal (similar to that described 

in the previous section) for the laser frequency to be doubled to ∼ 570 nm. The visible laser light is 

then used to generate the ∼ 285 nm light with a SHG process using a BBO crystal inside a bowtie 

cavity. We obtain ∼ 0.5 mW of UV power. This laser beam is injected into a UV fiber with the 

output beam sent into the ion trap apparatus. The frequency of the ∼ 570 nm beam is stabilized 

to an iodine reference signal using the visible light. 

The photoionization of the neutral magnesium atom is a two-step process. The ∼ 285 nm 

laser beam is used to drive the 3s2 ↔ 3s3p transition which is centered at 285.296 nm [Martin 80], 

followed by a further excitation to the continuum from the 3s3p transition which requires photons 

of a minimum energy that corresponds to a laser wavelength of 375.647 nm [Martin 80]. The BD 

and BDD beams used for the cooling of the 25Mg+ ions are also capable for driving the second 

excitation stage of photoionization. 

A typical current of ∼ 1.2 A passes through a resistively-heated oven which releases isotopi-

cally enriched neutral 25Mg atoms. Similar to the loading of the 9Be+ ion (see Sec. 3.4.4), the 

on/off switching of the oven (with fail-safe provided by a timer) and the PI beams are computer 

controlled. Furthermore, automated transfer of 25Mg+ ions to the E zone is also employed with a 

different set of time-varying control potentials applied to the control electrodes. 

If needed, an additional neutral magnesium oven with natural isotope composition is also 

mounted inside the vacuum chamber. 

MPB Communication YFL-P Series 19 



63 

3.6 Experiment Control 

A custom designed experiment control infrastructure is used for executing the experiments 

described in this thesis. At the center of this infrastructure is a “master” field-programmable gate 

array (FPGA)20 supporting multiple high-speed transistor-transistor logic (TTL) and direct-digital 

synthesizer (DDS) channels. 

The TTL outputs provide flip-flop signals that change the operational state of the apparatus. 

For example, laser beams are turned on/off by sending TTL signals to the radio frequency (RF) 

switches which control the AOMs. The frequencies and phases of the laser beams are adjusted by 

the DDSs which generate the RF signals that drive the AOMs. The phases of the RF generated 

with different DDS channels can be phase synchronized, this is important for the implementation 

of the two-qubit Mølmer-Sørensen gate as described in Chap. 5 and 6. One input channel of the 

master FPGA is programmed to be a counter. The photon count signal from a PMT is input to 

this channel for the determination of the ion fluorescence. The FPGA’s clock speed is 62.5 MHz. 

Details of this experiment control can be found in Ref. [Langer 06]. 

The control system also supports low-speed General Purpose Interface Bus (GPIB) and Uni-

versal Serial Bus (USB) communications. GPIB is used to control the current supplies that adjust 

the electrical current passing through compensation magnetic field coils (see Sec. 3.2) for fine tun-

ing and calibration of the magnetic field amplitude. Ahh! I love Bolognese! be sure to grate some 

fresh Parmigiano Reggiano, and pair with a bottle of Brunello di Montalcino21 . In addition to the 

uploading of waveform definitions onto a high-speed digital-to-analog convertor (DAC) as described 

in the next section, the USB interface is also used to control the motorized waveplate rotation stages 

in the Doppler beam lines and the motorized mirror mounts in the qubit manipulations beam lines. 

A separate FPGA22 is used as a multiplexer and to provide general purpose TTL logic 

operations. These operations include NOT gates, AND gates, XOR gates, etc. The clock of this 

20 Xilinx Virtex IV 
21 email me if you see this! tingrei86@gmail.com 
22 Xilinx Spartan3E 

mailto:tingrei86@gmail.com
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secondary FPGA operates at 50 MHz, and is not synchronized with the master FPGA clock. This 

might causes timing jitter up to ∼ 20 ns between the TTL signals generated by the master FPGA 

and those processed by the secondary FPGA. The typical time-crucial operations in this thesis 

(e.g., laser or microwave pulses for the application of quantum gates) have durations on the orders 

of a few µs; therefor, the timing jitter can cause phase fluctuations, which in turn can lead to 

decoherence. Thus, we avoid using the secondary FPGA for the processing of signals which are 

time sensitive, and only use it to process signals which are less time critical, e.g., pulses for the 

Doppler cooling, repumping, and the fluorescence detections of ions. 

Slow speed TTL supported by a multi-channel digital input/output device23 is used to control 

other hardware which is not time sensitive. This includes mechanical shutters for turning on/off of 

the PI laser beams, ovens for loading ions, and the timer that limits the duration in which ovens 

are heated (See Sec. 3.4.4). The update rate of this device is limited by the controlling software 

and the communication speed via a USB interface. 

3.7 Arbitrary Waveform Generator 

The voltages applied to the trap electrodes for the axial confinement of the ions are supplied by 

a custom designed, multi-channel arbitrary waveform generators (AWGs) [Bowler 13]. The AWGs 

provide dynamically-controllable potentials, which are termed “waveforms”, for the shuttling, sep-

aration and recombination operations on the ions. The AWG is based on a FPGA-controlled DAC, 

with an output range of ±10 V and an update rate of 50 MHz. 

For these operations, waveforms are first uploaded to the on-board memory of the AWGs 

ahead of experiments, then TTL signals are sent from the master FPGA for triggering the start of a 

waveform. Uploading of waveforms is accomplished via a USB interface, which has a communication 

speed much slower than typical single-shot experiment duration of ∼ 10 ms. However, this AWG 

supports “branching” of waveforms where multiple different sets of waveforms can be stored on-

board and selected in real-time with a set of digital logic inputs (TTLs). This allows reuse of 

National Instrument USB-6501 23 
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waveforms and constructions of complicated sequences with a set of basic component waveforms 

without the need for reprogramming. Details of the AWG can be found in Ref. [Bowler 15] and 

Ref. [Bowler 13]. 

In addition to providing confinement and shuttling of ions, the AWG is also used for the 

“pulse shaping” of microwave and laser pulses which are applied for the coherent manipulations of 

ions. For the pulse shaping of microwave pulses, the amplitude of the microwave field is modulated 

by one channel of the AWG’s output with a vector multiplier24 before being amplified. A similar 

scheme is used for the pulse shaping of laser pulses, which is described in the next section. 

3.8 High-Speed Laser Power Stabilization 

A high-speed stabilization scheme is used to reduce noise in the 9Be+ Raman laser beams 

shown in Fig. 3.8. As depicted in Fig. 3.11 this is accomplished by a FPGA-based digital servo 

[Leibrandt 15] that controls the RF signal amplitude driving the AOM centered at ∼ 200 MHz. The 

laser power is adjusted by varying the RF signal injected into the AOM with a vector multiplier25 

. The servo loop is completed by sampling a fraction of the laser power with a photodiode whose 

photocurrent is sent to the digital servo. The AOM used in this scheme26 is chosen for its fast 

rise time of ∼ 20 ns. We estimate the loop bandwidth of this servo to be ∼ 1 MHz, limited by the 

digital-signal latency of the servo. 

The vector multiplier for controlling the RF signal amplitude applied to the AOM is carefully 

chosen. Ideally, the phase of the vector multiplier’s output RF signal should remain constant as 

the RF level is modulated for the laser power stabilization. The constancy of the RF phase as a 

function of the RF power is important for coherent operations applied to the ion qubits. Varying 

RF phases can be viewed as varying rotation angles on a Bloch sphere as the coherent operations 

are applied. 

Pulse shaping of laser beams is important for the implementation of the high-fidelity two-

24 Analog device ADL 5390 
25 Analog device ADL 5390 
26 Brimrose CQM-200-40-313 
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Figure 3.11: Schematic of the laser power stabilization and shaping of laser pulses employed in the 
9Be+ qubit manipulation laser beam lines. Each laser beam is sampled at the output of the UV 
fiber with a photodiode (see Fig. 3.8). A digital servo is then used to provide the feedback for the 
power stabilization by adjusting the radio frequency power level injected into an AOM positioned 
upstream of the fiber. One advantage of using the fiber is that laser beam pointing fluctuations 
occuring before the fiber are translated into laser power fluctuations at the fiber output, which is 
then corrected with the servo system. With the feedback engaged, the time profile of the laser beam 
is dynamically modulated by adjusting the servo reference potential using the high-speed arbitrary 
waveform generator described in Sec. 3.7. 
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qubit entangling gate described Chap. 6. For the smooth on/off (pulse shaping) of a laser beam, 

a precomputed waveform generated from the AWG (see Sec. 3.7) is input into one channel of the 

digital servo. This modulates the set point of the loop filter, effectively shaping the time profile of 

the laser beam. Typical rise and fall durations of laser beams are ∼ 1 µs. 

The power stabilization of the 25Mg+ Raman laser beams is accomplished with an analog 

servo27 and the laser beams’ time profiles are rectangular. Pulse shaping was not employed due 

to the unavailability of high-speed AOMs at the time when the mixed-species entangling gate 

experiment (Chap. 5) was performed. With similar analog servos, the laser powers of the BD 

beams for the 9Be+ and 25Mg+ ion are separately stabilized to minimize photon count fluctuations 

during fluorescence detections. 

New Focus LB1005 27 



Chapter 4 

Two-Qubit Entangling Gates 

4.1 Introduction 

In trapped-ion systems, entanglement of the internal states of multiple ions is usually achieved 

via an interaction mediated by the Coulomb force between the ions. In this case, a motional degree 

of freedom provided by the mutual repulsion and the confinement of the ions serves as an information 

bus, allowing the internal states of different ions to interact. Motivated by the first entangling gate 

proposal presented by Cirac and Zoller [Cirac 95], now there exists a number of entangling gate 

schemes and their experimental implementations. 

One promising category of gate schemes uses geometric phase [Sørensen 99, Sørensen 00, 

Milburn 00, Solano 99, Leibfried 03, Lee 05], where a state-dependent force is applied to create 

an effective spin-spin interaction which can be engineered to create unitary entangling operations. 

Compared to the Cirac-Zoller gate, one advantage of the geometric phase gates is that it is more 

robust against thermal excitation of the motional degree of freedom, as long as the Lamb-Dicke 

criterion is satisfied. Geometric phase gates have been the most successful in terms of the highest 

experimentally demonstrated gate fidelity. 

Depending on the basis states in which the state-dependent force is applied, as well as other 

implementation details, there are a number of variations of the geometric phase gate. Each variation 

offers different advantages and disadvantages. For example, geometric phase gates that apply state-

dependent forces in the σ̂φ = cosφσ̂x − sinφσ̂y basis can be directly implemented with a clock-state 

qubit [Langer 05, Lee 05], while geometric phase gates in the σ̂z basis rely on the differential AC 
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Figure 4.1: Quantum circuit using the Cirac-Zoller protocol to produce the controlled-Z gate. A 
blue-sideband (BSB) π pulse is applied to the “control” qubit before and after a red-sideband 
(RSB) 2π pulse is applied to the “target” qubit. The RSB transition couples one of the target’s 
qubit states to an auxiliary (Aux) state. 

Stark shift of the qubit states and can offer technically simpler laser beam line setups, but cannot 

be applied directly on the clock state qubit. In addition, different gate schemes differ in their 

sensitivity to error sources. 

The objective of this chapter is to provide a background and an overview of the experimental 

implementations of two-qubit entangling gates to be presented in Chap. 5, 6, and 7, especially 

for readers unfamiliar with geometric phase gates. We first describe the original Cirac-Zoller gate 

scheme to illustrate the basic mechanism of a two-qubit gate. This is followed by introducing the 

two subcategories of geometric phase gates, i.e. the σ̂zσ̂z gates and the σ̂φσ̂φ gates. Then, two 

implementations of the σ̂φσ̂φ gate: (i) Mølmer-Sørensen (MS) protocol, and (ii) Bermudez protocol 

will be discussed in Sec. 4.3.4 and 4.3.5. In Sec. 4.4, we discuss error mechanisms that limit the 

perfect implementation of these two-qubit gates. 

4.2 Cirac-Zoller Gate 

The Cirac-Zoller gate [Cirac 95] relies on the blockade of the collective motional harmonic 

oscillator’s ground state to provide the quantum logic operation. Without loss of generality, this 

protocol requires inducing a blue-sideband (motion-adding) transition between the |↑i and |↓i states 

of the control qubit and a red-sideband (motion-subtracting) transition between the target qubit’s 

|↑i state and an auxiliary state, |Ai, which has a higher energy than the |↑i state. The pulse 

sequence to generate a controlled-Z gate using the Cirac-Zoller gate is shown in Fig. 4.1. 
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To provide a simple picture of the Cirac-Zoller protocol, we write down the action of the 

blue-sideband transitions (as described by Eq. 2.5 for a single ion) on control qubit states: 

BSB BSB|↓i|n = 0i −→ −i|↑i|1i −→ −|↓i|0i, 

BSB|↑i|0i −→ |↑i|0i, (4.1) 

BSB
where n represents the Fock state quantum number, and each of the symbol −→ indicates a resonant 

blue-sideband π pulse. Similarly for the red-sideband transitions applied on the target qubit states: 

RSBA RSBA|↑i|1i −→ −i|Ai|0i −→ −|↑i|1i, 

RSBA|↑i|0i −→ |↑i|0i, 

RSBA|↓i|0i −→ |↓i|0i, 

RSBA|↓i|1i −→ |↓i|1i, (4.2) 

RSBAwhere the symbol −→ indicates a resonant red-sideband π pulse applied to the |↑i and the |Ai 

states. The Hamiltonian describing this interaction takes the form of Eq. 2.6, and can be written 

as � � 
†HRSBA = ~ΩRSBA |Aih↑|â+ |↑ihA|â , (4.3) 

where ΩRSBA represents the transition Rabi rate, the transition frequency detuning, δ, is set to 

zero for resonant excitation and we have dropped the phase term Δφ in Eq. 2.6 for simplicity. 

For convenience, we write |↑icontrol|↑i = |↑↑i and similarly for three other two-qubit target 

states. Now we consider the action of the pulse sequence on the four basis states when the motional 

mode is prepared in the ground state: 

RSB2π
BSB A BSB|↑↑i|0i −→ |↑↑i|0i −→ |↑↑i|0i −→ |↑↑i|0i, 

RSB2π
BSB A BSB|↑↓i|0i −→ |↑↓i|0i −→ |↑↓i|0i −→ |↑↓i|0i, 

RSB2π
BSB A BSB|↓↑i|0i −→ −i|↑↑i|1i −→ i|↑↑i|1i −→ |↓↑i|0i, 

RSB2π
BSB A BSB|↓↓i|0i −→ −i|↑↓i|1i −→ −i|↑↓i|1i −→ −|↓↓i|0i, (4.4) 
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 RSB2π

where the symbol −→A indicates a red-sideband 2π pulse (with interaction described by Eq. 4.3) 

is applied to the target qubit. The net effect of this operation on the spin states is 

|↑↑i → |↑↑i 

|↑↓i → |↑↓i 

|↓↑i → |↓↑i 

|↓↓i → −|↓↓i, (4.5) 

which is a controlled-Z gate. With the first qubit as the control qubit and the second qubit as the 

target qubit. It can be written in the form of unitary matrix: ⎛ ⎞ ⎜ 1 0 0 0 ⎟⎜ ⎟⎜ ⎟⎜ 0 1 0 0 ⎟
Controlled−Z = ⎜ ⎟⎜ ⎟ , (4.6) ⎜ 0 ⎟⎜ 0 0 1 ⎟⎝ ⎠ 

0 0 0 −1 

with the basis states as the logical states of the two qubits: ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
1  ⎜ ⎜ ⎟ 0  ⎟ 0  ⎜ ⎟ ⎜ 0 ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ 0 ⎟ ⎜ 1 ⎟ ⎜ 0 ⎟ ⎜ 0 ⎟

|↑↑i = ⎜ ⎟ ⎜⎜ ⎟ , |↑↓i = ⎟⎜ ⎟ , |↓↑i = ⎜ ⎟ |↓↓i ⎜ ⎟⎜ ⎟ , = ⎜ ⎟ . (4.7)⎜⎜ 0 ⎟ ⎜⎟ ⎜ 0 ⎟ ⎜⎟ ⎜ 1 ⎟ ⎜ ⎟⎟ ⎜ 0 ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 
0 0 0 1 

By applying two additional single-qubit pulses as shown in Fig. 4.2, the Cirac-Zoller gate 

produces the controlled-NOT gate with the truth table of 

|↑↑i → |↑↑i 

|↑↓i → |↑↓i 

|↓↑i → |↓↓i 

|↓↓i → |↓↑i, (4.8) 
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target

Motion | ⟩𝑛𝑛 = 0

𝑹𝑹(𝝅𝝅
𝟐𝟐
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𝟐𝟐

)

control

target

BSB
𝑹𝑹(𝝅𝝅, 0)

BSB
𝑹𝑹(𝝅𝝅, 0)

RSB to Aux
𝑹𝑹(𝟐𝟐𝝅𝝅, 0)

Controlled-NOT Gate
𝑹𝑹(𝝅𝝅

𝟐𝟐
, 𝝅𝝅
𝟐𝟐

)

Controlled-Z Gate

Figure 4.2: Quantum circuit using the Cirac-Zoller protocol to produce the controlled-NOT gate. 
The overall pulse sequence implements the unitary operation given in Eq. 4.9. The notation R(θ, φ) 
is given in Eq. 2.13. 

Or, in the matrix form: ⎛ ⎞ 
0 ⎜ 1 0 0 ⎟⎜ ⎟⎜ ⎟⎜ 0 1 0 0 ⎟

CNOT = ⎜ ⎟⎜ ⎟ . (4.9) ⎜  ⎟⎜ 0 0 0 1 ⎟⎝ ⎠ 
0 0 1 0 

In addition to the requirement for single-qubit addressing, the Cirac-Zoller protocol also 

requires preparing the motional state in the ground state, and the performance of the protocol 

is directly tied to how well this is accomplished. The Cirac-Zoller protocol was first realized in 

Ref. [Monroe 95a] with the control and target qubits encoded in two motional Fock states and two 

Zeeman states of a trapped 9Be+ ion, respectively. Two-ion realization of the Cirac-Zoller gate 

was first implemented with two 40Ca+ ions [Schmidt-Kaler 03], where single-qubit addressing was 

accomplished by tightly focused laser beams. We implemented the Cirac-Zoller controlled-NOT 

gate with a 9Be+ and a 25Mg+ ion, which is described in Sec. 5.6. 

4.3 Geometric Phase Gates 

Unlike the Cirac-Zoller gate where the logic operation is accomplished by the blockade of the 

motional ground state, a geometric phase gate creates a forced harmonic oscillator interaction that 

drives motional wavefunction around a trajectory in the phase space which is dependent on the 

internal qubit states. As shown in Fig. 4.3, if the different displacements enclose a loop, the qubit 

states pick up a geometric phase proportional to the area of the enclosed state-dependent loop. An 
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entangling gate can be engineered by choosing an appropriate geometric phase difference between 

different qubit states. In this section we decribe some of the basic mechanisms of the gates; more 

detailed explanations are given when separate experiments are discussed in Chap. 5, 6, and 7. 

Geometric phase gates can be engineered such that the phase-space displacement driven by 

the state-dependent force encloses multiple loops in phase space. This strategy has the advantage 

of increasing the robustness of the geometric phase gate against timing miscalibration and motional 

dephasing [Hayes 12]. 

4.3.1 Types of Geometric Phase Gates 

Depending on the basis states in which the spin-dependent force applies, geometric phase 

gate can be separated into two subcategories: (i) the σ̂zσ̂z gate where the spin-dependent force 

acts on the σ̂z logical basis, and (ii) the σ̂φσ̂φ gate where the spin-dependent force acts on the σ̂φ 

rotated basis. 

In this thesis, the laser beam geometry to drive the geometric phase gate is shown in Fig. 

4.4. Laser beams 1 and 2, with laser (angular) frequency ω1 and ω2, respectively, are used to drive 

stimulated-Raman transitions between hyperfine qubit states. These laser beams intersect at 90◦ 

such that the difference in their k vectors, Δk, is aligned along the axial direction, in which case 

only the axial motional modes will couple to the internal states [Wineland 98]. 

4.3.2 σ̂zσ̂z Gate 

The σ̂zσ̂z gate relies on the differential AC Stark shift between the two states of the qubit 

to generate a spin-dependent force that applies an effective σ̂zσ̂z spin-spin interaction. By setting 

the frequency difference between the two laser beams in Fig. 4.4 to be ωz + δ, where ωz and δ are 

the frequency of a selected motional mode and the detuning of the laser-induced interaction, the 

σ̂zσ̂z-gate Hamiltonian in the interaction frame of qubit and motion after dropping high-frequency 
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p

z

|  ↑↑ → |  ↑↑
|  ↓↓ → |  ↓↓

|  ↑↓ → 𝑒𝑖Φ|  ↑↓
|  ↓↑ → 𝑒𝑖Φ|  ↓↑

Figure 4.3: By applying an effective spin-spin interaction, the motional wavepacket is displaced 
in phase space dependent on the internal qubit states. If displacements enclose a loop, the qubit 
states pick up a geometric phase, Φ, proportional to the area of the enclosed loop. 

𝒌𝟐 𝒌𝟏

Axial direction  𝑧

𝜔1𝜔2

B field ≃ 0.0119 T 

Ions

Figure 4.4: Orientation of Raman laser beams used to drive two-qubit entangling gates. Beams 1 
and 2 are  arranged such that their k vectors intersect at 90◦ and their Δk vector is aligned along 
the axial direction. 
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terms for two qubits in the Lamb-Dicke limit can be written as 

� � � � 
   Hzz = ~Ω1σ̂z,1 âe −i(δt−φ1) + â† ei(δt−φ1) + ~  Ω † σ̂ âe −i(δt−φ2) + â e i(δt−φ2)

2 z,2 X � �� �
= ~ Ω |↑i h↑| − |↓i h↓| âe −i(δt−φj ) + â†  e i(δt−φj )

j j j j j , (4.10) 
j=1,2 

with Ωj = ΩAC,j ηξj , where ΩAC,j is the differential AC Stark shift between the two qubit states 

induced by the applied laser beams on the jth ion, ξj is the mode amplitude of the jth ion for a 

motional mode with a Lamb-Dicke parameter of η, and â is the annihilation operator of the selected 

motional mode which the laser-induced interaction couples to. The phase of the laser interaction is 

φj = ΔkX0,j +Δφj , where Δk and Δφj are the differences in wave vectors and phases of the laser 

fields, and X0,j is the equilibrium position for the jth ion. σ̂z is the usual Pauli matrix as shown 

in Eq. D.14. 

After setting Ω1 = Ω2 = Ω and Δφj = 0 for simplicity, and assuming that the ions’ spatial 

separation is set appropriately [Leibfried 03, Lee 05], Eq. 4.10 can be written in a relatively simple 

form: X � �� �
Hzz = ~  − −iδt † iδt Ω |↑i h↑| |↓i h↓|j j  j j aeˆ  + â e , (4.11)

j=1,2 

with Ω as the gate Rabi rate. For t = 2π/δ and Ω = δ/4, the geometric phases acquired by the 

qubit states with opposite parity differ by π/2 (Fig. 4.3), and the truth table for the two qubits is 

the following: 

|↑↑i → |↑↑i 

|↑↓i → i|↑↓i 

|↓↑i → i|↓↑i 

|↓↓i → |↓↓i. (4.12) 
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Or, in matrix form: ⎛ ⎞ ⎜ 1 0 0 0 ⎟⎜ ⎟⎜ ⎟⎜ 0 i 0 0 ⎟
Ĝ  = ⎜ ⎟

z ⎜ ⎟ . (4.13) ⎜⎜ 0 0 i  ⎟0 ⎟⎝ ⎠ 
0 0 0 1 

One advantage of the σ̂zσ̂z gate is that the laser setup required is relatively straightforward. The 

relative frequency difference of the laser beams in path 1 and path 2 (in Fig. 4.4) is approximately 

the motional frequency, which is usually a few MHz. However, because the σ̂zσ̂z gate relies on a 

differential AC Stark shift on the two logical states of the qubit, the σ̂zσ̂z gate is not applicable to 

a qubit whose transition frequency is first-order independent of magnetic field changes [Lee 05]. 

The  σ̂zσ̂z gate was first realized in Ref. [Leibfried 03] with two 9Be+ ions, the created Bell 

 state fidelity was 0.97(2). More recently, a gate fidelity of 0.999(1) was achieved using two 43Ca+

ions [Ballance 16], which is currently one of the best deterministic entangling gates yet reported 

[Ballance 16, Gaebler 16]. 

4.3.3 σ̂φσ̂φ Gate 

The above restriction on qubit transition’s magnetic field sensitivity does not apply for a 

state-dependent force acting on the rotated basis, |+i and |−i defined as the eigenstates of σ̂φ = 

cosφσ̂x − sinφσ̂y: 

� �1 |+i = √ |↑i + eiφ |↓i , 
2 � �1 |−i = √ |↑i − eiφ |↓i , (4.14)
2 

The σ̂φσ̂φ gate is applicable to any qubit state pairs, including the magnetic-field insensitive qubits. 

The phase space trajectory driven by the σ̂φσ̂φ gate is very similar to that of the σ̂zσ̂z gate (Fig. 

4.3), except that |+−i and |−+i states pick up a geometric phase of Φ, while |++i and |−−i states 

remain unchanged (assuming the optical phases and ions’ spatial separation are set appropriately). 
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With σ̂+ = |↑ih↓| as shown in Eq. D.14, one simple form of the σ̂φσ̂φ gate interaction-frame 

Hamiltonian in the Lamb-Dicke limit after dropping high-frequency terms can be written as 

X � �
H = ~Ω σ̂+ − † iδt 

φφ j ae iδt ˆ + â e + h.c., (4.15)
j=1,2 

where the gate Rabi rate Ω is assumed to be equal on both ions. For simplicity, we have dropped 

terms related to the wave vectors and phases of optical fields in Eq. 4.15. The exact form of a 

σ̂φσ̂φ Hamiltonian depends on experimental setup and the influences of these phase terms will be 

discussed in detail for different implementations of the σ̂φσ̂φ gates (next two sections), and in the 

respective chapters presenting different experimental realization of the σ̂φσ̂φ gates. 

Using the rotated basis definition given by Eq. 4.14, we can rewrite the Eq. 4.15 to be: 

X � �� � 
 ~    −iδt †  Hφφ = Ω |+i h h−|j +| − |−ij j j aeˆ + â eiδ t , (4.16) 

j=1,2 

this shows the similarity of this expression with Eq. 4.11, illustrating the basis states in which the 

spin-dependent forces are applied for the σ̂φσ̂φ and σ̂zσ̂z gate. The truth table in the rotated basis 

for the σ̂φσ̂φ gate is 

|++i → |++i 

|+−i → i|+−i 

|−+i → i|−+i 

|−−i → |−−i. (4.17) 

The unitary operation of the σ̂φσ̂φ gate written in terms of the basis states of Eq. 4.7 is ⎛ ⎞ ⎜ 1 0 0 −i ⎟⎜ ⎟⎜ ⎟
1 ⎜ 0 1 1 0 ⎟

Ĝφφ = √ ⎜ ⎟⎜ ⎟ . (4.18)
2 ⎜ ⎟⎜ 0 1 1 0 ⎟⎝ ⎠ 

i 0 0 1 

Compared to the σ̂zσ̂z gate, the laser setup for σ̂φσ̂φ gate is relatively more complicated, 

primarily because the relative frequency difference of the laser beams in path 1 and path 2 (Fig. 
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4.4) is separated by approximately the qubit frequency, which is usually a few GHz. Depending 

on the choice of qubit states and the exact implementation of the σ̂φσ̂φ gate, careful consideration 

is needed for the generation of deterministic entanglement [Lee 05]. In the next two sections, we 

introduce two different protocols for the implementation of the σ̂φσ̂φ gate: the Mølmer-Sørensen 

protocol and the Bermudez protocol. 

4.3.4 Mølmer-Sørensen Protocol 

The Mølmer-Sørensen (MS) protocol [Sørensen 99, Sørensen 00, Milburn 00, Solano 99] re-

quires simultaneous excitation of a blue-sideband transition with a detuning of δ and a red-sideband 

transition with a detuning of −δ for a selected motional mode. Following the spin-motion Hamil-

tonian described in Sec. 2.1.3, the Hamiltonian of the MS protocol in the interaction picture is 

[Sørensen 99, Sørensen 00] 

� � � �X X 
σ+ −i(δj t−φj,r ) σ+ † i(δj t+φj,b)HMS = ~ j ae + ~ Ωb,j ̂ â e + h.c., (4.19)Ωr,j ̂ ˆ j 

j=1,2 j=1,2 

with Ωr(b),j = Ω0,r(b),j ηξj where Ω0,r(b),j is the Rabi rate of the resonant carrier excitation induced 

by the laser beams responsible for the red (r) and blue (b) sideband excitations, η is the Lamb-Dicke 

parameter of the selected motional mode with ξj as the mode amplitude of the jth ion. If we set 

Ω0,r,j = Ω0,b,j = Ω0,j then Eq. 4.19 becomes 

� �X 
†HMS = ~ Ωj σ̂j 

+ âe −i(δj t−φj,r) + â ei(δj t+φj,b) + h.c., (4.20) 
j=1,2 

with Ωj = Ω0,j ηξj . The phases of the red (r) and blue (b) sideband interactions are φj,r(b) = 

Δkj,r(b)X0,j +Δφj,r(b) where Δkj,r(b) and Δφj,r(b) are the differences in wave vectors and phases of 

the optical fields driving the red and blue sideband transitions respectively, and X0,j is the equi-

librium position for the jth ion. By setting t = 2π/δ and Ω1 = Ω2 = Ω = δ/4, the computational 
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truth table for the Mølmer-Sørensen gate is the following: 

�  P �1 −i(    
1

√ + e (φ +|↑↑i → |↑↑i j=1,2  j,b φj,r )+π/22 )|↓↓i
2 
1 |↑↓i → √ (|↑↓i + |↓↑i)
2 
1 |↓↑i → √ (|↓↑i + |↑↓i)
2 �  P � 1|↓↓i → √ |↓↓i + ei ( 

1 (φ +φ )+π/2j=1,2  j,b j,r 2 )|↑↑i . (4.21)
2 

Depending on the laser beams geometry that is used to implement the MS gate, the phase 

difference between the two parity components of the produced entangled state can fluctuate, in 

turn causing decoherence [Lee 05]. Issues of the MS gates’ laser phase sensitivity will be discussed 

in detail for the laser beam geometry used in the mixed-species entangling gate experiment and the 

high-fidelity two-qubit gate experiment, described in Chap. 5 and Chap. 6, respectively. 

4.3.5 Bermudez Protocol 

Another protocol to implement the σ̂φσ̂φ geometric phase gate is given by Bermudez et 

al. [Bermudez 12]. It requires a resonant carrier Rabi oscillation excitation and a single spin-

motion sideband spin-flip excitation |↓, ni ↔ |↑, n + 1i or |↑, n − 1i with a detuning of δ on a 

selected motional normal mode. This gate scheme features built-in dynamical decoupling [Viola 98, 

Lidar 14] that can protect the qubit against certain decoherence errors during the application of 

the gate [Bermudez 12]. 

In the interaction frame for both the spin and motion, and after dropping high-frequency 

terms, the Hamiltonian for two ions driven by Bermudez protocol with a blue-sideband excitation 

in the Lamb-Dicke limit is 

X � �
 ~ + iφ   +  0 

HB = ΩC σ̂j e + iΩj σ̂j â
†e−iδteiφ j + h.c., (4.22)

j=1,2 

where ΩC denotes the Rabi rate of the carrier excitation that provides the dynamical decoupling, 

and Ωj = Ω0,j ηξj , where Ω0,j is the Rabi rate of the resonant laser-driven carrier excitation, η is 

the Lamb-Dicke parameter for the selected motional normal mode with ξj as the mode amplitude 
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of the jth ion, and φ and φ0 j are the respective phases of the carrier and sideband excitation for 

the jth ion. 

The key concept of this gate scheme is to use a strong carrier excitation to create dressed 

states of the qubits, and apply a spin-dependent force in the dressed-state basis using the single 

spin-motion sideband excitation. The dressed state created by the strong carrier excitation results 

is an effective dynamical decoupling mechanism that reduces the sensitivity of the qubits to certain 

dephasing errors. As a simple illustration, consider a two-level system with an unperturbed qubit 

frequency of ω0. Under the influence of a certain mechanism that shifts the qubit frequency by ω0 , 

the system Hamiltonian can be written as ⎛ ⎜⎝ 1 0 

⎞ ⎟⎠+ 
1 
~ω0 

⎛ ⎜⎝ 1 0 

⎞ ⎟⎠ . (4.23) 
1 

H = ~ω0
2 2 

0 −1 0 −1 

Now, if we apply a continuous spin-flip excitation to the system with a Rabi rate of ΩC which 

satisfies the condition of ω0 � ΩC � ω0, the Hamiltonian in the interaction frame of the qubit 

becomes ⎛ ⎜⎝ 1 0 

⎞ ⎟⎠+ ~ΩC 

⎛ ⎜⎝ 
⎞ ⎟⎠ . (4.24) 

0 1 
HI =

1 
~ω0 
2 

0 −1 1 0 

The eigenvalues, ω0
0 , of this system, which represent the effective shift of the unperturbed system’s 

qubit frequency, are obtained by diagonalizing the Hamiltonian: 

1 
ω0 = ±0 2

q
ω02 +Ω2 

C s 
ω02 

Ω2 
C 

1 
= ± ΩC 1 + 

2 !� �2
ω02 ω021 1 ≈ ± ΩC 1 + + + · · · 

2 Ω2 2 Ω2 
C C !� �2

1 ω02 1 ω02 

= ± ΩC + + ΩC + · · · . (4.25)
2 ΩC 2 Ω2 

C 

It becomes apparent that the influence of ω0 becomes a second order effect and decreases as ΩC in-

creases. However, now the overall frequency shift, ω0
0 , depends linearly on ΩC . Therefore, although 
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dynamical decoupling can provide protections against uncontrolled environmental noise (ω0), it 

requires the control field to be constant. 

Since the interesting case is when ΩC � |Ωj |, we shift to the interaction frame, where the 

states are dressed by the carrier excitation, and consider the effects of the sideband term. For 

simplicity, we set φ = φ0 j = 0 since they are not important for the description below. In the |+i, |−i 

basis according to Eq. 4.14, the Hamiltonian in Eq. 4.22 becomes [Bermudez 12, Tan 13] � �� �X Ωj † −iδt − ˆ iδt HB = i~ |+ij h+|j − |−ij h−|j â e ae 
2 

j � �� � 
−iδt + ˆ+i~ 

X Ωj |−ij h+|j e −2iΩC t − |+ij h−|j e 2iΩC t â† e ae iδt . (4.26)
2 

j 

The second term induces off-resonant transitions between the dressed states |+i and |−i and can 

be neglected under the assumption that ΩC � |Ωj |. The first term is identical to Eq. 4.16, which 

describe a Hamiltonian of a geometric phase gate with the spin-dependent force acting on the 

rotated basis. In contrast to the MS protocol, the entangled states produced by Bermudez protocol 

are insensitive to optical path length changes of the non-copropagating laser beams (Fig. 4.4) 

occurring on a time scale that is long compared to the gate duration. This offers technical simplicity 

in terms of implementation. The laser phase insensitivity and experimental implementations of the 

Bermudez gate using two 9Be+ ions will be described in Chap. 7. Furthermore, compared to the 

MS protocol, error associated with the Rabi rate imbalance of the detuned-blue and detuned-red 

sideband is removed with this implementation of the Bermudez protocol. 

4.4 Error Sources for Geometric Phase Gates 

One of the most important aspects of implementing two-qubit entangling gates is the study 

of imperfections and error mechanisms. These studies provide insights into whether these limiting 

factors are of a fundamental nature, or technical challenges. In addition, understanding the sources 

of imperfection provides motivation to innovate alternative techniques for the further improvement 

of gate performance. 

Here, we describe error mechanisms that are considered for the experimental implementations 
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of two-qubit gates presented in Chap. 5, 6, and 7. These experiments implement the σ̂φσ̂φ gates; 

therefore the discussions below focuses on error sources associated with them, but is not limited 

to the σ̂φσ̂φ gate. As mentioned before, the objective here is to provide an overview. Further 

discussions and evaluations of error sources for different experiments will be presented in their 

individual chapter in the remaining of this thesis. 

A combination of analytic methods, Monte Carlo simulations, Schrödinger equation simula-

tions, and master equation simulations are used for the study of these error mechanisms, with the 

latter used heavily in this thesis. 

4.4.1 Schrödinger and Master Equation Simulations 

In this dissertation work, we use the Schrödinger equation to study the dynamics of quantum 

systems of interest when dissipation is not considered. We also use the Schrödinger equation to 

study coherent errors, e.g., errors due to slow fluctuations in laser intensity, timing, frequency 

offsets and calibration drifts. The Schrödinger equation is 

d|Ψi 
i~ = H|Ψi, (4.27)

dt 

where |Ψi is the state vector representing the system, and H is the Hamiltonian describing the 

coherent interaction. 

The dynamics of an open-quantum system can be simulated with a master equation [Gardiner 00], 

which allows multiple dissipative error mechanisms and coherent operations to be combined and 

simulated. The master equation used here is in the Lindblad form [Lindblad 76] � �Xdρ 1 1 1† † †ˆ ˆ ˆ ˆ= [H, ρ] + Lj ρL̂ − L Lj ρ − ρL̂ Lj , (4.28)j j jdt i~ 2 2 
j 

where ρ is the density matrix of the system, and L̂j is the Lindblad operator (or quantum jump 

operator) describing the jth decoherence/dissipative process. Readers unfamiliar with the master 

equation will find Ref. [Dyrting 95, Schneider 98, Puri 01, Harty 13] useful. 

Master equation simulations are more computer-resource demanding. For a quantum system 

represented by a matrix of dimension M × 1, the density matrix required for the equivalent master 
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equation simulation has a dimension of M ×M . This is precisely the problem faced by conventional 

computation; that is, the number of parameters needed to keep track of a quantum system grows 

exponentially as the system size increases. For example, in a system of N qubits, M scales as 

2N . Nevertheless, master equation simulations are used intensively to study the system dynamics 

under the influences of dissipative error sources, such as spontaneous scattering of photons, heating 

of motional modes, qubit dephasing, and motional mode dephasing. Furthermore, we have also 

combined Schrödinger equations and master equations with Monte Carlo simulations. 

The quantum systems included for the simulations of two-qubit gates are the spin of each ion, 

and harmonic oscillators to represent the ions’ motion. The harmonic oscillator energy eigenstates 

span an infinite dimensional Hilbert space. However, since most of the relevant dymanics occur 

close to the ground state, we select a motional system size which includes the ground state up to 

the Fock state |Nmaxi that strikes a balance between the required computational resources and 

an adequate representation of our system. Depending on which dynamics and properties are of 

interest, Nmax ranges from ' 10 to 100. 

Due to the internal atomic state structures, our choices of hyperfine states as qubits, and the 

fluorescence detection scheme for the 9Be+ and 25Mg+ ions (see Sec. 2.1.7 and Sec. 2.2.6), there 

are times where the states outside of the qubit |↑i and |↓i manifold must be included (see Fig. 2.1 

and Fig. 2.6 for energy level diagrams for 9Be+ and 25Mg+, respectively). For example, population 

can leak from the qubit manifold into other hyperfine states through spontaneous Raman scattering 

during the gate. Furthermore, due to the finite fidelity of (i) optical pumping and (ii) population 

transfer between computational and measurement qubit manifolds, these operations result in non-

zero populations outside the qubit manifold. These populations do not interact with laser-induced 

operations on the qubit transition and are predominantly detected as “dark” (see Sec. 2.1.7). To 

better capture the dynamics and effects due to these populations, we include a single auxiliary 

state (for each ion) in our model for numerical simulation, which consolidates all population in the 

non-qubit-manifold. The simplification is made because the population in each of the other Zeeman 

states is small (on most scenarios considered). We label this state as |Ai and it is modeled to have 
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the same detection outcome as the |↓i state. In our model, unless stated otherwise, the only spin 

states that interact with the applied coherent operations are the qubit |↑i and |↓i states. 

Here, most of the numerical simulations on quantum systems are performed using matrix 

representations of states and operators (see Appendix D) with the Mathematica software. 

4.4.2 Spontaneous Scattering of Photons 

One of the dominant decoherence sources when driving stimulated-Raman transitions is the 

error caused by spontaneous emission of photons [Wineland 98]. With the initial state of |ii = |↑i 

or |↓i state, the spontaneous scattering rate into the final state |fi via the intermediate states |ji 

is given by the Kramer-Heisenberg equation [Cline 94] 

X E2 
m 

������ 
XX 

j k 

Γj 
hf |d · σ̂k|jihj|d · σ̂k |iiq L,m

Δj 

������ 
2 

, (4.29)Γi→f = 
4~2 

m 

where Em is the electric field amplitude of the mth laser beam, d is the electric-dipole operator, 

and Δj is the detuning of the Raman laser from each of the i ↔ j transitions. Here, σ̂k 
L,m represents 

the polarization vectors of the mth laser beam and k indexes the different polarization components. 

They are expressed in terms of linear (π̂), left (σ̂−) and right (σ̂+) circular polarizations such that 

σ̂L,m σ− σ+= �− ˆ +�0 π̂m +�+ ˆ with |�− 
m m m m m m|

2 
+ 
���0 

m 

��2 
+|�+ 

m|
2 
= 1. Similarly, σ̂q contains the three possible 

polarization-dependent decay channels from the jth excited state to the fth final state. Note that 

coupling between different states of the same polarization can interfere with each other, but there 

is no interference between coupling of different polarizations. For 9Be+ and 25Mg+ the jth excited 

states are the different hyperfine Zeeman states in the P1/2 and the P3/2 electronic excited states, 

and we can approximate the natural decay rate of each jth state to be Γj = Γ. 

The total probability of spontaneous emission PS.E for a laser-driven spin-flip transition is X 1 
PS.E. = (Γ↑→f + Γ↓→f ) τπ, (4.30)

2 
f 

where τπ is the duration needed for the π pulse, which is defined by Ωτ = π/2. Now, Eq. 4.30 

becomes P 
π f (Γ↑→f + Γ↓→f ) 

PS.E. = . (4.31)
2 2Ω 
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Depending on the final state after each scattering event, spontaneous emission can be separated 

into Raman and Rayleigh scattering, and the error mechanisms in which they cause error can be 

different [Ozeri 05, Ozeri 07]. 

4.4.2.1 Raman Scattering 

Raman scattering processes are inelastic and project an ion’s internal state to one of the 

Zeeman states which is different from the initial state, destroying coherence. Raman scattering 

processes can be further separated into two processes: (i) out-of-manifold scattering, and (ii) bit-

flip scattering. The Lindbald operators describing the Raman spontaneous emission out-of-manifold 

scattering are 

p
L̂↑A(Γ↑A) = Γ↑Aσ̂↑A, (4.32) p
L̂↓A(Γ↓A) = Γ↓Aσ̂↓A, (4.33) 

where σ̂↑A = |Aih↑| and σ̂↓A = |Aih↓|, Γ↑A (Γ↓A) indicates the scattering rate from the |↑i (|↓i) 

state to the |Ai state, respectively (see Appendix D for the matrix representations of σ̂↑A and σ̂↓A). 

In actuality, there are multiple final states that can be populated by an out-of-manifold scattering 

event with different scattering rate (see Fig. 2.1 for energy level diagram of the 9Be+ ion). In our 

model, the scattering rates Γ↑A and Γ↓A are the sum of scattering rates from each of the qubit 

states to other non-qubit-manifold states. The Lindblad operators for the bit-flip scattering are 

[Puri 01] 

p
ˆ σ−L↑↓(Γ↑↓) = Γ↑↓ ̂ , (4.34) p
L̂↓↑(Γ↓↑) = Γ↓↑σ̂

+ , (4.35) 

where Γ↑↓ represents the scattering rate starting from the |↑i state and ending in the |↓i state. 

Similarly for Γ↓↑. Both the out-of-manifold and bit-flip scattering events destroy coherence. How-

ever, in contrast to the out-of-manifold scattering, the bit-flip scattering event does not result in 

qubit manifold population leakage. Raman scattering processes contribute large portions of errors 
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to the entangling gates implemented in Chap. 5, 6, and 7, these scattering errors are accounted for 

and are discussed further in their individual chapter. 

Another process which is not considered here is the events where population from the non-

qubit manifold enters the qubit manifold via Raman scattering. Usually the population in the 

non-qubit manifold is small; therefore this process is a second order process that we assume to have 

negligible effect on the dynamics of the system under studies. 

4.4.2.2 Rayleigh Scattering 

Rayleigh scattering processes are elastic, i.e. the scattering event puts the atomic state back 

to its original state. Depending on the choice of atomic states for the qubit, Rayleigh scattering 

processes do not necessarily cause spin decoherence. In general, different atomic states have unequal 

spontaneous scattering rates. Unequal Rayleigh scattering rates for the two qubit states produce an 

overall spin-dephasing error [Ozeri 07, Uys 10], which can be described by the Lindblad operator 

describing qubit decoherence [Uys 10]: 

p
L̂R(ΓR) = ΓRσ̂z, (4.36) 

with the Rayleigh qubit dephasing rate, ΓR given by [Uys 10] � ��  ! 2 X 2 �XX h↑|d · σ̂k k �
E q   

 |jihj|d ·  σ̂ |↑i h↓|d · σ̂k
q |jihj|d · σ̂k
 |↓i �

m � L,m L,m
Γ �
R = . (4.37)

 � Γ �~ j − 
2 � Δj Δjm j k � 

Rayleigh scattering does not cause a spin-dephasing error if a magnetic-field insensitive states pair 

is used as qubit. This is because the Rayleigh scattering amplitude for each qubit state is equal, 

thus the two terms in Eq. 4.37 cancel each other, resulting in a vanishing decoherence rate. The 

entangling gates presented in this thesis are all implemented on magnetic-field insensitive qubits; 

therefore the Rayleigh dephasing error does not apply. Although Rayleigh scattering does not 

directly cause spin decoherence to a magnetic-field-insensitive qubit, it can cause errors to a two-

qubit gate based on geometric phase via motional decoherence [Ozeri 07]. 
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4.4.2.3 Motional Dephasing due to Spontaneous Scattering 

The direction of each scattered photon is random, which results in a random recoil momentum 

kick to the ion’s motion. This distorts the phase-space trajectory as the state-dependent force is 

applied, and causes phase errors in the final state. The worst-case error is given by Eq. 57 in Ref. 

[Ozeri 07]: 

5 η2 

�Recoil = PS.E., (4.38)
24 Nloop 

where η is the Lamb-Dicke parameter of the motional bus mode, and Nloop is the number of phase 

space loops used for the geometric phase gate. The total scattering probability, PS.E. is described 

by Eq. 4.30 that sums over all possible final states. 

The scattering probabilities of Raman, Rayleigh and their sum for a two-qubit Mølmer-

Sørensen gate are shown in Fig. 4.5 and Fig. 4.6 for a 9Be+ and 25Mg+ ion, respectively. The 

dephasing errors associated with the momentum kicks caused by spontaneous scattering are also 

shown in these two figures. 

Motional dephasing due to spontaneous scattering of photons contributes negligible errors 

(compared to other dominant errors) to the mixed-species entangling gate (Chap. 5) and the 

dynamical decoupling gate (Chap. 7). However, this error is non-negligible in the experiments 

presented in Chap. 6, where a Raman detuning as high as Δ ∼ −2π × 900 GHz is used. Further 

discussions are in their individual chapters. 

Although Raman scattering can be reduced by increasing |Δ|, the Rayleigh scattering error 

reaches an asymptotic value as |Δ| is increased. This error is proportional to the Lamb-Dicke 

parameter and thus could be reduced by increasing the trap frequency; it can also be reduced by 

using multiple loops in phase space [Ozeri 07, Hayes 12] (see Eq. 4.38). However, these methods 

reduce the gate Rabi rate and thus increase the Raman scattering error. 

Depending on the ion species, Rayleigh scattering can set an absolute lower limit for the 

error of a geometric phase gate implemented with stimulated-Raman transitions. This is more 

pronounced in the case for ion species which have a low-lying D electronic excited state [Ozeri 07]. 
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Figure 4.5: This figure shows the different scattering probabilities and errors caused by spon-
taneous scattering of photons due to Raman laser beams for a two-qubit gate driven with the 
Mølmer-Sørensen protocol on 9Be+ ions. Spontaneous scattering of photons can be categorized 
into Raman and Rayleigh scattering, and they contribute errors to a two-qubit gate differently. 
The qubit’s coherence is lost after each Raman scattering event, while this is not the case for 
Rayleigh scattering. Both Raman and Rayleigh process contribute to motional dephasing error 
through a random trajectory in the motional phase space caused by a uncontrolled momentum 
kick for each scattering event. The horizontal axis indicates the detuning of the Raman laser with 
respect to the 2S1/2 ↔ 2P1/2 transition of the 9Be+ ion. The second peak at ∼ +200 GHz Raman 
detuning corresponds to scattering from the 2P3/2 electronic excited state. The dips between the 
two fine structure lines are caused by the cancellation effect as indicated in Eq. 4.29; the Raman 
laser is blue detuned relative to the 2P1/2 levels while red detuned relative to the 2P3/2 levels. This 
figure is plotted with a Lamb-Dicke parameter of η = 0.19, NLoop = 1, and assuming equal laser 
intensity in each of the two laser paths as depicted in Fig. 4.4. The polarization of the k1 (k2) is 
set to be pure σ+ (π). 



89 

Figure 4.6: This figure is analogous to Fig. 4.5 but  for 25Mg+ ions and with η = 0.165. The Raman 
detuning, Δ is plotted with respect to the 2P3/2 excited   state, where the frequency of our 25Mg+

Raman laser is tuned near to. The two peaks correspond to the fine structure splitting between 
the 2P1/2 and 2P3/2 electronic excited states, which is ∼ 2.75 GHz. 
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4.4.3 Motional Frequency Fluctuations 

As the geometric phase gates rely on the coherent evolution of both the spin and motional 

degrees of freedom, motional frequency fluctuations affect the gate’s performance in a similar fashion 

as qubit dephasing. Motional frequency fluctuation can be described by the Lindblad operator of 

[Turchette 00b] p
ˆ a †ˆ (4.39)Lmotion(Γmotion) = Γmotionˆ a, 

Physical sources of frequency fluctuation include (i) fluctuations in the control potentials 

applied to electrodes for trapping, (ii) fluctuating electric-field gradients from uncontrolled charging 

of electrode surfaces [Harlander 10], and (iii) for gates applied on the axial stretch mode, the non-

linear coupling to radial “rocking” modes [Roos 08, Nie 09]. For (iii), to a good approximation, 

the shift of the stretch mode frequency, δωS from the thermal excitation of these modes is given by 

δωS = χ(nx + ny + 1) where χ is the non-linear coupling term, nx and ny are Fock state occupation 

numbers of the two transverse (radial) rocking modes. As these fluctuations are dependent on the 

occupation numbers of the radial modes, the error can be suppressed by cooling the radial modes 

to near the ground state. 

Entangling gate errors caused by motional frequency fluctuations are studied closely in the 

implementations with two 9Be+ ions (see Chap. 6); motional frequency fluctuations cause negligible 

errors to the mixed-species entangling gate and the dynamical decoupling gate presented in Chap. 

5 and Chap. 7, respectively. 

4.4.4 Motional Heating 

Although the geometric phase gate is robust against thermal excitation (the motional ground 

state is incompletely populated) [Sørensen 99, Sørensen 00], changes in motion states during the 

application of the gate cause decoherence, which leads to errors. This heating can be modeled as 

an exchange of energy between the motional harmonic oscillator and a thermal bath with much 

higher temperature. Uncontrolled couplings between these two systems consist of a heating and a 
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cooling process, and they can be described by the following Lindblad operators [Sørensen 00]: 

p †L̂heat(Γh,c) = Γh,câ , (4.40) p
ˆ = a, (4.41)Lcool(Γh,c) Γh,cˆ

where Γh,c is the heating rate. One of the dominating heating effects is due to the uncontrolled 

electric field noise from the trapping electrodes [Turchette 00a]. The exact mechanism of this 

“anomalous heating” is currently not understood, and there is active research to study this problem, 

see for examples Ref. [Allcock 11, Hite 13, Daniilidis 11, Brownnutt 15, McConnell 15]. Lindblad 

operators given in Eq. 4.40 and Eq. 4.41 are used in master equations (Eq. 4.28) to model the 

dynamics of entangling gates presented in Chap. 5, 6, and 7; we find good agreements between 

experiment data and our model. 

4.4.5 Off-Resonance Coupling to Spectator Modes 

The Hamiltonians shown in Eq. 4.11 and Eq. 4.15 describe geometric phase gates with 

the spin-spin interaction implemented by coupling to a single mode of motion. As other motional 

modes can also be driven off-resonantly by the applied laser fields, this can induce errors due to 

the imperfect implementation of the desired Hamiltonians. 

We consider the case with two ions driven by the Mølmer-Sørensen interaction using the 

laser beams geometry depicted in Fig. 4.4. Following Eq. C.19, the interaction frame Hamiltonian 

describing a blue-sideband excitation and a red-sideband excitation before dropping high-frequency 

terms is " # X X � � � �† † iωkt −iΔωB t −iΔωRtHMS = ~ Ω0,j σ̂j e iω0tExp i ηkξk,j âke −iωkt + âke e + e 
j=1,2 k 

+h.c., (4.42) 

where k indexes the different motional normal modes with mode frequency ωk that can interact with 

laser geometry setup, Ω0,j and ξk,j are the resonant carrier Rabi frequency and the mode amplitude 

for the kth normal mode of the jth ion, and ΔωB,R are the relative frequency differences between 
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the Raman laser fields responsible for the detuned blue (B) and the detuned red (R) sideband 

excitation, respectively. Assuming that the ion crystal is perfectly aligned with the Δk of the laser 

fields such that only normal modes along the axial direction can be driven, and considering the 

Lamb-Dicke expansion up to the first order in ηk (Eq. C.17), the Hamiltonian described in Eq. 

4.42 becomes 

h � �X † iω0t † iωC tHMS = ~ Ω0,j σ̂j e 1 + iηC ξC,j âC e −iωC t + âC e 
j=1,2 � � i � �† iωS t −iΔωB t −iΔωRt+iηS ξS,j âS e −iωS t + âS e + . . . e + e + h.c., (4.43) 

where ηC,S , ωC,S , and âC,S are the Lamb-Dicke parameter, the normal mode frequency, and the 

annihilation operator for the center-of-mass (C) mode and stretch (S) mode, respectively. 

To generate a spin-dependent force mediated by the center-of-mass mode, we set the relative 

frequency differences between the two set of Raman laser beams to be ΔωB = ω0 + ωC − δ and 

ΔωR = ω0 − ωC + δ. With this, the Hamiltonian (before dropping high-frequency terms) is 

h� �X † −i(ωC −δ)t i(ωC −δ)tHMS = ~ Ω0,j σ̂ e + ej 
j=1,2 � � 

† † iδt +iηC ξC,j âC e −iδt + âC e −i(2ωC −δ)t + âC e i(2ωC −δ)t + âC e � 
−i(ωS −ωC +δ)t+iηS ξS,j âS e −i(ωS +ωC −δ)t + âS e � i 

† † i(ωS +ωC −δ)t+âS e i(ωS −ωC +δ)t + âS e + . . . + h.c.. (4.44) 

†−iδt iδt The âC e and âC e terms (in the second term inside the square bracket) represent the MS 

interaction acting on the center-of-mass mode. All other terms represent off-resonant excitations. 

For example, the first term in the square bracket represents off-resonant excitation of the car-

−i(ωS −ωC +δ)t † i(ωS −ωC +δ)trier transition, the âS e and âS e terms (in the third term inside the square 

bracket) represent off-resonant excitation of the stretch mode with a detuning approximately equal 

to the mode frequency difference of the center-of-mass mode and the stretch mode. These high-

frequency terms are usually dropped (ωC , ωS � δ) to give a reasonable approximation to the gate 

[Tan 13, Tan 15]. However, it is important to consider the effects of these off-resonant excitations 
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for the high-fidelity implementation of the MS gate. Usually an off-resonant carrier excitation has 

a bigger impact than the off-resonant stretch mode excitation, this is because the strech mode 

excitation is scaled by the Lamb-Dicke parameter (ηS ) compared to the carrier excitation. 

Furthermore, the Raman laser beams could be imperfectly aligned such that the Δk vector 

has components in the radial directions. For such cases, Eq. 4.44 can be further generalized to 

include the additional motional modes. The coupling strength to motional mode is parametrized by 

the Lamb-Dicke parameter which quantifies the overlap of the laser beams’ Δk and the motional 

modes. Although the coupling strengths to the radial modes are (usually) relatively small given 

reasonable laser beam alignment and the transition frequency detuning is relatively large, certain 

higher-order coupling (second or higher-order terms in the Lamb-Dicke expansion, see Eq. C.17) 

terms could have a relatively small detuning that induce additional errors. 

In addition to coupling to spectator motional modes, other atomic transitions can also be 

off-resonantly driven, especially in the presence of micromotion. The two-qubit gates presented in 

Chap. 5 and Chap. 6 are implemented inside an ion trap where the excessive axial micromotion 

could not be compensated (see Sec. 2.1.3 and Sec. 3.1). The frequency of the trap RF, ωRF , is 

comparable to the Zeeman splittings of 9Be+ ion such that spectator atomic transitions could be 

coupled on other micromotion sidebands when driven by the laser beam geometry depicted in Fig. 

4.4 

Off-resonant coupling to spectator transitions can be suppressed by employing laser pulse 

shaping (see Sec. 3.8). By smoothing out the rise and fall profile of the laser beam, Fourier 

components at the frequencies of spectator transition can be made sufficiently small. With such 

dynamic shaping of laser pulses, gate errors contributed by off-resonant coupling are made negligible 

for the entangling gates presented in Chap. 6. Laser pulse shaping is not implemented for the gates 

presented in Chap. 5 and Chap. 7 due to the unavailability of high-speed apparatus (see Sec. 3.8) 

when these two experiments were performed. However, errors caused by off-resonant coupling are 

small compared to other dominant errors in these two implementations. 
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4.4.6 Imperfect Lamb-Dicke Approximation 

Geometric phase gates are robust against thermal excitation in the Lamb-Dicke limit [Sørensen 99, 

Sørensen 00]. However, depending on the ion species and the confinement parameters, this condi-

tion might not be rigorously satisfied. Because of this, the realistic MS interaction (used here as 

an example) applied to the ions deviates from the desired Hamiltonian of Eq. 4.15. 

One such effect is the dependence of sideband transition Rabi rates on the motional Fock 

states. In general, the Rabi rate of spin-motional transitions between Fock states labeled by their 

respective quantum number n and n0 is given in Eq. 2.15. The non-ideal implementation of the 

desired Hamiltonian due to the different Rabi rates between different Fock states has been studied 

in Ref. [Sørensen 00] for the MS gate, with error 

π2 

�LD = η4V ar(n), (4.45)
4 
π2 

= η4 n̄(n̄ + 1), (4.46)
4 

where the assumption of a thermal distribution (Eq. 2.10) with mean occupation number of n̄ for 

the motional mode is made in Eq. 4.46. For the parameters used in Chap. 5, 6, and 7, the gate 

errors caused by this mechanism are usually small compare to other error sources. 

4.4.7 Rabi Rate Fluctuations 

Errors can be caused by fluctuations in the Rabi rates of the geometric phase gates, which 

cause fluctuations in the state-dependent forces. Physical sources includes (i) fluctuations in the 

laser beam intensities at the ion location, (ii) fluctuations of the ion’s micro-motion amplitude, and 

(iii) fluctuations in the Debye-Waller factors of spectator motional modes that cause fluctuations 

in the Rabi rate of spin-motion transitions. 

For most cases, the gate Rabi rate fluctuations occur at a time scale slower than the gate 

speed. Thus it can be modeled with trial-to-trial fluctuations. Through numerical simulations by 

solving the Schrödinger equation combined with a Monte Carlo simulation, we derived an empirical 
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formula of � �2δΩ 
�Ω ' 2.5 × , (4.47)

Ω 

describing the error of creating a Bell state with a single-loop geometric phase gate due to Rabi 

rate fluctuations (this agrees with the expression in Ref. [Benhelm 08]). 

Debye-Waller coupling is the effect where the Rabi rate of a particular spin-motion transition 

is dependent on the excitations of other motional modes. This is another effect that causes the 

implemented Hamiltonian to deviate from the desired Hamiltonian of Eq. 4.15. 

Consider two ions interacting with two Raman laser fields arranged in the geometry shown 

in Fig. 4.4 where only the two axial motional modes can be driven. The Rabi rate of a spin-motion 

transition driven resonantly on the stretch mode between different Fock states is generalized from 

Eq. 2.15 and given by [Wineland 98]: � ��
 �
 † †

Ω 0 � iηS (âS +â ) iη (â +â )S C C C
�

n ,n0 = Ω0 � nC , nS e e |
S 

nC , nS i� , (4.48) 
S 

where Ω0 is the Rabi rate of the resonant carrier transition, nC,S, ηC,S and âC,S are the Fock state 

quantum number, Lamb-Dicke parameter, and the annihilation operator for the center-of-mass (C) 

and stretch (S) mode, respectively. Thus, the Rabi rate deviations for given values n 0
S and nS on 

the stretch mode are given by [Wineland 98] s�� � � 
2 

δΩn ,n0 = Ωn ,n0 − h n 0 i
S S 

Ω , (4.49)
  ,nS S S S q

 = hΩ2 i − hΩ 0 i20 nS ,n . (4.50)
nS ,n SS 

Assuming that the center-of-mass mode follows a thermal distribution, with Eq. 4.50, the fractional 

Rabi rate fluctuations can be simplified and approximated, given by [Wineland 98]: 

0 qδΩ  nS ,nS η4 ≈ C n̄C (n̄C + 1). (4.51) 
ΩnS ,n

0 
S 

Analogously, the Rabi rate of the center-of-mass mode is also dependent on the stretch mode. The 

errors contributed to the entangling gate can then be computed with Eq. 4.47. 

Equation 4.50 can be easily generalized to include the contributions from radial modes, where 

applicable depending on the laser beams geometry. In general, given a thermal distribution for each 
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of the multiple spectator modes, the r.m.s. Rabi rate fluctuation of the mode of interest can be 

described by sXδΩ ≈ η4n̄k (n̄k + 1), (4.52)kΩ 
k 

where ηk and n̄k are the Lamb-Dicke parameter and the mean occupation number for the kth 

spectator mode [Wineland 98]. 

Errors caused by Rabi rate fluctuations are more pronounced in the dynamical decoupling 

entangling gate presented in Chap. 7 due to a less robust laser beams setup in a legacy system. 

With an upgraded experimental setup (see Sec. 3), the mixed-species entangling gate (Chap. 5) 

and the entangling gate with two 9Be+ (Chap. 6) suffer less Rabi rate fluctuation errors. 

4.4.8 Rabi Rate Imbalance 

Two cases of Rabi rate imbalance are considered here. The first is the Rabi rate imbalance 

between the two ions, i.e., Ω1 6= Ω2 in Eq. 4.10 or in Eq. 4.20. This can be caused by (i) unequal 

illumination of laser beams due to misalignment for two ions of the same species, or (ii) separate 

illumination of each ion with individual sets of laser beams (e.g., the mixed-species gate described 

in Chap. 5). Second, for the Mølmer-Sørensen protocol, the detuned blue and red sidebands have 

different Rabi rates (i.e. Ωr,j 6 Ωb,j in Eq. 4.19). By using numerical simulation solving the = 

Schrödinger equation, it was found that the gate error caused by these two sources are usually 

small, typically on the order of ∼ 10−5 if the imbalance is on the few percent level. In most of our 

experiments, the Rabi rate difference between the blue and red sidenband transitions can usually 

be calibrated to be less than one percent. 

The σ̂zσ̂z gate and the σ̂φσ̂φ gate based on the Bermudez protocol are not affected by coupling 

strength imbalance between the blue and red sideband excitations. 

4.4.9 Laser Phase Drift and Fluctuations 

Taking the example of the Mølmer-Sørensen gate described in Eq. 4.20, as seen in Eq. 4.21, 

the entanglement created depends on the phase terms φj,r(b) = Δkj,r(b)X0,j +Δφj,r(b), where Δφj,r(b) 
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is the phase difference between the optical fields labeled as k1 and k2 in Fig. 4.4. Phase fluctuations 

due to relative length changes between paths 1 and 2 lead to decoherence. Because this phase is in 

the same exponent as the gate detuning δ (see Eq. 4.20), such phase fluctuations can be modeled as 

an effective motional mode frequency fluctuation using the Lindblad operators shown in Eq. 4.39. 

Compared to other errors, entangling gate errors caused by this mechanism are small with 

the gate durations used in the experimental implementations presented in this thesis. 

4.4.10 Qubit Decoherence 

Qubit decoherence or dephasing can be caused by external magnetic-field fluctuations, or 

fluctuating AC Stark shifts induced by the laser beams that drive the coherent operations. Such 

effects can be described by random rotations around the z axis of the Bloch sphere, thus can be 

modeled as the following Lindblad operator [Uys 10] 

p
L̂z(Γz) = Γzσ̂z, (4.53) 

where Γz represents the qubit dephasing rate. This equation is in the same form as Eq. 4.36. 

In our experiments, gate durations are typically ∼ 50 µs whereas qubit coherence times are 

∼ 1.5 s for a 9Be+ ion (Fig. 2.2) and ∼ 6 ms for a 25Mg+ ion (Fig. 2.7); they contribute negligible 

errors to the entangling gates presented in Chap. 5, 6, and 7. The errors associated with qubit 

dephasing caused by fluctuating AC Stark shifts in these implementations are also small compared 

to other errors. 



Chapter 5 

Mixed-Species Entangling Gate 

5.1 Introduction 

In the field of quantum information processing (QIP) and quantum networking, various 

proposals discuss the possibility of hybrid architectures (see for examples, Ref. [Wallquist 09, 

Kurizki 15, Kotler 16]), where specific tasks are delegated to the most suitable subsystem. For 

example, in quantum networks, it may be advantageous to transfer information from a subsystem 

that has long quantum memory storage time to another subsystem that is more efficient at trans-

porting information between nodes in the network. For trapped ions, a hybrid system formed of 

different atomic species introduces extra degrees of freedom that can be exploited to expand and 

refine the control of the system. 

Ions of different elements vary in mass, internal atomic structure and spectral properties, 

features that can make certain species better suited for particular tasks such as storing quantum 

information, high-fidelity readout, fast logic gates, or interfacing between local processing units and 

photon interconnects. One important advantage of a hybrid system incorporating trapped ions of 

different species is the ability to manipulate and measure one ion species using laser beams with 

negligible effects on the other since the relevant transition wavelengths typically differ substantially. 

Using different ion species also provides individual ion addressing without tight focusing of laser 

beams nor shuttling [Blakestad 11, Bowler 12]. When scaling trapped-ion systems to greater num-

bers and density of ions, it will be advantageous to perform fluorescence detection on individual 

qubits without inducing decoherence on neighboring qubits due to uncontrolled photon scattering 
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or stray scattered light. 

To provide this function in a hybrid system, one can use an entangling gate to transfer 

the qubit states to another ion species which is then detected without perturbing the qubits. 

This readout protocol could be further generalized to error correction schemes by transferring 

the error syndromes to the readout species while the computational qubits remain in the code. 

Another application could be in building photon interconnects between trapped-ion devices. In 

this application, one species may be better suited for memory while the other is more favorable for 

coupling to photons [Monroe 14, Moehring 07]. 

A mixed-species gate can also improve the readout in quantum logic spectroscopy (QLS) 

[Schmidt 05]. In conventional quantum logic readout, the state of the clock or qubit ion is first 

transferred to a motional state and in turn transferred to the detection ion, which is then detected 

with state-dependent fluorescence. In this case, the transfer fidelity directly depends on the purity 

of the motional state. In contrast, transfer utilizing the gate discussed here can be insensitive to the 

motion, as long as the ions are in the Lamb-Dicke regime [Wineland 98]. This advantage extends 

to entanglement-assisted quantum non-demolition readout of qubit or clock ions, which can lower 

the overhead in time and number of readout ions as the number of clock ions increases [Schulte 16]. 

Ions of different species have previously been used in QIP experiments for sympathetic cooling 

[Barrett 03], creation of entanglement through dissipation [Lin 13a], and quantum non-demolition 

(QND) measurement of one species with another [Hume 07]. In this chapter, we focus on an 

experimental implementation of a mixed-species geometric-phase gate demonstrated using a 9Be+ 

and a 25Mg+ ion. The geometric phase gate is realized through an effective spin-spin interaction 

generated by state-dependent forces [Sørensen 99, Sørensen 00, Milburn 00, Solano 99, Leibfried 03] 

induced with laser beams. Combined with single-qubit gates and same-species entangling gates, 

this mixed-species entangling gate provides a complete set of gates over such a hybrid system for 

universal QIP [Barenco 95, Bremner 02, Zhang 03]. Using a sequence of such gates, we demonstrate 

a Controlled-NOT (CNOT) gate and a SWAP gate [Nielsen 00]. In Sec. 5.4, we show the robustness 

of these gates against thermal excitation and demonstrate improved detection in quantum logic 
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spectroscopy (QLS) [Schmidt 05]. Furthermore, we also subject the mixed-species entangled state 

created by our logic gate to a Bell inequality test [Clauser 69]; the result is reported in Sec. 5.3.2. 

Lastly, in Sec. 5.6 we briefly describe an implementation of the original Cirac-Zoller gate [Cirac 95] 

using the two species. 

5.2 Experiment Setup 

In our experiment, we use a beryllium (9Be+) ion and a magnesium (25Mg+) ion separated 

by approximately 4 µm along the trap axis at the E zone shown in Fig. 3.1. The Coulomb coupling 

between the ions gives rise to two shared motional normal modes along the trap axis: the lower 

frequency mode (ωz = 2π × 2.5 MHz1 ), where the ions oscillate in phase, and the higher frequency 

mode (2π × 5.4 MHz), where the ions oscillate out of phase. 

The addressing laser beams for each ion (λ ' 313 nm for 9Be+ and λ ' 280 nm 25Mg+) illumi-

nate both ions. The qubits are encoded in hyperfine states of the ions. We choose |F = 2,mF = 0i = 

|↓iBe and |1, 1i = |↑iBe as the 9Be+ qubit states and |2, 0i = |↓iMg and |3, 1i = |↑iMg for the 
25Mg+ 

qubit at a magnetic field of 119.446 G (see Sec. 2.1 and Sec. 2.2 for details on energy level 

structures). 

Our entangling gate scheme is implemented through the Mølmer-Sørensen (MS) protocol 

[Sørensen 99, Sørensen 00] driven by stimulated-Raman transitions [Wineland 98]. The two-color 

laser-beam setup to drive the entangling gate is shown in Fig. 5.1. The laser beam configurations 

to induce coherent Raman transitions are analogous for each species; for brevity, we will only 

describe the configuration for 9Be+ (red color in Fig. 5.1). Three laser beams, labeled by k1,Co1, 

k1,Co2 and k1,90, are derived from a single laser with wavelength λ ' 313 nm. Beams k1,Co1 and 

k1,Co2 are copropagating such that their wave vector difference with respect to the k1,90 beam are 

aligned along the trap axis. In this configuration, only the axial modes of motion interact with 

the laser beams. With this laser beams configuration, the Lamb-Dicke parameter for the 9Be+ 

(25Mg+) ion is 0.156 (0.265) and 0.269 (0.072) for the axial in-phase mode and the out-of-phase 

1 angular frequency 
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mode, respectively. The two copropagating beams induce detuned blue and red sideband Raman 

transitions, respectively, when paired with the k1,90 beam to implement the MS interaction. The 

radio-frequency (RF) electric fields driving the AOMs to generate the beams kj,Co1 and kj,Co2 

(where j = 1, 2) are produced by direct digital synthesizers (DDS) which are controlled by a field-

programmable gate array (FPGA). The phases of these four RF fields are synchronized; this is 

important for the deterministic generation of entanglement and is discussed in Sec. 5.2.1 and Sec. 

5.2.3. Due to the strong modulation of the ions’ motion (micromotion) caused by an axial radio 

frequency field (see Sec. 3.1 and Ref. [Blakestad 10]), spin-motion transitions in the 9Be+ ion are 

driven on the second micromotion sideband to maximize transition Rabi rates for the given laser 

intensity. Spin-motion transitions in the 25Mg+ ion are driven on the micromotion carrier. Details 

of Raman laser beam lines setup are described in Sec. 3.4.3 and Sec. 3.5.2. 

With this setup, the Mølmer-Sørensen interaction Hamiltonian after transforming into the 

respective interaction frames of both qubits as well as that of the shared motional mode of motion 

(here, we use the in-phase mode) and dropping high-frequency terms, in the Lamb-Dicke limit is 

(Eq. 4.19) 

� � � �X X † −i(δj t−φj,r) † † i(δj t+φj,b)H = ~ Ωr,j σ̂ âe + ~ Ωb,j σ̂ â e + h.c., (5.1)j j 
j=1,2 j=1,2 

with Ωr(b),j = Ω0,r(b),j ηj ξj where Ω0,r(b),j is the Rabi rate of the resonant carrier excitation induced 

by the laser beams responsible for the red (r) and blue (b) sideband excitations, ηj is the Lamb-

Dicke parameter of the in-phase mode with ξj as the mode amplitude of the jth ion. If we set 

Ω0,r,j = Ω0,b,j = Ω0,j then Eq. 5.1 becomes 

� �X † −i(δj t−φj,r ) + ˆ† i(δj t+φj,b)H = ~ Ωj σ̂ âe a e + h.c.,j 
j=1,2 � �X † † i(δj t+(Δkj,bX0,j +Δφj,b))= ~ Ωj σ̂j âe −i(δj t−(Δkj,r X0,j +Δφj,r)) + â e + h.c., (5.2) 
j=1,2 

with Ωj = Ω0,j ηj ξj where Ω0,j is the carrier resonant Rabi frequency. The Lamb-Dicke parameter ηj p
is equal to Δkj z0,j , where z0,j = ~/2mj ωz, mj is the mass and ωz is the frequency of the in-phase 

mode. The phases of the red (r) and blue (b) sideband interactions are φj,r(b) = Δkj,r(b)X0,j + 
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9Be+ 25Mg+

𝜔𝜔Be − 2𝜔𝜔𝑅𝑅𝑅𝑅 − 𝜔𝜔0,Be + 𝜔𝜔𝑧𝑧 + 𝛿𝛿

𝜔𝜔Be

𝜔𝜔Mg + 𝜔𝜔0,Mg + 𝜔𝜔𝑧𝑧 + 𝛿𝛿

𝜔𝜔Mg

𝜔𝜔Be − 2𝜔𝜔𝑅𝑅𝑅𝑅 − 𝜔𝜔0,Be − 𝜔𝜔𝑧𝑧 − 𝛿𝛿
𝜔𝜔Mg + 𝜔𝜔0,Mg − 𝜔𝜔𝑧𝑧 − 𝛿𝛿

𝒌𝒌𝟐𝟐,𝟗𝟗𝟗𝟗
𝒌𝒌𝟐𝟐,𝐂𝐂𝐂𝐂𝐂𝐂

𝒌𝒌𝟐𝟐,𝐂𝐂𝐂𝐂𝟐𝟐𝒌𝒌𝐂𝐂,𝐂𝐂𝐂𝐂𝟐𝟐
𝒌𝒌𝐂𝐂,𝐂𝐂𝐂𝐂𝐂𝐂

𝒌𝒌𝐂𝐂,𝟗𝟗𝟗𝟗

𝚫𝚫𝒌𝒌𝐂𝐂,𝒓𝒓
𝚫𝚫𝒌𝒌𝐂𝐂,𝒃𝒃

𝜔𝜔Mg: Frequency of beam 𝒌𝒌𝟐𝟐,𝟗𝟗𝟗𝟗
𝜔𝜔Be: Frequency of beam 𝒌𝒌𝐂𝐂,𝟗𝟗𝟗𝟗
𝜔𝜔0,Mg: 25Mg+ qubit frequency, 2𝜋𝜋 × 1.763 GHz
𝜔𝜔0,Be: 9Be+ qubit frequency, 2𝜋𝜋 × 1.207 GHz
𝜔𝜔𝑧𝑧: Motional mode frequency
𝜔𝜔𝑅𝑅𝑅𝑅: Radio frequency for trapping of ions
𝛿𝛿: Detuning from sideband transitions

Carrier transitions driven 
by beams 𝒌𝒌𝒋𝒋,𝐂𝐂𝐂𝐂𝐂𝐂 and 𝒌𝒌𝒋𝒋,𝟗𝟗𝟗𝟗

Figure 5.1: Configuration of laser beams for the mixed-element entangling  gate. For the 9Be+

ion, 313 nm laser beams (in red) simultaneously induce near-resonant red and blue sidebands 
transitions. Similarly, for 25Mg+, 280 nm beams (in green) induce sideband transitions. When 
all beams are applied simultaneously, this implements the Mølmer-Sørensen spin-spin interaction 
[Sørensen 99, Sørensen 00]. Each set of qubit addressing laser beams is set up such that the wave 
vector differences Δkj,r = kj,90 − kj,Co1 and Δkj,b = kj,90 − kj,Co2 (j = 1, 2) are aligned in the 
same direction along the trap axis. With this configuration, only the motional modes along this axis 

 can be excited. The frequencies of the 9Be+ ion’s Raman beams are set to drive the spin-motion 
transition on the second order micromotion sideband, this is to maximize transition Rabi rates in 
the presence of axial micromotion (details see Sec. 2.1.3. Spin-motion transitions  in the 25Mg+ ion 
are driven on the micromotion carrier. 
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Δφj,r(b) where Δkj,r(b) and Δφj,r(b) are the differences in wave vectors and phases of the optical 

fields driving the red and blue sideband transitions respectively, and X0,j is the equilibrium position 

for the jth ion. As the Hamiltonian (Eq. 5.2) depends on these wave vectors and optical phases, it 

is important to consider their effects for creating deterministic entanglement. 

In our implementation, Δkj,r = kj,90 − kj,Co1 and Δkj,b = kj,90 − kj,Co2 for j = 1, 2. 

Beams kj,Co1 and kj,Co2 are generated in the same acousto-optic modulator (AOM), one for each 

ion species, and travel nearly identical paths. With this setup, the relative optical phase drift 

between these two beams is negligible. However, the kj,90 beams take a substantially different 

path to reach the ions’ locations (see Sec. 3.4.3 and 3.5.2 for detailed beam line setups). The 

resulting slow phase drifts can be taken account of as described below. 

5.2.1 Optimizing the Strength of Spin-Dependent Forces 

The basis states |+ij and |−ij in which the spin-dependent forces generated by the MS 

interaction are applied is defined as the eigenstates of 

σ̂φ,j = cos ((φj,r + φj,b)/2) σ̂x,j − sin ((φj,r + φj,b)/2) σ̂y,j . (5.3) 

With the notation of |+iBe|+iMg = |+, +i, the truth table after applying the MS gate is 

|+, +i → e iϕ++ |+, +i, 

|+, −i → e iϕ+− |+, −i, 

|−, +i → e iϕ−+ |−, +i, 

|−, −i → e iϕ−− |−, −i. (5.4) 

After setting Ω1 = Ω2 = Ω (calibration procedure in the next section) and δ1 = δ2 = δ, and 

writing φM,j = (φj,r − φj,b) /2, the geometric phases accumulated after a duration of tgate = 2π/δ 

are [Tan 15] � � 
8πΩ2 

2 φM,1 − φM,2
ϕ++,−− = cos ,

δ2 2 � � 
8πΩ2 φM,1 − φM,2

ϕ+−,−+ = sin2 . (5.5)
δ2 2 
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From the definitions of the different phase terms, it can be shown that φM,1 − φM,2 depends on the 

relative phase differences between the two copropagating beams kj,Co1 and kj,Co2 for each ion. For 

each species, the optical phase difference between these two beams is set by the RF injected into 

the AOM that generates them. Thus, it is important that the phases of the four RF signals (two 

for each species) are synchronized. By adjusting the phases of the RF signals driving the AOMs 

that generate these laser beams, the difference in the geometric phases for the different parity qubit 

states in Eq. 5.5 can be optimized. In our experiment, this optimization is performed by adjusting 

the phase of one of the RF signals while keeping the remaining three fixed when we apply the MS 

interaction at the duration of tgate = 2π/δ with δ fixed; we adjust for the phase that equalizes the 

populations in the |↑↑i and |↓↓i states with a minimal amount of laser intensity. 

5.2.2 Calibration Procedure for the Mixed-Species MS Gate 

The MS protocol shown in Eq. 5.1 requires the Rabi rates of the red and blue sideband 

transitions of the two species to be equal, i.e. Ωr,1 = Ωb,1 = Ωr,2 = Ωb,2. To accomplish this, we first 

minimize the red and blue sideband Rabi rate imbalance for each species by performing sideband 

Rabi flopping experiments. We differentially adjust the laser power in beams kj,Co1 and kj,Co2 

(Fig. 5.1) while keeping the total laser power in this path fixed. In our procedure, the beam that 

is responsible for the red sideband excitation is first detuned from any transition when we calibrate 

the Rabi rate of the blue sideband transition. Analogously, we detune the beam responsible for the 

blue sideband when the Rabi rate of the red sideband transition is calibrated. This strategy is to 

ensure AC Stark shifts change negligibly during calibration. After setting Ωr,j = Ωb,j for each of 

the two species, we adjust the laser power in the k1,90 and k2,90 beams so that Ωr(b),1 = Ωr(b),2. 

This can change the AC Stark shifts on each ion, which can be compensated by changing the mean 

transition frequency of the red and blue sidebands. This process is iterated to finally achieve the 

correct tunings and equalize all four sideband Rabi rates. 

Starting in the |↑↑i state, a correctly tuned MS gate with Ω = δ/4 ideally produces the 
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entangled state � P1 ( 1 
�

Φ  = √  + e− i (φj,b+φj,r)+π/2)| Belli |↑↑i j=1,2 2 |↓↓i , (5.6) 
2 

after a duration of tgate = 2π/δ. The complete truth table of the MS gate is given in Eq. 4.21. 

5.2.3 Laser Beam Phase Sensitivity 

As shown in Eq. 5.3, the basis states in which the spin-dependent force is applied depends 

on (φj,r + φj,b), which can be shown to be dependent on the relative phase differences between 

the non-copropagating beams kj,90 − kj,Co1 and kj,90 − kj,Co2 (Fig. 5.1). Temperature drift and 

acoustic noise can cause changes in the lengths of different beam paths, which can lead to phase 

fluctuations in the MS interaction. These fluctuations are slow on the timescale of a single gate but 

substantial over the course of many experiment repetitions. To suppress these effects, we embed the 

MS interaction in a Ramsey sequence (Fig. 5.2) implemented with two π/2 carrier pulses induced 

by kj,Co1 and kj,90 for each qubit [Lee 05, Tan 15]. Without loss of generality, (see next section) � �
we choose the phases of the first π/2 pulses to implement the rotations R θ = π , φ = π . This2 2 

maps the |↑i and |↓i states of each qubit onto the |+ij and |−ij states (defined in Eq. 5.3), whose � �
    phases are synchronized with the MS interaction. The final set of R π , −π pulses undoes this 2 2

mapping such that the action of this sequence is independent of the beam path length differences 

as long as the differences are constant during the entire sequence. With this Ramsey sequence, the 

overall sequence produces a deterministic phase gate Gb that implements (up to a global phase of 

eiπ/4) |↑↑i → |↑↑i, |↑↓i → i|↑↓i, |↓↑i → i|↓↑i, and |↓↓i → |↓↓i or, in matrix form: ⎛ ⎞ ⎜ 1 0 0 0 ⎟⎜ ⎟⎜ ⎟⎜ 0 i 0 0 ⎟
Gb = ⎜ ⎟⎜ ⎟ , (5.7) ⎜ ⎟⎜ 0 0 i 0 ⎟⎝ ⎠ 

0 0 0 1 
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Figure 5.2: A Ramsey sequence implemented to remove laser phase sensitivity of the MS interaction. 
The “90 Carrier” π/2 pulses are implemented by Raman laser beams induced by kj,Co1 and kj,90 

(see Fig. 5.1). The overall sequence produces a phase gate Gb which is given in Eq. 5.7. The 
rotation R(θ, φ) is defined in Eq. 2.13. 

with basis states of the two qubits given by ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
1 0 ⎟ ⎜ 0 ⎜ 0 ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ 0 ⎟ ⎜ 1 ⎟ ⎜ 0 ⎟ ⎜ 0 ⎟

|↑i |↑i ⎜ ⎟
  ⎜ ⎟ , |↑i |↓iBe Mg = = ⎜ ⎟ , |↑i = ⎜ ⎟ ⎜⎟ ⎜ , |↓i |↓i = ⎟⎜ |↓i ⎟ ⎜ ⎟ . (5.8) ⎜ ⎟ Be Mg ⎟ Be

0 ⎜ Mg⎟ ⎜ 0 ⎟ Be Mg ⎜  ⎜ ⎟⎜ ⎟ ⎜ 1 ⎟ ⎜ 0 ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 
0 0 0 1 

5.2.4 Calibration Procedure for Phase Gate Gb 

To produce the phase gate Gb, the phases of the π/2 pulses in the Ramsey sequence (Fig 5.2) 

must be referenced to the basis states of the MS interaction defined by the optical phases. The 

phases must also account for the AC Stark shifts induced by the laser beams that are used for the 

MS interaction (AC Stark shifts are effective Rz rotations on the qubits). 

To calibrate these phases, we first perform the pulse sequence shown in Fig. 5.2 with the MS 

interaction pulses detuned far off-resonant from the red and blue sideband transitions such that 

they only induce AC Stark shifts on the qubits. Starting with the input state |↑↑i, we set the 

phases of the final π/2 laser pulses such that the action of this pulse sequence returns each qubit 

to the |↑i state. Then, we perform this sequence with the MS interactions correctly tuned and vary 

the phases of the MS interactions. Again, in this case we look for the phase that maps the input 
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state |↑↑i back to itself. We verify the action of this Gb operation by creating a Bell state with the 

pulse sequence shown in Fig. 5.4. 

5.3 Experimental Results 

Before applying the gate, the ions are first Doppler cooled in all three directions. The 

axial vibrational modes are further cooled to near the ground state by stimulated-Raman sideband 

cooling on the 9Be+ ion [Monroe 95b] (details see Sec. 2.1.5). For state initialization, transfer of 

the 9Be+ |2, 2i state to the |1, 1i = |↑iBe state is accomplished by a microwave-driven composite 

pulse sequence that is robust against transition detuning errors. The sequence consists of resonant � � � � � �
π 3π π πR 2 , 0 , R 2 , , R 2 , 0 pulses [Levitt 86], where the definition of the R(θ, φ) rotation is given 2 

in Eq. 2.13. With analogous sequence, we first transfer the 25Mg+ ion from the |3, 3i state to the 

|2, 2i state, and then to the |3, 1i = |↑iMg state. 

State-dependent fluorescence detection is accomplished with an achromatic lens system de-

signed for 313 nm and 280 nm (see Sec. 3.3). We sequentially image each ion’s fluorescence onto 

a photomultiplier tube. Before applying the detection laser beams, we reverse the initial qubit 

state preparation procedures to put the |↑i states back to the |2, 2i and |3, 3i state for 9Be+ and 

25Mg+, respectively. The |↓i state of each qubit is transferred to |1, −1i and |2, −2i for the 9Be+ 

and 25Mg+, respectively, with microwave carrier π pulses. We detect on average approximately 30 

photons for each ion when they are in the bright state and approximately 2 photons when they are 

in the dark state. The qubit state is determined by choosing a photon count threshold such that 

the states are maximally distinguished. Details on state initialization and readout is described in 

Chap. 2. After each repetition, we measure one of the possible states: |↑↑i, |↑↓i, |↓↑i, or |↓↓i. 

Here, we label the probabilities of measuring |↑↑i and |↓↓i as P↑↑ and P↓↓, respectively. The sum 

of the probabilities of measuring P↑↓ and P↓↑ is labeled as P↑↓+↓↑. 

In a first experiment, after calibrating the gate as described in Sec. 5.2.2 and Sec. 5.2.1, 

we apply the MS interaction described by Eq. 5.2 and record the populations as a function of 

interaction time. As shown in Fig. 5.3, at a gate time tgate ' 33 µs, a Bell state |ΦBelli (Eq. 5.6) 
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Figure 5.3: Population evolution as we apply the MS interaction starting from the |↑↑i state. The 
Bell state |ΦBelli (Eq. 5.6), which corresponds to (ideally) equal population in the |↑i |↑iBe Mg and 
|↓i |↓iBe Mg, is created at tgate ' 33µs. Error bars correspond to standard error of the mean. 
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is created. The performance of the gate is characterized by measuring the Bell state fidelity, which 

is given by hΦBell|ρexp|ΦBelli where the density matrix ρexp describes the experimentally produced 

state. The ↑↑ and ↓↓ diagonal elements of the density matrix are determined from the sum of P↑↑ 

and P↓↓, which we measure to be 0.984(1). The coherence of this Bell state is investigated with a 

parity (P↑↑ + P↓↓ − P↑↓+↓↑) oscillation experiment by applying “analysis” pulses [Sackett 00]. The 

analysis pulses are laser carrier transitions induced by the non-copropagating laser beams kj,Co1 

and kj,90 such that the relative phase defining the basis states of MS interaction is stable with 

respect to that of the analysis pulses for each experiment repetition. The off-diagonal elements 

ρ↓↓,↑↑ are determined from the contrast of the parity oscillation (A) to be 0.974(1). The overall 

Bell state fidelity is (P↑↑ + P↓↓ + A)/2, which is deduced to be 0.979(1). 

To test the Gb operation and its laser phase insensitivity, we prepare a Bell state by applying 

bmicrowave carrier π/2 pulses on each qubit before and after the operation G (described in Sec. 

5.2.4) as depicted in Fig. 5.4. Using a similar procedure, we determine the total population in the 

P↑↑ and P↓↓ states to be 0.976(1), and A = 0.955(1), which corresponds to a Bell state fidelity of 

0.964(1). Figure 5.5 shows the parity oscillation of the Bell state created by the Gb operation. The 
analysis pulses are driven by microwave fields whose phases are not synchronized with those of the 

blasers, demonstrating the laser-phase insensitivity of G gate and the deterministic creation of the 

mixed-species Bell state. 

5.3.1 Imperfections 

We investigated the imperfect creation of the entangled states through calibration measure-

ments and numerical simulations. 

We estimated the error from imperfect state preparation and measurement (SPAM error) to 

be 5×10−3 . This is given by the false determinations of the bright and dark states set by the photon 

count thresholds (see previous section) chosen by analyzing the histograms obtained after preparing 

the ions to their respective bright and dark states in separate experiments. To also account for 

the errors caused by qubit state initialization, the bright histogram of each ion is collected as 
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Figure 5.4: The pulse sequence using the Gb gate to create the entangled state 1√ (|↑↑i − i|↓↓i)
2 

(up to a global phase of eiπ/4) with both ions initialized to their respectively |↑i state. The Bell 
state |Φ+i = 1√ (|↑↑i + |↓↓i) (up to a global phase of eiπ/2) can be created by applying a Rz(π/2)2 
rotation to one of the qubits at the end of this sequence. Likewise, applying a Rz(−π/2) rotation 
to one of the qubits at the end of the sequence creates the Bell state |Φ i 1

−  = √ (|↑↑i − |↓↓i).
2 

The definition of Rz is given in Eq. D.5. The notation “µWv” is used to represents rotations 
implemented with a microwave field. 
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Figure 5.5: Parity (P↑↑ + P↓↓ − P↑↓+↓↑) flopping of the Bell state created by the sequence shown in 
Fig. 5.4. To demonstrate laser-phase insensitivity of our entangling operation and the deterministic 
creation of entanglement, we use microwave fields to induce the “analysis” pulses with variable 
phases in this parity oscillation experiment. The phases of the microwave fields are not synchronized 
with those of the laser fields. 
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follows: we apply the qubit state initialization procedure to prepare each ion to its computational 

|↑i state (see previous section), wait for ∼ 1.5 ms, then reverse the initialization sequence and apply 

shelving pulses to transfer the qubit population to the measurement qubit manifold (see Fig. 2.1 

and Fig. 2.6 for the energy level diagrams of the 9Be+ ion and 25Mg+ ion, respectively). Finally, 

the ions’ states were measured with state-dependent fluorescence detection. The wait time (∼ 1.5 

ms) between the transfer from computational to measurement qubit manifolds was long enough to 

minimize coherent effects between the transfer into and out of the computational manifold. The 

coherence times of these transfer transitions are typically ∼ 1 ms or less. 

Errors caused by spontaneous photon scattering [Ozeri 07] from the Raman beams were esti-

mated to be ∼ 6 × 10−3 for the 25Mg+ ion and ∼ 1 × 10−3 for the 9Be+ ion. This error was deduced 

by performing numerical master equation simulations including the Lindblad operators describing 

the spontaneous scattering of photons (see Sec. 4.4.2.1), with the scattering rate calculated with 

the Kramer-Heisenberg equation [Cline 94] shown in Eq. 4.29. We also experimentally measured 

the Raman scattering rate by applying the laser pulses used for the entangling gate but with the 

MS interaction set far-detuned from both the red and blue sideband excitations such that they do 

not induce any coherent excitation. The scattering rate is determined from loss of population in the 

qubit manifold; these measurements agree with the calculations made using the Kramer-Heisenberg 

equation. 

We measured the heating of the in-phase mode [Turchette 00a] due to ambient electric field 

noise to be approximately 160 quanta/s, which contributes an error of approximately 4 × 10−3 

to the created Bell state. This error was estimated using a master equation simulation with the 

Lindblad operators describing the heating (see Sec. 4.4.4). 

Other known error sources include imperfect single-qubit pulses, off-resonant coupling to 

spectator hyperfine states and the other motional modes, mode frequency fluctuations, qubit deco-

herence due to magnetic field fluctuations, laser intensity fluctuations, optical phase fluctuations, 

and calibration errors. Each of these sources contributes error on the order of 10−3 or less. Details 

of the evaluation of these errors are discussed in Sec. 4.4. 
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Figure 5.6: Pulse sequence for the CHSH-type Bell inequality experiment on the mixed-species 
Bell state. The black dashed box denotes the “black box” which prepares the two particles of 
different species. The measurement settings αi, βj are applied (with microwave fields) before 
making fluorescence measurements. The laser pulse sequence for the implementation of Gb is shown 
in Fig. 5.2. The rotations R(θ, φ) and Rz(ξ) are defined in Eq. 2.13 and Eq. D.5, respectively. 
Rz(ξ) rotation is accomplished by adjusting the phase of the DDS which is used to produce the 
microwave fields. 

Errors due to motional heating can be significantly reduced if the out-of-phase mode is used 

instead of the in-phase mode for the state-dependent force because the heating rate of the out-

of-phase mode was measured to be ∼ 30 quanta/s. We used the in-phase mode because for the 

25Mg+ ion, it has a larger normal mode amplitude (0.265) compared to the out-of-phase mode 

(0.072). This results in less spontaneous emission error for a given strength of the state-dependent 

force. Error caused by spontaneous emission can be reduced by increasing Raman detuning at the 

cost of higher laser intensity to keep the Rabi rate constant [Ozeri 07]. When this experiment was 

performed, the  available optical power in each of the 25Mg+ Raman beams was only ∼ 1 mW, 

compared to ∼ 50 mW in each of the Raman beams for the 9Be+ ion. 

5.3.2 Mixed-Species Bell Inequality Test 

  Using the 9Be+ - 25Mg+ Bell state, we performed a Clauser-Horne-Shimony-Holt (CHSH) 

type Bell-inequality test [Clauser 69]. The pulse sequence is shown in Fig. 5.6. The source, which 

can be treated as a “black box”, ideally creates a Bell state |Φ i = 1
+ (|↑↑i + |↓↓i) and is regarded 2 

as the starting point of the following Bell test experiment. 

Two measurement setting  choices on each species, labeled as α1, α2 for the 9Be+ ion, and 
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β1, β2 for the 25Mg+ ion, were applied to the prepared state before making qubit state measure-

ments. This is equivalent to choosing the measurement basis for the state that is present before 

the measurement settings are applied. Joint measurement outcomes of |↑↑i and |↓↓i were recorded 

as correlated events while |↑↓i and |↓↑i were recorded as anticorrelated events. Each of the four 

measurement setting combinations were performed with multiple repetitions, then iterated with 

different measurement setting combinations. For each measurement setting combinations, we com-

puted the correlation of these outcomes 

Ncorrelated(αi, βj ) − Nanticorrelated(αi, βj ) 
q(αi, βj ) = , (5.9)

Ncorrelated(αi, βj ) + Nanticorrelated(αi, βj )

for i, j = 1, 2. For a local realistic theory to be valid, the sum of correlation BCHSH (at expectation) 

must satisfy [Clauser 69, Rowe 01] 

BCHSH = |q(α1, β1) + q(α2, β1)| + |q(α1, β2) − q(α2, β2)| 

≤ 2. (5.10) 

The measurement settings are applied with microwave-induced spin rotations R(π , αi or βj )2 

which are controlled by classical parameters. Ideally, the rotations for the 9Be+ ion can be described 

as: 

1 � � 
|↑i → √ |↑i − e −iαi |↓i , 

2 
1 � � 

|↓i → √ |↓i − e iαi |↑i , (5.11)
2 

and analogously for the 25Mg+ ion with αi replaced by βj . They are implemented by setting 

the durations and phases of the microwave pulses transmitted from two microwave antennas (one 

for each species, see Sec. 2.1.4 and Sec. 2.2.3 for more details). The microwave-frequency electric 

potentials applied to the antennas are produced by a FPGA-controlled DDS. The classical variables 

are the phases of the oscillating fields that implement a particular setting αi and βj . 

The measurement settings αi, βj and the correlation outcomes q(αi, βj ) are given in Table 

5.1. We determined the sum of correlation BCHSH to be 2.70(2). This inequality, measured on an 
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Measurement Setting on 9Be+ 

Measurement Setting on 25Mg+ 

= −πα1 8 

= −πβ1 8 

= −πα1 8 
3πβ2 = 8 

3πα2 = 8 

= −πβ1 8 

3πα2 = 8 
3πβ2 = 8 

q(αi, βj ) −0.635(9) −0.721(8) −0.711(8) 0.638(9) 

Table 5.1: Correlation values for the four measurement setting combinations in the CHSH Bell 
inequality experiment performed on a mixed-species entangled state. 

entangled system consisting of different species, agrees with the predictions of quantum mechan-

ics while eliminating the detection loophole [Pearle 70, Clauser 74] but not the locality loophole 

[Bell 85]. The closely related chained Bell inequality experiments are detailed in Chap. 8. 

5.4 Mixed-Species Controlled-NOT Gates 

As the Gb gate combined with single qubit rotations make up a universal gate set [Barenco 95, 

Bremner 02, Zhang 03], we can use them to construct other unitary quantum gate operations. 

The controlled-NOT gate is one of the most common entangling logic gates used in the 

literature [Nielsen 00]. A controlled-NOT gate “flips” the state of the “target” qubit depending 

on the state of the “control” qubit. Here, we define the CNOT gate as the controlled-NOT gate 

where the first qubit serves as the control and the second qubit acts as the target. The unitary 

matrix of this operation is given in Eq. 4.9 with the basis states defined in Eq. 5.8. Similarly, 

the controlled-NOT gate with the control and target qubit roles inverted can be expressed by the 

matrix ⎛ ⎞ 
 ⎜ 1 0 0 0 ⎟⎜ ⎟⎜ ⎟⎜ 0 0 0 1 ⎟

CNOTin  = ⎜ ⎟
vert ⎜ ⎟ . (5.12) ⎜⎜ 0 0 1 0 ⎟⎟⎝ ⎠ 

0 1 0 0 

These two CNOT gates can be implemented with the pulse sequences including Gb gates and single-

qubit rotations as shown in  Fig. 5.7, where the 9Be+ ion acts as the control of the CNOT gate and 

the target of CNOTinvert gate. Figure 5.7 provides detailed parameters which were not discussed 

in Ref. [Tan 15] for brevity. The construction of CNOT presented here and the construction of 
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 Figure 5.7: (a) Pulse sequence for the CNOT gate (Eq. 4.9) with 9Be+ qubit as the “control” and 
25Mg+ qubit as the “target”. (b) Pulse sequence for the CNOTinvert gate (Eq. 5.12), where the 
two qubits change roles,   i.e. the 25Mg+ qubit as the “control” and the 9Be+ qubit as the “target”. 
The rotations R(θ, φ) and Rz(ξ) are defined in Eq. 2.13 and Eq. D.5, respectively. Here, the Rz(ξ) 
rotations are accomplished by adjusting the phase of the DDS used to induce microwave transitions 

        (see footnote 2), which can be absorbed into the microwave-induced R(π , −π ) pulses. 2 2 
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controlled-NOT gate in Ref. [Tan 15] are related with single-qubit Rz(ξ) rotations. Here, Rz(ξ) 

rotations are accomplished by shifting the phase of the DDS which is used to induce microwave 

transitions. In our experiment, the Rz rotations (in Fig. 5.7) are effectively absorbed into the 

R(π 
2 , −

π ) rotation during our calibration procedures. Here, the phases of the R(θ, φ) rotations must 2 

also take into account the residual σ̂z rotations which can be caused by inaccurate bookkeeping or 

miscalibrations of pulse durations or frequencies for the implementation of the CNOT gate with 

the laser-induced Gb gate2 . The actions of these calibrations are verified by confirming that the 

controlled-NOT gates processes the four states (given in Eq. 5.8) correctly according to the truth 

table in Eq. 4.8. 

5.4.1 Quantum Non-Demolition Measurement 

Quantum logic spectroscopy (QLS) is a process where one ion is used to readout the spin state 

of another ion. Traditionally, this task is accomplished by implementing the proposal presented 

in Ref. [Schmidt 05]. The working principle of the QLS procedure is very similar to the Cirac-

Zoller gate (see Sec. 4.2) in the sense that it relies on the blockade provided by the motional 

ground state to conditionally transfer information from one ion to another ion, where both ions are 

trapped in the same potential well. The QLS procedure first transfers the population information 

from a “spectroscopy” ion to the shared motional mode, then this information is transferred to 

a “logic” ion., which is then detected. The QLS method is useful to readout certain ion species 

where a direct fluorescence measurement is not readily applicable. This might be due to a lack 

of cycling transitions (e.g. molecular ions [Wolf 16]), or hard-to-access laser wavelength required 

for fluorescence detection (e.g. Al+ ions [Rosenband 08]). For example, QLS has been successfully 

applied to a quantum logic clock [Chou 10]. 

Figure 5.8.(a) shows the pulse sequence used in a typical QLS experiment. After cooling a 

2 furthermore, due to insufficient numbers of DDSs available to us, we use a single DDS to drive microwave 
transitions on both the 9Be+ (qubit frequency ∼ 1.2 GHz) and 25Mg+ (qubit frequency ∼ 1.8 GHz) ions. As the 
phases of the qubits’ superposition states are defined by the applied microwave field, changing the microwave-DDS 
frequency gives phase offsets and effectively applies Rz (ξ) rotations to the qubits. However, these Rz (ξ) rotations can 
be reversed and the phases of the qubits can be recovered by changing the phase of the microwave field appropriately 
at a later time in the sequence 
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b.) Phase-gate-assisted quantum logic spectroscopy
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Figure 5.8: Pulse sequences of performing Rabi flopping on the 9  Be+ (spectroscopy) ion as detected 
with  25  the Mg+ (logic) ion using (a) conventional quantum logic spectroscopy [Schmidt 05], and 
(b) the controlled-NOT gate based procedure. The CNOT gate implemented here is defined by the 
matrix in Eq. 4.9, with the pulse sequence of the Gb gate shown in Fig. 5.2. Ground state cooling 
which was applied prior to the qubit state preparations, are not shown in this figure. 
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shared motional mode to near the ground state, a π pulse on the |↓i|n = 0i ↔ |↑i|1i (where n is 

the Fock state quantum number) transition is applied to the spectroscopy ion; this is followed by 

applying an equivalent π pulse to the logic ion, which is initially prepared in the |↑i state. As a 

demonstration here, the 9Be+ ion mimics the spectroscopy ion and the 25Mg+ ion mimics the logic 

ion. We consider the actions of the pulse sequence (Fig. 5.8.(a)) with the input state of either the 

|↑iBe|↑iMg state or the |↓iBe|↑iMg state, when the motional mode is cooled to the ground state: 

where −→ and −→ indicate applying the |↓i|n = 0i ↔ |↑i|1i transitions to the spectroscopy (9Be+) 

|↑iBe|↑iMg|0i 
S−→ |↑iBe|↑iMg|0i 

L−→ |↑iBe|↑iMg|0i, (5.13) 

|↓iBe|↑iMg|0i 
S−→ |↑iBe|↑iMg|1i 

L−→ |↑iBe|↓iMg|0i, (5.14) 

S L

ion and the logic (25Mg+) ion, respectively. If the spectroscopy ion is prepared in a superposition 

state, this pulse sequence implements the following action: 

S
(α|↑iBe + β|↓iBe) |↑iMg|0i −→ |↑iBe|↑iMg (α|0i + β|1i) � � 

L−→ |↑iBe α|↑iMg + β|↓iMg |0i, (5.15) 

indicating that the state of the 9Be+ ion is mapped to the 25Mg+ ion. 

Analogously, as a controlled-NOT gate is also a conditional operation (i.e., the state of the 

target qubit remains unchanged if the control qubit is in the |↑i state and the target qubit’s 

state is flipped if the control qubit is in the |↓i state), a controlled-NOT gate can also be used 

to execute quantum logic spectroscopy. Moreover, because our implementations of the CNOT and 

CNOTinvert gates inherit the robustness against motional excitation from the MS gate [Sørensen 99, 

Sørensen 00, Milburn 00, Solano 99], it offers certain advantages compared to the conventional QLS 

method where the performance is strongly tied to performance of the ground state cooling applied 

prior to the motion-subtracting mapping pulses. 

As an illustration, we compared the CNOT gate with the method used in conventional QLS 

[Schmidt 05] procedure in a series of quantum logic readout experiments. The pulse sequences 

for the comparison experiments are shown in Fig. 5.8. Both procedures were calibrated with the 

motional mode initialized close to the motional ground state. 



120 

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Time (μs)

P
(
↑
〉 M
g
)

Mapping with QLS
Mapping with CNOT

Figure 5.9: Rabi flopping of the Be ion detected on the Mg ion with the motional modes
cooled to near the ground state  (n̄ ' 0.05). P(|↑iMg) is the probability of finding the 25Mg+ qubit 
in the |↑i state. In this case, both the QLS and our controlled-NOT gate mapping procedures 
performed approximately equally. Error bars correspond to standard error of the mean. 
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 Figure 5.10: Rabi flopping of the 9Be+ ion  detected on the 25Mg+ ion with the motional modes 
cooled to the Doppler temperature of n̄ ' 4. The controlled-NOT mapping technique, which 
makes use of the mixed-species gate, performed better than the original QLS procedure due to the 
relative low sensitivity to motional excitations [Sørensen 99, Sørensen 00]. Error bars correspond 
to standard error of the mean. 
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Figure 5.9 and Fig. 5.10 show the Rabi flopping of the 9Be+ qubit as detected on the 25Mg+ 

ion, which was initially prepared in the |↑i state. For the ions’ motional modes cooled near the 

ground state (n̄ ' 0.05) with Raman sideband cooling applied to the 9Be+ ion (see Sec. 2.1.5), 

the performances of both procedures are similar in terms of the population contrast. For the ions’ 

motional modes cooled to the Doppler temperature (n̄ ' 4), the contrast of the conventional QLS 

method (red dots) was reduced significantly compared to transfer with a controlled-NOT gate (blue 

squares). 

A typical QLS sequence consists of a ground state cooling sequence followed by transfer pulses 

that map the information from the spectroscopy ion to the logic ion before reading out on the 

logic ion (Fig. 5.8.(a)). This procedure is usually performed with multiple repetitions to improve 

statistics. Compared to the conventional QLS, since the population contrast of our geometric-

phase-gate controlled-NOT procedure is less sensitive to thermal excitation of the motional modes, 

the ground state cooling sequence could be removed or substantially shortened. This enables an 

increase of spectroscopy probe duty cycle as well as relaxing the requirement for preparing the 

motional state into the ground state. This procedure might potentially be useful for the quantum 

logic readout of certain ion species with (i) relatively short trapping lifetimes, e.g. highly-charged 

or certain molecular ions, or (ii) relatively short decay lifetimes compared to the duration required 

for ground state cooling. 

Although the technical requirements for the implementation of a geometric-phase gate are 

more demanding, e.g., the need for coherent phase control of the laser phases described in Sec. 

5.2.3, the ingredients required, i.e. blue and red-sideband excitations, are readily available in most 

cold, trapped-ion experiments. 

5.5 SWAP Gate for Quantum Information Mapping 

The 9Be+ qubit’s phase information is not accessible on the 25Mg+ with the CNOT mapping 

procedure described in the previous section. This might not be of concern for the application of 

quantum non-demolition measurement with quantum logic using the controlled-NOT gates con-
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Figure 5.11: The pulse sequence for a Ramsey experiment with a SWAP gate. We used three 
controlled-NOT gates to construct a SWAP gate. The first and third controlled-NOT gates were 
implemented with the CNOT gate (Eq.  4.9) with the 25Mg+ ion as the target, with pulse sequence 
indicated in Fig. 5.7.(a). The second controlled-NOT gate was implemented as depicted in Fig. 
5.7.(b), with the 9Be+ ion as the target of the CNOTinvert gate. The overall operation inside the 
red dashed box implements the SWAP gate as shown in Eq. 5.16. 

structed with geometric phase gates, because in spectroscopy applications usually only the popu-

lation information of the spectroscopy ion is of interest. However, in a broader context of general 

quantum information applications, it is desirable to transfer both the population and phase in-

formation between qubits of different species. To preserve this phase information, we constructed 

a SWAP gate that interchanges the quantum state of the two qubits [Nielsen 00], which can be 

described by the following unitary matrix ⎛ ⎞ ⎜ 1 0 0 0 ⎟⎜ ⎟⎜ ⎟⎜ 0 0 1 0 ⎟
SWAP = ⎜ ⎟⎜ ⎟ . (5.16) ⎜ ⎟⎜ 0 1 0 0 ⎟⎝ ⎠ 

0 0 0 1 

With the 9Be+ and 25Mg+ qubits prepared to the αB |↑iBe + βB |↓i |↑i |↓iBe and αM Mg + βM Mg, the 

SWAP gate implements the following operation: 

� � � �
SW AP

(αB|↑iBe + βB |↓i |↑i |↓i −→ |↑i |↓iBe) αM Mg + βM Mg  (αM Be + βM Be) αB |↑iMg + βB|↓iMg . 

(5.17) 

Our SWAP gate is constructed with three controlled-NOT gates. Figure 5.11 shows the pulse 

sequence of a Ramsey-type experiment where the first Ramsey (microwave-induced) π/2 pulse was 

applied to the 9Be+ ion to create an equal superposition in the |↑i and |↓i states, and the second 
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(microwave-induced) π/2 pulse with a variable phase φ was then applied to the 25Mg+ ion after 

implementing the SWAP gate. Two Ramsey fringes detected on the 25Mg+ ion as a function of φ 

are shown in Fig. 5.12. Data shown as blue squares corresponds to the case where the ions’ axial 

motional modes are initialized to near the ground state (n̄ ' 0.05), and data shown as red dots 

corresponds to Doppler cooling with n̄ ' 4. The contrast with Doppler cooling is reduced because 

the Lamb-Dicke limit [Wineland 98] is not rigorously satisfied, which can reduce the fidelity of the 

MS gate (see Sec. 4.4.6), which in turn affects the performance of the SWAP gate. 

5.6 Mixed-Species Cirac-Zoller Gate 

We also implemented a mixed-species Cirac-Zoller gate [Cirac 95] and used it to create a 

Bell state (see Sec. 4.2 for a description of the Cirac-Zoller gate). The pulse sequence of our 

implementation is shown in Fig. 5.13. First, we cooled the axial motional modes to near their 

ground states (n̄ ' 0.05). Then, with both qubits initialized to the |↑i state followed by a π/2 

pulse induced by a microwave field on the 9Be+ qubit, a controlled-NOT gate with 9Be+ as the 

“control” and 25Mg+ as the “target” implemented using the Cirac-Zoller protocol created a Bell 

1state √ (|↑↑i − i|↓↓i).
2 

The Cirac-Zoller protocol requires a red-sideband 2π pulse to be applied on a transition 

between one of the qubit states and an auxiliary state, |Auxi. Here, we chose the |F = 2,mF = 2i 

state of the 25Mg+ ion as the |Auxi state, and the red-sideband 2π pulse was driven on the 

|3, 1i ↔ |Auxi transition (see Fig. 2.6 for the energy level diagrams of the 25Mg+ ion). 

Figure 5.14 shows the coherent parity flopping of the mixed-species Bell state created by our 

implementation of the Cirac-Zoller gate. The data was obtained by applying microwave-induced 

R(π/2, φ) pulses to each of the qubits after generating the Bell state with the pulse sequence 

shown in Fig. 5.13. We estimated the Bell state fidelity to be ∼ 0.95. We did not investigate 

the properties and imperfections of this protocol in detail since its performance is sensitive to 

the motional excitation, making it less favorable compared to the mixed-species Mølmer-Sørensen 

protocol (see Sec. 4.2). 
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  Figure 5.12: The Ramsey fringes measured on the 25Mg+ ion after applying the SWAP gate as 
depicted in Fig. 5.11. This shows that the phase information is preserved between the two species 
and transferred from the 9Be+ ion to   the 25Mg+ ion. Error bars correspond to standard error of 
the mean. 
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Figure 5.13: Pulse sequence for creating a Bell state 1√ (|↑↑i − i|↓↓i) using a combination of single-
2 

qubit pulses and the Cirac-Zoller gate [Cirac 95]. For high fidelity, this protocol requires the 
motional mode to be prepared in its ground state. The notations “BSB” and “RSB” denote blue 
and red-sideband transitions, respectively. The controlled-phase gate and the controlled-NOT gate 
are defined in Eq. 4.6 and Eq. 4.9, respectively. The definition of the R(θ, φ) rotation is in Eq. 
2.13. Except for the “RSB to Aux” pulse, all other pulses are driven between the qubit |↑i and |↓i
states. The pulse sequence corresponding to ground state cooling of the motional modes (applied 
prior to the operations shown) are not shown in this figure. 
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Figure 5.14: Parity oscillation of the Bell state created by the Cirac-Zoller gate [Cirac 95]. The 
analysis pulses were microwave-induced π/2 pulses with variable phase φ. Error bars correspond 
to standard error of the mean. 
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A previous implementation of a two-ion Cirac-Zoller gate employed two 40Ca+ ions cotrapped 

in the same potential well [Schmidt-Kaler 03], and suffered considerable single-qubit addressing 

error (∼ 3 %), whereas here addressing error is approximately zero. 

5.7 Summary and Conclusion 

In summary, by using state-dependent forces induced by two different wavelength laser beams 

(near 313 nm and 280 nm), we demonstrated a deterministic mixed-species entangling gate with a 

9Be+ and a 25Mg+ ion. The highest achieved mixed-species Bell state fidelity created by this gate 

was 0.979(1). Together with single-qubit gates, we demonstrated the universality of this entangling 

gate by constructing controlled-NOT gates and a SWAP gate. These two logic gates enabled us to 

transfer information between qubits of different species, and their robustness against thermal exci-

tation was compared with the original recipe of the quantum logic spectroscopy [Schmidt 05]. This 

entangling gate can be added to the elementary quantum computing toolkit, which is potentially 

useful in realizing a large-scale quantum information processor [Monroe 13] or a quantum network 

[Moehring 07] using the distinctive advantages of different ion species. 

Although the demonstration here used hyperfine qubits, our entangling gate technique is 

general enough that it can be applicable to qubits based on optical transitions, or a combination 

of hyperfine and optical qubits. This would also make this gate useful for readout in quantum 

logic clocks [Chou 10, Schulte 16]. Furthermore, as our gate scheme employs an effective spin-spin 

interaction, this technique can be potentially generalized for the study of quantum many-body 

physics, as well as quantum simulation. 

A similar and complimentary work has also been carried out at the University of Oxford 

trapped-ion group with two isotopes of calcium ions, i.e. 40Ca+ and 43Ca+ [Ballance 15]. In that 

work, the isotope shift between the qubits is small enough that one set of laser beams (near 397 nm) 

is sufficient to implement the two-isotope entangling gate. A gate fidelity of 0.998(6) was achieved 

using the σ̂zσ̂z gate (see Sec. 4.3.2 and Ref. [Leibfried 03] for a description of the σ̂zσ̂z gate). 



Chapter 6 

9Be+ High Fidelity Universal Gate Set 

6.1 Introduction 

It is well known that certain single-qubit gates and two-qubit entangling gates make up a uni-

versal gate set and combinations of them are sufficient to realize other quantum gates [Barenco 95, 

Bremner 02, Zhang 03]. Therefore, the problem is reduced to achieving high fidelity for these two 

operations. It is generally agreed that individual logic gate errors must be reduced below a certain 

threshold, often taken to be around 10−4, to achieve fault-tolerance [Preskill 98, Knill 10, Ladd 10] 

without excessive overhead in the number of physical qubits required to implement a logical qubit. 

This level has been achieved in some experiments for all elementary operations including state 

preparation and readout [Myerson 08], with the exception of two-qubit entangling gates, empha-

sizing the importance of improving multi-qubit gate fidelities. 

For trapped-ion systems, various atomic species including 9Be+ , 25Mg+ , 40Ca+ , 43Ca+ , 88Sr+ , 

137Ba+ 111Cd+ 171Yb+ , , and have been investigated as qubit candidates systems. As various 

ions differ in mass, electronic, and hyperfine structure, they each have technical advantages and 

disadvantages. The 9Be+ ion is the lightest ion currently considered for quantum information 

processing (QIP), and as such, has several potential advantages. The relatively light mass yields 

deeper traps and higher motional frequencies for given applied potentials, and facilitates fast ion 

transport [Bowler 12, Walther 12]. A light mass also yields stronger laser-induced spin-motion 

coupling (proportional to the Lamb-Dicke parameter), which can yield less spontaneous emission 

error for a given laser intensity [Ozeri 07]. However, a disadvantage of 9Be+ ion qubits compared 
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 to some heavier ions such as 40Ca+ and 43Ca+ [Benhelm 08, Ballance 15] has been the difficulty of 

producing and  controlling the ultraviolet (313 nm) light required to drive 9Be+ stimulated-Raman 

transitions. 

In this chapter, we describe an experimental implementation of a high-fidelity universal gate 

 set with 9Be+ ions. By taking advantage of recent technological developments as described in Chap. 

3, we demonstrate laser-induced single-qubit computational gate errors  of 3.8(1) × 10−5 and realize 

a deterministic two-qubit gate to produce the Bell state |Φ 1
+i = √ (|↑↑i + |↓↓i) with high fidelity. 

2 

Partial state tomography analyzed with a maximum likelihood (ML) algorithm is used to evaluate 

the fidelity of the created Bell state. Together with characterizing the effects of known error sources 

with numerical simulations and calibration measurements, we deduce an entangling gate infidelity 

 or error of � = 8(4) × 10−4. 

The organization of this chapter is the following: we briefly describe the setup relevant to 

these experiments, followed by results of the two-qubit gate in Sec. 6.3. In Sec. 6.4 details of 

the two-qubit gate’s error sources are characterized and discussed. Validity of using the created 

Bell state fidelity as a representation of gate fidelity is investigated in Sec. 6.5. The partial state 

tomography used for the evaluation of the created Bell state and certain imperfections using this 

method are discussed in Sec. 6.6. Lastly, in Sec. 6.7, we describe the experiment and the results 

characterizing single-qubit gates using a randomized benchmarking technique [Knill 08]. 

6.2 Experimental Setup 

In this  experiment, 9Be+ ions are confined at the E zone depicted in Fig. 3.1. For a single 

9Be+ ion confined in this zone, the axial z harmonic  mode frequency is ωz ' 2π × 3.58 MHz1 , 

while the transverse (radial) mode frequencies are ωx ' 2π × 11.2 MHz, and ωy ' 2π × 12.5 MHz. 

Two trapped 9  Be+ ions are separated by ' 3.94 µm and are aligned along the axial z direction. 

Their z motion can be described by two normal modes, the center-of-mass (C) and stretch (S) 
√ 

modes with frequencies ωC = ωz and ωS = 3ωz respectively. The motion of the ith ion is written 

1 angular frequency 
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zi = zi,C0(â + â†) + zi,S0(b̂ + b̂†) where â, â† and b̂, ̂b† are the lowering and raising operators for the 
√ p √ p

C and S modes and z1,C0 = z2,C0 = z0/ 2, z1,S0 = −z2,S0 = z0/ 2 3, where z0 = ~/(2mωz). 

The two-qubit entangling gate is realized by the Mølmer-Sørensen (MS) interaction [Sørensen 99, 

Sørensen 00, Milburn 00, Solano 99] on the stretch mode (see also Sec. 4.3.4). The MS protocol 

requires simultaneous excitation of a blue-sideband transition with a detuning of δ and a red-

sideband transition with a detuning of −δ on the selected motional mode. Following Eq. 4.20, the 

Hamiltonian is 

X � �
H = ~ ˆ  ˆ  η Ωσ̂+ be−i(δt+φj,r ) + b†ei (δt−φj )

 
,b  

S j + h.c., (6.1) 
j=1,2 

where Ω is the resonant carrier transition Rabi rate, ηS = |Δk|z1,S0 ' 0.19 is the Lamb-Dicke 

parameter of  the stretch mode, σ̂+j is the spin raising operator for the jth ion, and φj,b(r) is the 

phase of the blue (red) sideband interaction on the jth ion. Starting in the |↑↑i state and setting 

ηS Ω = δ/4, this interaction produces the entangled state 

�  P �1 −i( 1 (φ +φ|Φi = √ )+π/2)|↑↑i + e j=1,2 2 j,b j,r |↓↓i (6.2)
2 

after a duration tgate = 2π/δ. 

The details of the laser beam setup is given in Sec. 3.4.3. Figure 6.1 shows the relevant 

stimulated-Raman laser beams used in the experiments described in this chapter. The Mølmer-

Sørensen gate is implemented with three laser beams labeled by k1, k2a, and k2b. Each of the 

beams in path 2 excite one of the sidebands when paired with the k1 beam. Note that we implement 

the above entangling operation on the second micromotion sideband to maximize the spin-motion 

coupling strength and state-dependent forces with the ions subjected to micromotion (see Sec. 

3.1). This induces higher errors caused by spontaneous emission and will be discussed later in Sec. 

6.4. Similar to our implementation of the mixed-species entangling gate described in Chap. 5, the 

entanglement created by this laser setup depends on the relative optical phases between paths 1 

and 2, causing the phase factor φj,b + φj,r in Eq. 6.2 to fluctuate. This laser phase sensitivity can 

be removed by using the same technique described in Sec. 5.2.3. The polarization of the k1 beam 
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Figure 6.1: Laser beam geometry for stimulated-Raman transitions. Each of the k2a and k2b 

beams when paired with the k1 beam give a wave vector difference Δk aligned along the axial z 
direction, and separately excite the blue and red sideband transitions on the axial stretch mode. All 
three beams are applied to implement the Mølmer-Sørensen interaction on the second micromotion 
sideband. Copropagating beams k2a and k2b are used to implement single-qubit gates described 
in Sec. 6.7. Details of laser beam setup is given in Sec. 3.4.3. 
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is adjusted such that the intensity ratio of σ+ to σ− components is approximately 8 : 2, with the 

σ+ component used for driving the MS gate and the σ− component used for sideband cooling on 

the |2, 2i → |1, 1i transition [Monroe 95b] (see also Sec. 2.1.5). The k2a and k2b beams are set to 

be π-polarized to maximize the entangling gate Rabi rate for a given amount of laser intensity. 

The MS protocol requires the blue and red sideband excitations to have equal Rabi rates. 

Imbalanced Rabi rates cause errors as discussed in Sec. 4.4.8. Rabi rate imbalance between the 

blue and red sideband excitations is minimized by adjusting the laser power in beams k2a and k2b 

(Fig. 6.1) differentially while keeping the total laser power in path 2 fixed. During calibration of the 

blue sideband’s Rabi rate, the beam in path 2 that is responsible for the red sideband excitation is 

shifted off resonant from any transition. Similarly when the Rabi rate of the red sideband transition 

is calibrated. This strategy is used to ensure that the transition frequency shifted by the AC Stark 

effect does not change during the calibration. 

6.3 Experimental Results 

Following the initial Doppler cooling, the ions are sideband cooled with a series of |F = 2,mF = 2i|ni → 

|1, 1i|n − 1i transitions (n is the Fock state quantum number), each followed by repumping [Monroe 95b]. 

This cooling yields mean mode occupation numbers n̄C ' 0.01 and n̄S ' 0.006 and the ions being 

pumped to the |2, 2i state at the end of the cooling sequence. The cooling transitions are driven 

on the positive second micromotion sideband as described in Sec. 2.1.5. 

Mapping from the |2, 2i state to the |1, 1i = |↑i state is accomplished by a microwave-

driven composite π pulse [Levitt 86] composed of a sequence of R(θ, φ) pulses R(π, 0), R(π, π/3), 

R(π, π/6), R(π, π/3), R(π, 0), where the definition of R(θ, φ) is given in Eq. 2.13. After gate 

operations, population in the computational qubit is transferred to the measurement qubit before 

applying the state-dependent fluorescence detection (see Fig. 2.1). Firstly, population in the 

|↑i state is transferred back to the |2, 2i state with the same composite pulse sequence. Then, 

population in the |2, 0i = |↓i state is transferred or “shelved” to the |1, −1i using a microwave π 

pulse, followed by another microwave π pulse which transfers remaining |↓i population to the |1, 0i 
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state. 

1We use the gate to ideally prepare the Bell state |Φ+i = √ (|↑↑i + |↓↓i)2 . To evaluate 
2 

the gate’s performance, we perform partial state tomography analyzed with a maximum likelihood 

(ML) algorithm to deduce the fidelity of the experimentally prepared state. The details of the 

analysis method are discussed in Sec. 6.6. From the Bell-state fidelity as determined by the ML 

method, we can estimate the MS gate fidelity (see Sec. 6.5). To first order, the inferred Bell-

state fidelity does not include errors due to imperfect |2, 2i state preparation and measurement. 

This is advantageous because this enables us to investigate the gate error at a level smaller than 

the imperfect initialization into the |2, 2i state. Here, we estimate the impurity of the |2, 2i state 

after the initial optical pumping to be approximately 2 × 10−3 (details in Sec. 6.6.2), whereas 

an entangling gate error as small as 8 × 10−4 can be determined. Furthermore, this ML method 

allows an arbitrary photon-count distribution to be analyzed, removing the need for making certain 

assumptions, which are detailed in the later section of Sec. 6.6. 

In a first experiment, we vary the laser beam power and determine the error of the Bell state 

as a function of the gate duration for a fixed Raman detuning of Δ ' −2π × 730 GHz (Fig. 6.2). 

The various curves in the figures show the expected errors due to spontaneous emission, errors due 

to motional mode frequency fluctuations, and errors in the composite microwave pulse used for 

|2, 2i ↔ |1, 1i = |↑i state transfer. We also determine the error of the created Bell state by varying 

the Raman detuning, Δ. The results are shown in Fig. 6.3 where we keep a fixed gate duration of 

tgate ' 30 µs while adjusting the laser beam powers for each Raman detuning. The minimum error 

obtained is 8(4) × 10−4 for Δ ' −2π × 900 GHz, which yields a ML-Bell-state fidelity of 0.9992(4). 

An important contribution to the ML-Bell-state error is due to the imperfect transfers from the 

|2, 2i state to the qubit |↑i state (for both qubits) before the application of the gate, and the reverse 

procedure that transfers |↑i population back to the |2, 2i state before detection. The total fidelity 

of these transfer pulses, limited by magnetic field fluctuations and the quality of the microwave 

2 here, we drop the phase term shown in Eq. 6.2; the phase of the laser pulse used for analyzing the coherence of 
the created Bell state is stable relative to the phase term shown in Eq. 6.2, can therefore be effectively dropped 
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Figure 6.2: ML-Bell-state error (red dots) as a function of gate duration tgate for a constant Raman 
beam detuning Δ ' −2π × 730 GHz. The black line shows the separately determined error and 
uncertainty (gray shade) due to the microwave pulses used for |2, 2i ↔ |↑i state transfer. The 
three dashed lines show the sum of the expected gate errors including photon scattering and mode 
frequency fluctuations (which are slow compared to gate durations shown) for three different r.m.s. 
magnitudes of mode frequency fluctuations. Errors due to these errors are discussed below. The 
gate error increases quadratically with increasing tgate due to such frequency fluctuations; however, 
for tgate ' 30 µs the error due to frequency fluctuations is approximately 1 × 10−4 . 
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pulses, is investigated with separate experiments analyzed with the same ML algorithm. We find 

�transfer = 4(3) × 10−4 . This is averaged over multiple data evaluations across multiple days; the 

uncertainty is the standard deviation of these data. While this error does not in principle affect 

the gate performance, we conservatively do not subtract it from our gate fidelity estimate due to 

its relatively large uncertainty. The uncertainties of the inferred errors presented here are deduced 

by parametric bootstrap resampling [Efron 93] with 500 resamples. 

In the next section, we describe the characterization of individual errors sources through cal-

ibration measurements and numerical simulations. Together with investigating the average fidelity 

with numerical simulations in Sec. 6.5, we deduce that the fidelity of the ML-Bell-state is a good 

representation of the average gate fidelity. 

It would be advantageous to evaluate the gate performance with full process tomography 

or randomized benchmarking to confirm our assessment. We did not perform randomized bench-

marking because ion motional excitation gives additional errors. This excitation occurs during ion 

separation (to provide individual ion addressing) and because of anomalous heating [Turchette 00a] 

during the required long sequences of gates. These problems can eventually be solved as in our pre-

vious demonstration where the gate fidelity was measured by interleaved randomized benchmarking 

[Gaebler 12] or by process tomography [Navon 14]. In these two experiments, the gate error was 

consistent with the measured two-qubit state fidelity [Horodecki 99, Nielson 02, Gaebler 16]. 

Our ML algorithm assumes that the reference histograms are perfect representations of the 

qubit measurement. Experimental issues that can affect the validity of this assumption are investi-

gated and discussed in Sec. 6.6.1. We determine a lower bound of 0.999 on the purity of the |2, 2i 

state for one ion prepared by optical pumping, as detailed in Sec. 6.6.2. With this, we put a lower 

bound of 0.997 on the overall Bell state fidelity. 

6.4 Error Sources 

Table 6.1 lists the individually evaluated errors for the highest entangling gate fidelity through 

calibration measurements and numerical simulations. 



136 

Figure 6.3: ML-Bell-state error (red dots), plotted as a function of −2π/Δ for a constant gate 
duration of approximately 30 µs, where Δ is detuning of the Raman laser beams relative to the 
2S1/2 ↔ 2P1/2 electronic transitions. The simulated contributions to the Bell state error from 
Raman and Rayleigh scattering (for details see Sec. 4.4.2) are shown with the blue and purple 
dashed lines respectively. For large |Δ|, the Raman scattering error approaches zero, however, 
the Rayleigh scattering error remains  approximately constant at 1.7 × 10−4. The black line is the 
sum of the Raman and Rayleigh scattering errors, and the composite microwave pulses used for 
qubit state preparation and detection (uncertainty indicated by the gray band). Error bars for the 
measured Bell state fidelity are determined from parametric bootstrap resampling [Efron 93] of the 
data and represent a 1-σ statistical confidence interval. 
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Errors ×10−4 

Spontaneous emission (Raman) 
Spontaneous emission (Rayleigh) 

Motional mode frequency fluctuation 
Rabi rate fluctuation 
Laser coherence 
Qubit coherence 

Stretch-mode heating 
Finite Lamb-Dicke approximation 

Off-resonant coupling 

4.0 
1.7 
1 
1 
0.2 
<0.1 
0.3 
0.2 
<0.1 
4|2, 2i ⇔ |↑i two-way transfer 

Table 6.1: Individually evaluated errors for the entangling gate at a Raman detuning of Δ ' 
−2π×900 GHz, and a gate duration of approximately 30 µs. Off-resonant coupling includes coupling 
of the qubit states to other hyperfine states and their sidebands, which can includes motional mode 
sidebands and micromotion sidebands. The last (transfer) error reduces the ML-Bell-state fidelity 
but should minimally affect the gate fidelity. 
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6.4.1 Spontaneous Emission Induced by Raman Laser Beams 

Spontaneous emission error is caused by randomly scattered photons when exciting stimulated-

Raman transitions. It can be separated into Raman and Rayleigh scattering. Raman scattering 

processes are inelastic and project an ion’s internal state to one of the other hyperfine states (see 

Fig. 2.1 for energy level diagram for the 9Be+ ion), destroying coherence. Rayleigh scattering 

processes are elastic and do not necessarily cause spin decoherence [Ozeri 07]; however, momentum 

kicks from photon recoil cause uncontrolled displacements of the motional state, which can result 

in phase errors in the final target states of the two-qubit gates. See Sec. 4.4.2 for more details on 

spontaneous scattering of photon induced by Raman laser beams. The Kramer-Heisenberg equa-

tion (Eq. 4.29) is used to calculate Raman scattering probabilities, and verified with measurements 

made on ions. The dynamics of the Mølmer-Sørensen interaction are studied with a numerical 

master equation simulation (Sec. 4.4.1) including the Lindblad operators shown in Sec. 4.4.2.1 to 

investigate the effect of Raman scattering on gate performances. The recoil error is calculated with 

Eq. 4.38. 

Raman scattering can be reduced by increasing the Raman detuning, |Δ|, at the cost of higher 

laser intensity to maintain the same gate Rabi rate. However, Rayleigh scattering error reaches an 

asymptotic values as |Δ| is increased (see Fig. 6.3 and Fig. 4.5). This error is proportional to the 

Lamb-Dicke parameter (Eq. 4.38) and thus could be reduced by increasing the trap frequency (Eq. 

2.7); it can also be reduced by using multiple loops in phase space [Ozeri 07, Hayes 12] (Eq. 4.38). 

However, these methods reduce the gate Rabi rate and thus increase Raman scattering error. In 

our experiment, eliminating the axial micromotion would allow us to increase Δ by a factor of ξ ' 

2 which would lower the Raman scattering error by a factor of 2ξ, and the Rayleigh scattering error 

by a factor of ξ while maintaining the same gate duration. 

Spontaneous Raman scattering can result in leakage of population from the qubit manifold 

(Sec. 4.4.2.1). The resulting states will predominantly be detected as dark and falsely associated 

with the qubit |↓i state. This creates a systematic bias that overestimates the actual Bell state 
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fidelity. Through simulations with the Lindblad operators described in Eq. 4.33, we found that 

such a bias is approximately 4 × 10−5 for the Bell state fidelity created at a Raman detuning of 

−2π × 900 GHz and approximately 1.5 × 10−3 for −2π × 90 GHz Raman detuning. 

6.4.2 Motional Mode Frequency Fluctuations 

Motional mode frequency fluctuations also cause errors. For the stretch mode, the sources 

of frequency fluctuations (which are slow compared to the gate durations shown in Fig. 6.2) are 

(i) fluctuations in the DC potentials applied to electrodes for trapping, (ii) fluctuating electric-field 

gradients from uncontrolled charging of electrode surfaces, and (iii) non-linear coupling to radial 

“rocking” modes [Roos 08, Nie 09]. By measuring the lineshape for exciting the motional state 

of a single ion with injected RF “tickle” potentials on the trap electrodes at frequencies near the 

mode frequencies, we estimate the first two sources contribute fluctuations of approximately 50 Hz. 

Mode frequency fluctuations can also be caused by electrode charging induced by UV beam light 

scattering off the trap surfaces [Harlander 10] so this effect may becomes more pronounced when 

higher laser power is used. 

For (iii), to a good approximation, the shift of the stretch mode frequency, δωS , from ex-

citation of the rocking modes is given by δωS = χ(nx + ny + 1) where χ is a non-linear cou-

pling parameter, nx and ny are Fock state occupation numbers of the two radial rocking modes 

[Roos 08, Nie 09]. For our parameters χ ' 45 Hz. Our Raman laser beam geometry did not allow 

direct measurement of the n̄x and n̄y radial mode excitations. Therefore, the final temperature 

is estimated from the (thermal) Doppler cooling limit (Eq. 2.2), taking into account heating due 

to photon recoil during sideband cooling of the axial modes. From this, we estimate the stretch 

mode frequency fluctuations from experiment to experiment to be approximately 100 Hz r.m.s. As 

these fluctuations are dependent on the occupation numbers of the radial modes, the error can be 

suppressed by cooling the radial modes to near the ground state. Figure 6.2 shows three master 

equation simulations (combined with Monte Carlo simulation) curves for different total values of 

the r.m.s. frequency fluctuation of the motional mode. The simulation also includes the effect of 
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Raman scattering (Lindblad operators shown in Sec. 4.4.2.1) with the fluctuations in motional 

mode frequency described by the Lindblad operator shown in Eq. 4.39. These curves follow the 

trend of the data and are consistent with our known sources. The error due to these fluctuations is 

approximately 1 × 10−4 for the shortest gate durations. Moreover, the trends in Fig. 6.2 indicate 

that gate performance could be further improved with higher gate speed. Our gate speed is limited 

by the available laser intensity for the given Raman laser beams detuning, Δ. 

6.4.3 Rabi Rate Fluctuations 

Errors are also caused by fluctuations in the sideband transitions’ Rabi rates, causing fluctu-

ations in the state-dependent forces (see also Sec. 4.4.7). Sources are (i) fluctuations of the ions’ 

micro-motion amplitude along the axial direction, (ii) fluctuations in the laser beam intensities at 

the ion locations, and (iii) fluctuations in the Debye-Waller factor associated with the center-of-

mass (C) mode [Wineland 98]. In our experiments, the latter contributes the largest error (for 

errors caused by Rabi rate fluctuations). 

Given a thermal distribution of the C mode and following Eq. 4.47 and Eq. 4.52, we can 

estimate the r.m.s. Rabi rate fluctuation and the resulting entangling gate error. With n̄C ' 

0.01 at the beginning of the MS interaction, we find h δΩ i ' 6 × 10−3 and we deduce an error of Ω 

approximately 1 × 10−4 to |Φ+i. Because this mode experiences anomalous heating during the 

application of the gate, the actual error contribution increases with the gate duration. The heating 

rate for the COM mode is measured to be ∼ 80 quanta/s. For our 30 µs gate duration, this implies 

a change of Δn̄C ' 0.001 averaged over the duration of the gate. Therefore, the error caused by the 

changes of the Debye-Waller factor from heating can be neglected for our fastest gate durations. 

Because the two-qubit-gate Raman transitions are driven on the second micro-motion side-

band, the Rabi rates are proportional to the second-order Bessel function J2(|Δk|zµm) ' 0.48, 

where |Δk|zµm = 2.9 is the modulation index due to the micromotion-induced Doppler shift and 

is proportional to the applied RF voltage VRF . For the conditions of the experiment, J2(|Δk|zµm) 

is near a maximum such that the Rabi rate is relatively insensitive to fluctuations in VRF . Our 
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measurements show that the radial mode frequencies can drift by up to 10 kHz over the course of 

several experiments; this would imply a relative drift in VRF of ∼ 1 × 10−3 and a corresponding 

change in the Rabi rate of 3 × 10−4, which contributes an error that is negligible compared to the 

other errors. Relationship between gate error and Rabi fluctuation is given in Eq. 4.47. 

Laser intensity fluctuations can be assumed to be comparable to the fluctuations measured 

from the single-qubit benchmarking experiments (see Sec. 6.7), which are estimated to be ∼ 

1×10−3 . This makes the laser intensity fluctuation’s contribution of Rabi rate fluctuations negligible 

compared to that of the fluctuating Debye-Waller factors. Laser intensity fluctuations also cause 

fluctuations in the AC Stark shifts, which we measure to be ∼ 1 kHz at a Raman detuning of 

−2π × 900 GHz and induce a negligible error. 

6.4.4 Smaller Error Sources 

Smaller sources of error are (i) laser beam phase fluctuations between beam paths 1 and 2 

during each experiment (Sec. 4.4.9), (ii) individual qubit decoherence (Sec. 4.4.10), (iii) heating of 

the axial stretch mode [Turchette 00a] (Sec. 4.4.4), (iv) imperfect Lamb-Dicke approximation (Sec. 

4.4.6), (v) off-resonant coupling to spectator transitions (Sec. 4.4.5), and (vi) Rabi rate imbalance 

between the two spin-motion excitations (Sec. 4.4.8). Each of these sources contributes ∼ 10−5 

error to the entangling gate. 

Sources of transition frequency and phase fluctuations include fluctuations in the laser beam 

phases φj,b and φj,r, and fluctuations in the qubit frequency. Fluctuations due to relative length 

changes between paths 1 and 2 are measured by recombining the two beams after they exit the 

UV fibers (see Fig. 6.1 and Fig. 3.8), detecting with a fast photo-diode, and measuring the phase 

of the beat note using the AOM RF sources as a reference. We measured a phase drift of ∼ π 

after ∼ 1 s, which is likely due to temperature drift of the optical elements in the setup. We also 

observed small phase oscillations with frequencies of a few hundred Hertz, which can be attributed 

to acoustic vibrations in the laboratory. With this, we estimate an error of ∼ 2 × 10−5 to the 

gate. The measured coherence time of the qubit from Ramsey experiments is approximately 1.5 s 
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(Fig. 2.2), which implies an r.m.s. qubit transition frequency error of 1 Hz, giving negligible error 

compared to other sources. 

The heating rate of the axial stretch mode is measured to be less than 1 quantum per second 

and contributes an error of less than 3 × 10−5 to |Φ+i, estimated with master equation simulation 

with Lindblad operators given in Eq. 4.40 and Eq. 4.41. The MS interaction is robust against 

finite thermal excitation in the Lamb-Dicke limit, η � 1 [Sørensen 99, Sørensen 00]. However, due 

to the small mass of 9Be+ ions, this condition is not rigorously satisfied and the sensitivity to finite 

motional excitation must be considered. Because of this effect, the realistic MS interaction applied 

to the ions deviates from the desired Hamiltonian given in Eq. 6.1. The error due to this is given 

by Eq. 4.46, which contributes an error of less than 2 × 10−5 for our parameters. Even within the 

Lamb-Dicke limit, finite thermal excitation increases the sensitivity of error due to motional mode 

frequency fluctuations [Hayes 12]. For our parameters, this error is negligible. 

Off-resonant coupling to spectator transitions is suppressed by employing laser pulse shaping 

(see Sec. 3.8). The rise and fall durations of the gate pulse are adjusted such that the Fourier 

component at the frequencies of spectator transitions is sufficiently small. Spectator transitions 

include the carrier and center-of-mass sideband transitions as well as other atomic transitions 

that can be coupled by micromotion sidebands (the Zeeman splittings between atomic states are 

comparable to ωRF ). If a square pulse is used instead of a shaped pulse, we estimate an error of 

1 × 10−4 for a gate duration of 30 µs [Sørensen 00]. Rabi rate imbalance between the blue and red 

sideband excitations is inferred by: first, performing extended Rabi flopping experiments on each 

sideband transition with their respective laser beams (see Fig. 6.1). The Rabi rate(ΩR) of each 

transition is then deduced by fitting the Rabi flopping data to the function e−t/τ Acos(ΩRt+φ0)+B 

with ΩR represents the Rabi rate. Finally, the error caused by Rabi rate imbalance effect is 

estimated by performing numerical Schrödinger equation simulation. The measured Rabi rate 

ratio of the two sideband excitations is typically ∼ 0.99 or better, this contributes ∼ 10−5 or lower 

error to the entangling gate (see also Sec. 4.4.8). 
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6.5 Average Fidelity 

The performance of our entangling gate is evaluated by using the gate to create a Bell state. 

Here, we investigate the performance of the gate over all input states by employing numerical 

simulation with known experimental imperfections. Our simulation is performed by solving master 

equations (Eq. 4.28), and combining with Monte Carlo simulations for certain error mechanisms. 

Different methods are chosen for different error mechanisms (see Sec. 4.4.1). 

One metric to quantify the gate’s performance is the “average gate fidelity”, Favg [Horodecki 99, 

Nielson 02, Gaebler 16]: 

6 3 1 
Favg = S+ + S− − , (6.3)

5 5 5

with 

h iXX1 †S+ = (hU1| ⊗ hU2|) Ĝ ρnoisy(U1, U2)Ĝideal (|U1i ⊗ |U2i) , (6.4)ideal36 
U1 U2 

1 XXh�
 � �� �� � � ��i †� ˆS− = U1�⊗ U2 G ρnoisy(U1, U2)Ĝideal �U1 ⊗ �U2 , (6.5)ideal36 
U1 U2 � � 

where |Uii is an eigenstate of the Pauli operators σ̂x, σ̂y or σ̂z for the ith qubit, and �Ui is the 

state orthogonal to |Uii. We fix a consistent phase for these eigenstates throughout. The operator 

Ĝideal is the ideal entangling operation, ρnoisy(U1, U2) represents the resultant density matrix of the 

imperfect entangling operation with the input states of |U1i ⊗ |U2i. With 36 different input states, 

our simulations including known imperfections yield the summands in Eq. 6.4 and Eq. 6.5. We 

found Favg lies within the uncertainty of the inferred Bell state fidelity measurement. With this, 

we deduce that our the Bell state fidelity inferred with our ML analysis is a good representation of 

the average gate fidelity. 

6.6 State Detection and Tomography 

A partial state tomography analyzed with a maximum likelihood (ML) algorithm is used to 

evaluate the fidelity of the Bell state created by the entangling gate. This ML method has been 

developed in collaboration with members of a NIST theory group led by E. Knill, with A. Keith 
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as lead. Other theory contributors include: S. Glancy and K. Coakley. The details of the partial 

state tomography and ML method are one of the main focus of A. Keith’s master’s research, and 

will be published elsewhere. 

We will briefly discuss certain issues about inferring information about the prepared two-

qubit quantum states from the photon count distributions and the maximum-likelihood method we 

used to circumvent some of these problems. We also study certain issues associated with using the 

ML method for the fidelity determination of the experimentally created Bell state. 

The detection procedure is the standard state-dependent fluorescence technique where the 

qubit up state of each ion is transferred to the bright state of the measurement qubit, and the qubit 

down state is transferred (“shelved”) to the detection dark state before the detection laser beam is 

applied (see Sec. 2.1.7 for details on fluorescence detection on the 9Be+ ions). Because both ions 

are illuminated with a detection laser beam (beam waist of ∼30 µm), which is much larger than 

the ion separation (∼ 4 µm), the photon counts come from both ions. 

The recorded joint photon-count histograms collected by illuminating both ions simultane-

ously are drawn from mixtures of three possible count distributions qj (c) (c = 0, 1, 2, ...., C indicates 

the photon counts) corresponding to the distinguishable ion subspaces spanned by (i) |↑↑i (q1(c)), 

(ii) |↑↓i or |↓↑i (q2(c)), and (iii) |↓↓i (q3(c)) states. Because of the finite efficiency of our pho-

ton collection apparatus and some optical pumping during detection, the three count distributions 

overlap, particularly those of subspaces (ii) and (iii) as shown in Fig. 6.4. Therefore an exact 

determination of the subspace to which the ions are projected cannot be determined in a single 

experiment. 

Nevertheless, we can infer the ions’ density matrix statistically from repetitions of the ex-

periment provided that the count distributions for each projected subspace are known. These 

distributions can be inferred from reference experiments by fitting to a parametrized model of the 

distributions. A simple class of such models is given by mixtures of Poissonians with different 

means. The uncertainty requirements of our experiments and effects such as optical pumping dur-

ing photon collection imply that we cannot use such models unless they have an excessively large 
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(a)

(b)

Figure 6.4: The photon-counts histogram for two 9Be+ ions prepared into an equal superposition 
of |↑i and |↓i states of each ion before making joint fluorescence measurements. (a) Data is plotted 
in a linear scale. (b) Same data plotted in a log scale. Count distributions corresponding to the 
|↑↓i or the |↓↑i states (on average 30 photon counts) and the |↑↑i state (on average 60 photon 
counts) overlap significantly. These overlapping distributions cause errors in the determination of 
the quantum state using a single detection. 
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number of parameters, in which case overfitting becomes an issue. Figure 6.5 shows the typical 

photon-count distributions for both ions prepared in the bright state (|2, 2i) or the dark state 

(|1, −1i) of the measurement qubit. To obtain Fig. 6.5.(a), we apply optical pumping to prepare 

the ion in the |2, 2i state before applying detection laser; for Fig. 6.5.(b), we first apply optical 

pumping to the |2, 2i state, then transfer the population to the |1, −1i state and the |1, 0i state 

(the dark state of the measurement qubit) with a series of π pulses driven with microwave field 

(see Sec. 2.1.7 for more details). A simple inspection of these histograms indicates the difficulty of 

using simple fitting models to accurately extract quantum state information. 

Our maximum likelihood (ML) analysis avoids these issues by statistically inferring states 

without requiring a model for the ideal count distributions. It requires sets of reference and data 

histograms. The data histograms involve observations of an identically prepared state ρ modified 

by analysis pulses. It infers a representative density matrix ρ̂. Because the different observations 

are not “informationally complete”, ρ̂ is not intended to match ρ precisely but the measurements 

are designed so that the extracted fidelities of interest do match to within a statistical uncertainty. 

In our experiment, we obtain four reference histograms ri(c) (i = 1, 2, 3, 4). These histograms 

are associated with known populations in the measurement qubit. Each reference histogram is 

obtained by observing known ion states prepared as follows: For r1(c), the state is prepared by 

optical pumping both ions to the |2, 2i state, Fig. 6.5(a) shows a typical r1(c) histogram. For 

r2(c), this optical pumping is followed by implementing the transfer |2, 2i → |↑i with a composite 

microwave pulse, followed by the transfers |↑i → |↓i and shelving into one of the states |1, −1i or 

|1, 0i with microwave π pulses as described above. A typical r2(c) histogram is shown in Fig. 6.5(b). 

For r3(c), the optical pumping is followed by the microwave-driven spin-echo sequence consisting 

of R(π/2, 0), R(π, 0), R(π/2, π/2) pulses on the |2, 2i ↔ |↑i transition, followed by transferring the 

population in the |↑i state to the |1, −1i or |1, 0i state as was done for r2(c). The histogram r4(c) 

is obtained like r3(c) but with the phase of the third pulse set to 3π . The change in phase does not 2 

change the state when the initial state and pulses are as designed. Fig. 6.4 shows a typical r3(c) 

or r4(c) histogram. Data histograms hk(c) are obtained directly from the prepared state ρ or by 
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(b)(a)

Figure 6.5: Typical photon-counts histograms for two 9Be+ ions prepared in the (a.) |2, 2i state and 
(b.) the “shelved” states of |1, −1i or |1, 0i state. Both distributions exhibit non-standard photon-
count distribution (e.g., the Poissonian distribution). For (a), this is caused by depumping process 
due to imperfect detection laser beam polarization. For (b), finite frequency separation between 
the atomic states allows population to leak from the dark state to the bright state (via optical 
pumping); in which case the ions start to fluoresce. See Fig. 2.1 for 9Be+ energy level structure; 
see also Fig. 6.6 for the detection behavior of each of the Zeeman states in the 9Be+ ion’s electronic 
ground state. These issues render simple fitting models, e.g. to Poissonians, incapable of extracting 
accurate quantum state information. 
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applying analysis pulses on the prepared state. The analysis pulses are global R(π/2, nπ/4) pulses, 

for n = 0, 1, ..., 7. These pulses are applied using the laser beams from paths 1 and 2 (Fig. 6.1) to 

maintain laser beam phase stability relative to the two-qubit gate. The rotation R(θ, φ) is given in 

Eq. 2.13. 

To determine ρ̂, we maximize the logarithm of the likelihood of the observed histograms 

with respect to the unknown qj (c) and ρ to be determined. Given these unknowns, reference P 
histogram ri(c) is constructed from the distribution j aij qj (c), where the aij are “populations” 

determined from the ideal prepared states. For example, the r1(c) and r2(c) reference histograms 

ideally correspond to count distributions q1(c) and q2(c), respectively; ideally, r3(c) and r4(c) each 

corresponds to the mixture of count distribution 0.25q1(c)+0.5q2(c)+0.25q3(c). Similarly, the data P 
histograms hk(c) are sampled from the distribution bkj qj (c), where the populations bkj are a j 

linear function of ρ. Given these distributions, the log likelihood is given by ⎡ ⎛ ⎞⎤ ⎡ ⎛ ⎞⎤ 
4,C 3 9,C 3X X X X 

log (Prob(r, h|q, a, b)) = ⎣ ri(c)log ⎝ aij qj (c)⎠⎦+ ⎣ hk(c)log ⎝ bkj qj (c)⎠⎦ 
i=1,c j=1 k,c j 

+const. (6.6) 

To maximize the log likelihood, we take advantage of the separate convexity of the optimiza-

tion problem in the qj (c) and ρ and alternate between optimizing with respect to the qj (c) and 

ρ. We used a generic optimization method for the first and the “RρR” algorithm [Hradil 04] for 

the second to keep ρ physical during the optimization. The quality of the model fit can be deter-

mined by a bootstrap likelihood-ratio test [Boos 03]. We found that our data’s log-likelihood-ratio 

is within two standard deviations of the mean bootstrapped log-likelihood-ratio. 

A modification of the ML analysis is required to reduce the number of parameters needed 

for the qj (c) and the complexity of the algorithms. For this, we bin the counts into seven bins of 

consecutive counts [Lin 15, Lin 16]. The binning is done separately by setting aside a random 10 % 

of each reference histogram and using this as a training set to determine a binning that maximizes 

state information quantified by a mutual-information-based heuristic. The heuristic is designed to 

characterize how well we can infer which of the four training set reference histograms a random 
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count histogram is sampled from. 

6.6.1 Assumptions with the ML Method 

The ML analysis assumes that the reference histograms are sampled from count distributions 

corresponding to states with known populations. The actual populations deviate by small amounts 

from this assumption, because here, the references are designed to yield histograms associated with 

known populations in the measurement qubit, instead of the computational qubit. We considered 

two systematic effects, which can lead to such deviations: (i) optical pumping that ideally prepares 

the |2, 2i state may have fidelity as low as 0.999 (see Sec. 6.6.2), and (ii) imperfections in the transfer 

pulses between the computation qubit manifold (the |↑i and |↓i states) and the measurement qubit 

manifold (the |2, 2i state as the bright state and the |1, −1i and |1, 0i states as the dark state). The 

latter is dominated by the transfer pulses between the |2, 2i and |↑i states, which has a measured 

fidelity of 0.9996(3). Errors in the transfer between the |↓i and the |1, −1i and |1, 0i states have 

less effect, since to a high degree all three of these states are detected as dark (see Fig. 6.6). 

Similarly, to first order, the population of the prepared state corresponds to the collected reference 

histograms are all in the measurement qubit manifold; contribution from the small populations 

outside the measurement qubit manifold are observationally equivalent to population in |↓i since 

they are dark to a high degree (see Fig. 6.6). If these populations are the same in all experiments, 

they are equivalent to a background contribution. With this in mind, we inspect the systematic 

effects from (i) imperfect optical pumping and (ii) imperfect transfers in more detail. 

Consider the effect of imperfect optical pumping of population to the |2, 2i state. In Sec. 

6.6.2, we estimate an upper bound of 10−3 population (per ion) in states other than the |2, 2i 

state after optical pumping. This population is distributed over the other Zeeman states in a way 

that depends on details of the optical pumping process. With one exception considered below, 

population in states other than |2, 2i is nominally detected as dark in all reference histograms 

(Fig. 6.6). The ML algorithm infers qj (c) as if all populations were in the measurement qubit 

manifold. Provided the population in other states remains dark in all experiments, it is treated as 
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a background and effective subtracted with our ML method. The effect is that the ML algorithm 

infers the renormalized density matrix on the qubit rather than the actual one with the trace 

reduced by the population outside the qubit manifold. To correct for the effect of imperfect optical 

pumping, we subtracted 2� from the ML-inferred Bell state fidelity, where � = 10−3 is the population 

(per ion) outside of the computational qubit manifold during the Bell state preparation and outside 

the measurement qubit manifold when detection laser is applied. This is consistent with the effect 

on Bell state fidelity determined by performing numerical simulations taking imperfect optical 

pumping preparation of the |2, 2i state into account (see next section). The exception to this 

model is that a fraction of the population outside the |2, 2i state after optical pumping is in the 

qubit manifold, i.e. the |↑i = |1, 1i state and the |↓i = |2, 0i state. Two situations are considered: 

(a) In the case where non-|2, 2i state is in the |↑i state, reference histogram r3(c) and r4(c) are 

affected differently compared to the situation above. This is because in this case, the population 

stays inside the measurement qubit manifold. With respect to the background interpretation, this 

is equivalent to having the |2, 2i population in references r3(c) and r4(c) exceed 0.5 (for each ion) 

by ξ ≤ �/2. To determine such effect on the ML inferred fidelity, a sensitivity analysis on simulated 

data is performed by varying the ML assumed populations for these references according to the 

parameter ξ. The change in fidelity is found to be small compared to our uncertainties. (b) Non-

|2, 2i population in the |↓i state after optical pumping enters the qubit state at the beginning of Bell 

state preparation and in this context does not behave as a dark state independent of the analysis 

pulses. However, simulations of the optical pumping process show that the non-|2, 2i population in 

the |↓i state is less than 10−4, which is small compared to our uncertainties. This optical pumping 

simulation is performed as follows: first, we include an impurity (π component) in the polarization 

of the laser beam responsible for the optical pumping (ideally pure σ+ polarized). The population 

in the |↓i = |2, 0i state is inferred by a laser beam polarization which gives 0.999 (for one ion) 

optical pumping fidelity (see next section). Our simulation closely follows that described in Ref. 

[Langer 06], and is further discussed in the next section. 

Now we consider the second effect, i.e. imperfect transfer pulses between the computational 
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qubit and the measurement qubit. This is dominated by the transfer of |2, 2i to the |↑i compu-

tational qubit state before the application of the gate. The errors of the transfer pulse result in 

population remaining in the |2, 2i state, outside the computational qubit manifold and unaffected 

by the MS interaction and the following analysis pulses. To first order, the transfer pulse after the 

gate will exchange the population in the |2, 2i state and the |↑i = |1, 1i state. The |1, 1i state will 

be nominally detected with high probability as dark (see Fig. 6.6), independent of the analysis 

pulses. While this effect is equivalent to a leakage error on the Bell state being analyzed, it is not 

accounted for by the ML analysis. Transfer error after the application of the gate results in extra 

dark population that depends on the final population in the |1, 1istate, which in turn can depend 

on the analysis pulses. Thus, both effects are inconsistent with the analysis pulse model that is 

assumed by the ML analysis. Such inconsistencies, if significant, are expected to show up in the 

bootstrapped likelihood-ratio test, but did not. To confirm this, a second sensitivity analysis is 

performed on simulated data, where we modified the ML model to include an extra dark state out-

side the qubit manifold and included the expected transfer pulse effects by modifying the analysis 

pulses with pulses coupling the qubit to the extra state. The effect on the inferred error of this 

modification was also found to be small compared to the uncertainties of the Bell state fidelity 

inferred using the ML method. 

These two sensitivity analysis were performed by A. Keith, who is leading the development 

of the ML analysis with details to be published elsewhere. 

6.6.2 Imperfect Optical Pumping and Lower Bound of Bell State Fidelity 

The maximum-likelihood method, to first order, does not include the errors due to the imper-

fect preparation and measurement of the |2, 2i state. This error is to be included when reporting 

the lower bound of the overall Bell state fidelity. This is essentially the problem of quantifying the 

purity of the |2, 2i state prepared by optical pumping. 

There are eight Zeeman states in the 2S1/2 electronic ground state and sixteen Zeeman states 

in the 2P3/2 electronic excited state of the 9Be+ ion (see Fig. 2.1 for energy level diagram of the 
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9Be+ ion; the Zeeman states in the 2P3/2 levels are not shown except for the 2P3/2|3, 3i state). 

The laser beam for the state-dependent fluorescence measurement is set to be σ+ polarized, and 

on resonance with the 2S1/2|2, 2i ↔ 2P3/2|3, 3i transitions. Due to finite frequency separations 

between different Zeeman states, starting with a non-2S1/2|2, 2i state, the detection laser beam can 

off-resonantly excite electronic transitions between Zeeman/hyperfine states in the 2S1/2 and 2P3/2 

levels, and optically pump the population to the |2, 2i state. The ion starts emitting fluorescence 

photons after it is pumped to the |2, 2i state under the illumination of the detection laser beam. 

Each Zeeman state responds differently and uniquely as shown in Fig. 6.6, which gives the simulated 

histogram corresponding to each of the Zeeman/hyperfine states when the detection laser is applied. 

The simulation used here is an analytic method which closely following that described in Ref. 

[Langer 06] (see also Ref. [Acton 06]). Our simulation includes twenty four energy levels (eight 

2S1/2 states and sixteen 2P3/2 states); the energy splittings and matrix elements between different 

levels are calculated at the magnetic field of B = 119.446 G taking into account both the hyperfine 

and the Zeeman interactions. 

The lower bound of the |2, 2i state purity can be deduced by deriving an upper bound on the 

error � of preparing the |2, 2i state after applying optical pumping. The population is dominantly in 

the |2, 2i state but we do not know precisely which of the remaining Zeeman states are populated. 

We write the density matrix of a single ion for this situation as 

7X 
ρ = (1 − �)|2, 2ih2, 2| + �i|ΨiihΨi|, (6.7) 

i=1 

where � = 
P7 �i and the |Ψii represent the hyperfine/Zeeman states excluding the |2, 2i state. One i 

strategy for setting an upper bound on � is to choose a cut-off count β and compare the small-count P 
“tail” probabilities t = c<β h(c). 

Let tb be the tail probability of h|2,2i. Because state preparation and detection are not 

perfect, we have tb ≥ tb, where t̄b is the tail probability of perfectly prepared |2, 2i states. The¯

tail probabilities ti for |Ψii are large, as verified by experimentally preparing each |Ψii state and 

measuring its count distribution. From this we can set a lower bound on ti such that ti > l. With 
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Figure 6.6: Simulated detection histograms for a 9Be+ ion initialized to each of the eight Zeeman 
states in the 2S1/2 electronic ground state of the 9Be+ ion (see Fig. 2.1). Each histogram is obtained 
with 1, 000 detection events. Except for the |2, 2i state, all other figures are shown in log scale. 
Each state responds differently and uniquely when the detection beam is applied. Besides the |2, 2i 
state, all other Zeeman states are detected as dark to a high degree. Furthermore, the F = 1 
manifold states (|F = 1,mF = 0, ±1i) have smaller fluorescence compared to the F = 2 manifold 
states. The bright state of the measurement qubit is the |2, 2i state (which corresponds to the qubit 
|↑i state), and the dark state is the |1, −1i and the |1, 0i states (which corresponds to the qubit 
|↓i state). See Sec. 2.1.7 for details on the fluorescence detection of the 9Be+ ions. The simulation 
here uses the saturation parameter, s = I/Isat = 0.5 and assumes that the detection laser beam is 
pure σ+ with its frequency tuned on resonance with the 2S1/2|2, 2i ↔ 2P3/2|3, 3i transition. The 
detection efficiency (which experimentally relates to the sum of the quantum efficiency of the PMT 
and the collection efficiency of the imaging system) is set so that the |2, 2i state fluorescence counts 
equal to 30 on average in our simulation. 
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this, we can write 

7X 
tb = (1 − �)t̄b + �iti (6.8) 

i 

≥ (1 − �)t̄b + �l (6.9) 

tb ≥ � (l − t̄b) + t̄b, (6.10) 

or 

tb − t̄b
� ≤ (6.11)

l − t̄b 
tb≤ . (6.12)

l − t̄b 

For our parameters of l = 0.8 and t̄b = 0, we estimate an upper bound on � of 1 × 10−3 . We also 

numerically simulate the effect of imperfect optical pumping and find that the Bell state error scales 

linearly as a function of �. We also numerically simulate the effect of imperfect optical pumping 

and find that the Bell state error scales linearly as a function of �. This is consistent with the lower 

bound on overall Bell state fidelity inferred in the previous section by considering the effect on the 

ML analysis (see Sec. 6.6.1). 

6.7 9Be+ Single-Qubit Gate 

Single-qubit gates are driven with co-propagating beams k2a and k2b shown in Fig. 6.1 

with their frequency difference set to be the qubit frequency of ω0 ' 2π × 1.207 GHz. With this 

copropagating beam geometry, single-qubit gates are negligibly affected by ion micromotion since 

Δk of these two beams projected along any mode of motion corresponds to a microwave wavelength, 

which is much larger than the size of motional wavepacket. Here, the Raman detuning, Δ from the 

2S1/2 ↔2 P1/2 transition frequency is set to be ∼ −2π × 730 GHz. 

We employ a randomized benchmarking technique [Knill 08] to evaluate the performance 

of the single-qubit gates. Compared to quantum process tomography or other methods for the 

characterization of gate performance, randomized benchmarking is more efficient and provides 

separate determination of the state preparation and measurement error (�SPAM) and the error per 
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computational gate (�gate). Randomized benchmarking also offers scalability advantage as it allows 

�gate to be determined with a number of measurements which scales polynomially with the number 

of qubits. Furthermore, using long sequences of random gates make the procedure sensitive to 

errors similar to that in arbitrary, lengthy QIP computations. 

Randomized benchmarking techniques have been used in platforms other than trapped-ion 

systems such as neutral atoms [Olmschenk 10], liquid NMR [Ryan 09], and superconducting qubits 

[Chow 09]. Using randomized benchmarking, the lowest single-qubit gate error achievable in any 

platform was measured to be 1.0(3) × 10−6 [Harty 14]. 

In our implementation of the single-qubit randomized benchmarking, multiple sequences with 

random gates are pre-generated for a given set of sequence lengths. Here, sequence lengths of 1, 3, 

8, 21, 55, 144, 233, 377, 610, and 987 are implemented. Each set of sequence lengths consists of 100 

unique sequences. Each sequence consists of a different number of π and π/2 pulses around the x, 

y, and z axes of the Bloch sphere, as well as identity gates. The π pulses are performed with two 

sequential π/2 pulses, each with a duration ∼ 2 µs. Rotations about the z axis are accomplished 

by shifting the phase of the direct digital synthesizer that is keeping track of the qubit’s phase; the 

identity gate is implemented with a 1 µs wait time. Each “computational gate” is taken from the 

Clifford group [Gottesman 98], and consists of a random Pauli gate (π pulse) and a random Clifford 

gate (π/2 pulse). With the qubit initialized to a pure state, and in the absence of gate errors, the 

outcome of each sequence is deterministic and the ion will be found in either the |↑i or |↓i state. 

Sequences are randomly chosen from the pre-generated pool to be implemented during run 

time, with each sequence repeated 100 times to collect statistics. The fidelity of each sequence is 

recorded and the decay of fidelity is determined as a function of the number of random computa-

tional gates for a given sequence length. The results are shown in Fig. 6.7. Here, state detection 

and measurement for a single 9Be+ ion is relatively straightforward. As shown in Fig. 2.5, the 

photon-count distribution for the bright and dark states are well separated so we determine the 

ion’s state by setting a threshold of 12 counts (count ≤ 12 is recorded as dark). 

The reason for implementing computational gates with the Clifford group is because the noise 



156 

0 200 400 600 800 1000

0.96

0.97

0.98

0.99

1.00

Sequence length

F
id
el
it
y

Raman detuning Δ: -2π x 730 GHz

Error per computational gate: 3.8(1) x 10-5

Figure 6.7: Average fidelity for single-qubit-gate randomized benchmarking sequences, plotted as 
a function of sequence length. We determine the average error per computational gate to be 
�gate = 3.8(1)  × 10−5 and state preparation and measurement error to be � = 2.0(3) × 10−3 

SPAM for 
these data sets. Error bars show the standard error of the mean for each point. 
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of the Clifford group is intrinsically depolarized, i.e. the average fidelity of an operation applied to a 

pure state is identical to the operation fidelity averaged over different pure states [Knill 08]. Under 

this depolarizing assumption, randomized benchmarking yields an average fidelity as a function of 

the number of computational gates. The average fidelity decreases to the asymptotic values of 1/2 

with sufficiently large number of computational gates. The average fidelity with a sequence length 

of l is [Knill 08] 

1 1 
F = + (1 − �SPAM) (1 − 2�gate)

l . (6.13)
2 2 

By fitting this expression to the data on Fig. 6.7, we deduce an error per computational gate of 

�gate = 3.8(1) × 10−5, and �SPAM = 2.0(3) × 10−3 . For Δ ' −2π× 730 GHz used here, spontaneous 

emission error [Ozeri 07] is calculated to be 2.5 × 10−5 . This value is estimated using the Kramer-

Heisenberg equation (Eq. 4.29), and is verified with a separate measurement made on the ion. The 

remaining error is dominated by Rabi rate fluctuations of approximately 1 × 10−3 due to imperfect 

laser power stabilization. Fluctuations in the Rabi rate are inferred from separate experiments 

that calibrate the Rabi rates of the laser-induced qubit transition; the associated error is inferred 

from a Schrödinger equation (Eq. 4.27) or a master equation (Eq. 4.28) simulation combined 

with a Monte-Carlo simulation that includes the measured power fluctuations. These calibration 

experiments are interleaved with the benchmarking experiments. 

6.8 Summary 

In summary, we demonstrated high-fidelity single-qubit and two-qubit laser-induced gates 

with trapped 9Be+ ions. The single-qubit gates fidelity of 0.999962(1) (corresponding to an error 

of � = 3.8(1) × 10−5) exceeds some threshold estimates for fault-tolerant error correction with 

reasonable overhead. A partial state tomography is developed to analyze our two-qubit gate data. 

The highest achieved two-qubit gate fidelity is measured to be 0.9992(4) (corresponding to an error 

of � = 8(4)×10−4). The sources of error have been identified and strategies to further suppress them 

were discussed. This result is a factor of ∼ 50 improvement compared to the previous best effort 
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of implementing a high-fidelity two-qubit gate with 9Be+ ions in our laboratory [Tan 13] (see also 

Chap. 7). The improvement was made by taking advantage of various technological developments 

[Wilson 11, Bowler 13, Colombe 14, Leibrandt 15] and using an ion trap [Blakestad 11] which has 

a lower anomalous heating [Turchette 00a] due to uncontrolled electric field noise. 

Similar laser-driven single-qubit and two-qubit gate has also been demonstrated with 43Ca+ 

ions by the trapped-ion group at Oxford [Ballance 16]. Single-qubit computational gate with an 

error of 6.6(3)×10−5 were evaluated with randomized benchmarking techniques on a magnetic-field 

insensitive transition. Two-qubit gates were implemented with the σ̂zσ̂z gate (see Sec. 4.3.2 and 

Ref. [Leibfried 03]) with an error of 1(1) × 10−3 . Along with our two-qubit gate presented here, 

these results appear to be the highest multi-qubit gate fidelities reported to date in any physical 

platform. 

However, despite the improvement, two-qubit gates remain the only elementary QIP opera-

tion which has yet to be demonstrated with error lower than the practical fault-tolerant threshold 

of ∼ 10−4 . In this context, we plot the history of two-qubit gate errors achieved with (i) laser driven 

interactions applied on trapped-ion qubits, (ii) microwave-driven interactions applied on trapped-

ion qubits, and (iii) superconducting circuits in Fig. 6.8. Although the fidelity of the two-qubit 

entangling gate provides a benchmark for the level of quantum control across different platforms, it 

provides little information about the scalability of different systems. We are not aware of a simple 

metric for a system’s scalability for the realization of a practical QIP device. 
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9Be+ ̶  25Mg+ gate
see Chap. 5

Dynamical decoupling gate
see Chap. 7

Figure 6.8: Two-qubit gate errors (or the errors of the created Bell state) reported in the liter-
ature over time. This figure is not comprehensive but shows the best two-qubit gate results, as 
well as two other type of two-qubit gate results presented in this thesis. Gate implementations 
in three platforms are shown, i.e. (i) laser-driven gates on ion qubits [Turchette 98, Sackett 00, 
Rowe 01, Leibfried 03, Benhelm 08, Tan 13, Tan 15, Ballance 16, Gaebler 16], (ii) microwave-
driven gates on ion qubits [Ospelkaus 11, Weidt 16, Harty 16], and (iii) superconducting qubits 
[Steffen 06, DiCarlo 09, Chow 12, Barends 14]. The highest fidelity achieved with ion qubits us-
ing a microwave-based implementation is 0.997(1) [Harty 16] and 0.9944(5) with superconducting 
qubits [Barends 14]. Data in this figures are of courtesy from Prof. David Lucas (University of 
Oxford) who collected and consolidated the data. 



Chapter 7 

Dynamical Decoupling Two-Qubit Geometric Phase Gate 

7.1 Introduction 

Based on extensions of the spin-echo technique [Hahn 50], dynamical decoupling was first 

proposed and studied theoretically in Ref. [Viola 98] by driving a control Hamiltonian that contin-

uously induces oscillation between the states of a two-level system. Since then, various proposals 

and implementations using dynamical decoupling schemes to suppress decoherence errors affecting 

the quantum systems of interests have been reported. The general theory of dynamical decoupling 

was formulated in Ref. [Viola 99] and reviewed in a more recent paper [Lidar 14]. 

Most dynamical decoupling schemes have been implemented for the protection of quantum 

memories against environmental noise [Du 09, de Lange 10, Ryan 10, Szwer 11] such as external 

magnetic field fluctuations. For quantum information processing, it is also desirable to have dy-

namical decoupling built into quantum gates or have quantum gates directly applicable to quantum 

memories which are protected by dynamical decoupling techniques. Such operations must be de-

signed to provide protection against environmental noise, but not from the control fields required to 

apply the coherent operations. Single-qubit gates featuring protection with dynamical decoupling 

have been demonstrated in Ref. [Levitt 86, Souza 12, Zhang 14]. Demonstrations of multi-qubit 

gates with dynamical decoupling built-in include Ref. [van der Sar 12, Liu 13, Zhang 15] with 

solid-state-based qubits and with trapped-ion qubits [Tan 13, Piltz 13]. Furthermore, dynamical 

decoupling has also been used to lengthen the lifetime of an entangled state [Gustavsson 12]. 

In this chapter, we describe an experimental implementation of an entangling gate based on 
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a spin-dependent force featuring continuous dynamical decoupling using two trapped-ion qubits. 

The decoupling is provided by a control field that continuously induces oscillation between the 

logical states of the qubit. With this, the qubit becomes less sensitive to dephasing errors which 

can be caused by external magnetic field fluctuations. Furthermore, fluctuations in the AC Stark 

shifts induced by the laser beams that are used for driving coherent operations through stimulated-

Raman process are also suppressed. This technique is analogous to the bang-bang control used in 

classical platforms (see for example Ref. [Takahashi 70, Macki 82]). 

The entangling gate scheme described and implemented here was proposed in the theoretical 

paper by Bermedez et al. [Bermudez 12]. The proposal considers the weak effective spin-spin 

coupling regime, where the motional mode that serves as the mediator for the spin-dependent 

force is only virtually excited. Here, we modify the original proposal to be applicable in the 

strong effective spin-spin coupling regime in order to maximize gate speed for a given laser-induced 

transition Rabi rate. This enables us to minimize gate errors due to spontaneous scattering of 

photons caused by stimulated-Raman laser beams (see Sec. 4.4.2). Furthermore, a faster gate 

speed suppresses other error sources such as motional heating and other thermal-related errors. 

Following the publication of our work [Tan 13], a theoretical study for the gate scheme in the 

strong coupling regime was presented in Ref. [Lemmer 13], providing a complementary framework 

for the results presented in our experimental demonstration. 

7.2 Experiment Setup and Implementation 

This experiment was carried out in a legacy experimental setup with a different trapped-

ion apparatus located in a different laboratory. However, most of the crucial elements for the 

manipulations of trapped ions used here are very similar to that described in other parts of this 

thesis. A detailed description of this legacy experimental apparatus is available in Ref. [Jost 10]. 

Similar to the X-junction trap [Blakestad 11] (see also Sec. 3.1), the ion trap used here is also 

a linear Paul trap [Paul 90]. As shown in Fig. 7.1, this trap consists of eight pairs of control 

electrodes for shuttling of ions but does not feature a junction for arbitrary reordering of an ion 



162 

E L

400 𝜇𝜇m

Figure 7.1: The electrodes of the ion trap used for the experiment described in this chapter. The 
ions are loaded in zone L and transported to zone E for the entangling gate to be implemented. 
See Ref. [Jost 10] for details of the design and construction of this trap. 

crystal. The ions were first loaded in zone L and then transported to zone E , where entangling 

gate operations were carried out. 

For this ion trap, the axial micromotion experienced by the ions is substantially smaller than 

in the X-junction trap. Therefore, we do not apply the differential voltage on the electrodes for 

detection (described in Sec. 2.1.1). Furthermore, the spin-motion stimulated-Raman transitions 

were driven on the micromotion carrier. The motional mode heating [Turchette 00a] rate of this 

 trap is higher compared to the case of the X-junction trap. For a single 9Be+ ion, we measure the 

heating rate to be ' 0.5 quanta/ms at an axial trapping frequency of '  2π × 2.7 MHz1 . Heating 

rate affects the performance of the entangling gate and will be discussed in Sec. 7.3 (see also Sec. 

4.4.4). 

The laser beam setup used for the experiment here suffered certain drawbacks compared to 

that described in the rest of this thesis. Firstly, here the laser beam profiles and pointing fluctua-

tions were considerably worse due to the unavailability of the ultraviolet (UV) fibers [Colombe 14]. 

Secondly, the laser power stabilization for the laser beams was not as robust as that used in Chap. 

6 and we did not have access to apparatus with sufficient servo bandwidth to employ dynamic 

shaping of laser intensity profiles. Furthermore, due to the limited available laser power when this 

experiment was carried out, the Raman detuning used here induced a higher spontaneous emission 

1 angular frequency 
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rate compared to that used in Chap. 6. Higher photon scattering rate causes higher gate error, 

see details in Sec. 4.4.2. The laser beam setup used for the experiment here suffered certain draw-

backs compared to that described in the rest of this thesis. Firstly, here the laser beam profiles 

and pointing fluctuations were considerably worse due to the unavailability of the ultraviolet (UV) 

fibers [Colombe 14]. Secondly, the laser power stabilization for the laser beams was not as robust 

as that used in Chap. 6 and we did not have access to apparatus with sufficient servo bandwidth 

to employ dynamic shaping of laser intensity profiles. Furthermore, due to the limited available 

laser power when this experiment was carried out, the Raman detuning used here induced a higher 

spontaneous emission rate compared to that used in Chap. 6. Higher photon scattering rate causes 

higher gate error, see details in Sec. 4.4.2. 

Two 9Be+ ions are confined along the axis of a linear Paul trap and have an axial center-of-

mass (COM) mode (angular) frequency of 2π × 2.6 MHz and a stretch mode frequency of 2π × 4.5 

MHz. For a single 9Be+ ion, the radial secular frequencies are set to be 2π × 12.5 MHz and 

2π × 11.8 MHz. Here, we used the hyperfine state of |F = 2,mF = 1i = |↓i and |1, 0i = |↑i as 

our qubit. Although this choice of hyperfine states for the qubit is different than that used in 

other experiments described in this thesis, the properties of these qubits are very similar. The 

qubit frequency is ω0 ' 2π × 1.207 GHz, which is first-order insensitive to changes in the applied 

magnetic field of B ' 0.011964 mT (119.64 G). The direction of the applied magnetic field is aligned 

45◦ with respect to the trap axis. Table A.2 lists the magnetic-field insensitive transitions in the 

electronic ground state of the 9Be+ ion. 

As described in Sec. 4.3.5, the Bermudez protocol requires a resonant carrier spin-flip exci-

tation and a single spin-motion sideband excitation with a detuning of δ from a selected motional 

mode. Here, the detuned spin-motion sideband excitation is driven through a stimulated-Raman 

process by a pair laser beams labeled by kCo1 and k90 in Fig. 7.2. These two beams are aligned 
√ 

such that their vector difference Δkz = 2 2π/λ aligned along the axial direction. In this config-

uration, only the motional mode along the trap axis interacts with the laser beams. We set the 

beat-note frequency of these two laser beams to be blue detuned by a frequency δ from the stretch 
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𝒌𝟗𝟎
𝒌𝑪𝒐𝟏
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Figure 7.2: Laser beam setup to drive the two-qubit gate with the Bermudez protocol in the case 
of a microwave-induced carrier excitation. Two lasers beams labeled as kCo1 and k90 are used to 
excite the detuned spin-motion sideband transitions. Their wave vector difference Δk is aligned 
such that only the axial motional mode can be coupled. 
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mode blue sideband transition. In our setup, the carrier excitation can be driven by (i) a microwave 

field, or (ii) a laser field. We investigated both methods in two different sets of experiments. The 

microwave fields are delivered with a helical antenna located outside the vacuum system, with the 

frequency set and impedance matched to the source at ω0 ' 2π × 1.207 GHz. We achieve a carrier 

π-pulse duration of approximately 11 µs. The laser field to drive the carrier excitation includes an 

additional beam kCo2 that paired is with the beam kCo1 (see Fig. 7.3). The relative frequency 

difference of these two beams is set to be ω0, and the carrier π-transition has a duration of ap-

proximately 5 µs. As these two beams are copropagating, the Rabi frequency is not affected by 

the ion’s motion [Wineland 98]. These two beams are generated inside a single AOM (with center 

frequency ∼ 600 MHz) analogous to that described in Sec. 3.4.3. The Raman detuning is set to 

be ' 260 GHz (' 160 GHz ) red detuned from the 2S1/2 ↔ 2P1/2 transitions for the microwave 

(laser)-induced-carrier gate. In the rotating-wave approximation, and after transforming into the 

interaction frame of both the qubit and the motion, the Hamiltonian of our implementation the 

Bermudez protocol in the Lamb-Dicke limit is 

� �X 
σ+ iφC σ+ † −i(δt+φj 

0 )H = ~ ΩC ̂ j e + iΩj ̂ â e + h.c., (7.1)j 
j=1,2 

where ΩC denotes the Rabi rate of the carrier excitation that provides the dynamical decoupling, 

and Ωj = Ω0,j ηξj , where Ω0,j is the Rabi rate of the resonant laser-driven carrier excitation, η is 

the Lamb-Dicke parameter for the selected normal mode with ξj as the mode amplitude of the jth 

ion. The respective phases for the carrier and sideband excitation are φC and φ0 j = ΔkX0,j +Δφ, 

where Δk and Δφ are the difference in wave vectors and phases of the optical fields driving the 

blue sideband transition, respectively. The equilibrium position of the the jth ion is denoted by 

X0,j . 

Since the interesting case is when ΩC � |Ωj |, we go to the interaction frame where the states 

are dressed by the carrier excitation. With this condition, the eigenvalues of the dressed system 

under the influence of a certain mechanism that shifts the qubit frequency by ω0 are given by Eq. 
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Figure 7.3: The laser beam setup where carrier excitation is induced by stimulated-Raman process. 
This setup is very similar to that depicted in Fig. 7.2. Here, the microwave antenna is turned off 
and an additional beam labeled as kCo2 is adjusted such that its frequency is shifted ω0 relative to 
beam kCo1. Together, these two beams excite carrier transitions. 
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2 ΩC 2 Ω2 
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Therefore, the influence of ω0 becomes a second order effect and decreases as ΩC increases. Now we 

consider the effects of the sideband terms in the dressed-state picture. In the |+i, |−i basis where 

1 |↑i = √ (|+i + |−i) , 
2 
1 |↓i = √ (|+i − |−i) , (7.3) 
2 

the Hamiltonian described in Eq. 7.1 becomes 

� �� P   
� 

H = ~ Ω 0
i j + −i(δt+φ0 ) i(δt+φ )| i h e j

j +| − |−i † −j  |−i j  j j â  
  aeˆ j

2 � �� �P 
~ Ωj −2iΩC t 2iΩC t 

0  ) i(δt+φ0+i |−i | e i )h+ − |+ − (δt+φi |−i †
j j j e â e j + aeˆ  j 

j j  . (7.4)2 

The first term in the expression above is identical to Eq. 4.16, which describes a Hamiltonian of a 

geometric phase gate with the spin-dependent force acting on the rotated basis. The second term 

induces off-resonant transitions between the dressed states |+i and |−i and can be dropped when 

ΩC � |Ωj |. We set φC = 0 for simplicity; this does not affect the discussion that follows. The 

entangled states produced by this protocol are insensitive to optical path length changes between 

the non-copropagating laser beams (kCo1 and k90 in Fig. 7.2 and Fig. 7.3) that occur on a time 

scale that is long compared to the gate duration [Tan 13]. 

However, similar to the situation in Sec. 5.2.1, the geometric phase accumulated after apply-

ing the gate depends on the basis states. Applying Eq. 5.5 to the case here by writing φ = φ0 M,j j , 

after setting Ω1 = Ω2 = Ω, the geometric phase accumulated by the different parity basis states 

after a duration of 2π/δ is 

8πΩ2 � � 
Δk(X0,1 −2  X

  0,2) 
ϕ++,−− = cos , 

δ2 4 � � 
8πΩ2 

 k(X
 2 Δ 0,1 − X0,2)

ϕ+−,−+ = sin . (7.5)
δ2 4 

With this, it becomes obvious that the geometric phases applied to the basis states depend upon 

the distance between the two ions, i.e. X0,1 − X0,2. Here, we adjust the strength of the harmonic 
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confinement to make the ions’ separation distance equal to πp/Δk where p is an integer. By doing 

so, the entangling gate speed can be optimized for a given Ω and δ by setting the geometric phases 

for the different parity qubit state to differ by π/2. 

In the case where the condition of ΩC � Ω is not rigorously satisfied, the evolution of the 

populations oscillates and the final state depends on the finite carrier Rabi frequency. Figure 7.4 

shows a simulation result of the interaction Hamiltonian described in Eq. 7.1 with ΩC = 15Ωj=1,2. 

In our experimental implementation, we remove the fast oscillation dependence by performing 

spin-echo type sequences. 

For the case where the carrier excitations are driven by the microwave field, we applied a 

π-pulse with a π -phase shift relative to the carrier in the middle of the gate sequence, as depicted in 2 

Fig. 7.5. This phase shift operation is accomplished by reprogramming the direct-digital synthesizer 

which is used for the generation of the microwave field (see Sec.3.6). The application of this pulse 

makes the ions undergo a multiple-loop trajectory in motional phase space which can further 

suppresses errors in the gate detuning δ and gate duration that can lead to residual spin-motion 

entanglement at the end of the gate operation [Hayes 12]. 

The spin-echo sequence for the case where the laser is used to induce carrier transition is 

shown in Fig. 7.6. The carrier excitation is continuously applied but a π-phase shift is implemented 

halfway through the gate. This phase shift is accomplished by changing the phase of the RF signal 

used for the generation of the kCo2 laser beam (see Fig. 7.3). In contrast to the microwave-carrier 

case, this spin-echo sequence induces a single-loop phase-space trajectory. It corrects only for 

errors in the carrier Rabi frequency but does not suppress errors that lead to residual spin-motion 

entanglement. 

Each experiment repetition begins with Doppler cooling and optical pumping of the ion’s 

population to the |F = 2,mF = 2i state, followed by Raman sideband cooling [Monroe 95b] of the 

axial COM and stretch modes to n̄ of ' 0.2 and ' 0.05, respectively. This is followed by applying 

a composite pulse sequence [Levitt 86] induced by copropagating beams kCo1 and kCo2 (Fig. 

7.3), consisting three resonant pulses R(π/2, 0), R(π, π/2), and R(π/2, 0) (the rotation operation 
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Figure 7.4: Simulated population evolution of Hamiltonian in Eq. 7.1 with both qubits initialized 
to the |↑i state. Although a maximally entangled state can be created at t = tgate, due to the 
finite ratio between the carrier transition Rabi rate ΩC and the sideband transition Rabi rate 
Ω = Ω1 = Ω2, the populations undergo oscillations at the carrier Rabi frequency, making the target 
state highly sensitive to the interaction time. Here, the simulation parameter is ΩC = 15Ω. 
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Figure 7.5: Pulse timing sequence for the microwave-induced-carrier gate. A π rotation with a π/2 
phase with respect to the previous pulse refocuses the fast spin population oscillations induce by 
the carrier excitation (see Fig. 7.4). This pulse can suppress miscalibrations and errors in the gate 
duration and detuning, δ [Hayes 12]. 
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Figure 7.6: Pulse timing sequence for the laser-induced-carrier gate. The phase of the carrier 
excitation is shifted by π during the second half of the gate. 

R(θ, φ) is given in Eq. 2.13) that transfers each each ion from the |2, 2i state into the |2, 1i = |↓i 

state. With both ions initialized to the |↓↓i state, the entangling gate ideally creates the Bell state 

|Φ i = 1√ + (|↓↓i + |↑↑i).
2 

The standard state-dependent resonance fluorescence technique is used to measure the ions’ 

state at the end of the gate operation. First, the |↓i states are transferred to the |2, 2i state by using 

the same composite pulse sequence as for the state initialization, and the |↑i state is transferred 

use  to the |1, −1i state by of a single “shelving” π-pulse (see Fig. 2.1 for 9Be+ ion’s energy level 

diagram). This is followed by turning on the detection laser beam for 250 µs. Ions in the |2, 2i 

state fluoresce “bright” and register an average of ∼ 30 photons per ion on a photomultiplier tube. 

Ions in the |1, −1i state fluoresce “dark” and register an average background counts of 3 photons. 

Detection counts yield three possible outcomes: two ions bright (|↓↓i), one ion bright (|↑↓i and 

|↓↑i), and zero ions bright (|↑↑i). The probabilities of those outcomes, P2, P1, and P0 respectively, 

are determined by fitting a triple Poissonian function to the histogram of counts obtained in each 

experiment. 

The population evolution as a function of the gate interaction duration with carrier excitation 

driven by laser beams is shown in Fig. 7.7, with the state |Φ+i (in the ideal case) created at 

 tgate = 2π ' 105 µs. The coherence of the created Bell state is investigated by applying an δ 

“analysis” carrier π/2-pulse to the ions. Figure 7.8 shows the parity (P2 + P0 − P1) plotted as 

a function of the phase φ of the analysis pulse for the case of the microwave-induced-carrier gate 

with a gate duration of tgate = 4π = 250 µs. The resulting oscillation of the parity is fitted to the δ
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Figure 7.7: Evolution of the populations of |↓↓i (blue points), |↑↑i (red) and anti-aligned spin 
states (green) as a function of the duration of simultaneous application of laser-induced carrier and 
detuned sideband excitations. The phase of the carrier is shifted by π at half of the interrogation 
time for each point (see Fig. 7.6). The gate time for this case is approximately 105 µs, at which 
point the Bell state |Φ i = 1√ + (|↓↓i + |↑↑i) (in the ideal case) is created. The solid lines show the 

2 
results of numerical master equation simulation that include contributions from (i) spontaneous 
scattering of photon induced by the Raman laser beams, and (ii) state preparation and detection 
error. 
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function Acos(2φ + φ0). The performance of the gate was characterized by measuring the created 

Bell state’s fidelity, which is determined by the contrast of the parity oscillation (A) and the total 

qubit population in the |↑↑i and |↓↓i (P2 + P0). The Bell state fidelity, F , is (P0 + P2 + A)/2 

[Sackett 00]. For the microwave-induced-carrier gate we find P0 + P2 = 0.988(4) and A = 0.960(8), 

which gives F = 0.974(4). For the laser-induced-carrier gate we determine P0 + P2 = 0.961(1) and 

A = 0.930(8), which gives F = 0.946(4). 

7.3 Error Sources 

The sources of error which lead to imperfect creation of the Bell state were investigated with 

numerical simulations and calibration measurements. Certain sources of error in the ∼ 10−4 level 

or lower are not described here. Table 7.1 shows the individually evaluated error contributions 

for both the microwave-induced carrier and the laser-induced-carrier gates. For the laser-induced-

carrier gate, the error caused by spontaneous scattering of photons is dominated by the laser beams 

that are used to drive the carrier excitation (the kCo1 and kCo2 beams in Fig. 7.3). Furthermore, 

due to a limited amount of power available from the laser source, the Raman detuning was restricted 

to ' 160 GHz to allocate sufficient power for the laser beams responsible for the carrier excitation. 

For the microwave-induced-carrier gate, we were able to increase the Raman detuning to ' 260 

GHz and thus reduce the spontaneous emission error compared to the laser-induced-carrier gate. 

We calculated the spontaneous scattering rate using the Kramer-Heisenberg equation as shown 

in Eq. 4.29 and then deduced the associated gate error by numerically simulating the master 

equation containing the out-of-manifold scattering and bit-flip scattering Lindblad operators (see 

Sec. 4.4.2.1). We also performed the following experiments to estimate the Raman scattering rate; 

first, the ions were prepared in their qubit states, then the Raman laser beams were turned on 

with their frequency difference set far-off resonant from any transition, so their primary effect was 

to induce photon scattering. Finally the scattering rates were determined by measuring how much 

population that remained in the qubit states. The measurements agrees with the calculation using 

the Kramer-Heisenberg equation. Errors due to Rayleigh scattering (Sec. 4.4.2.2) were estimated 
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Figure 7.8: The coherence of the state produced by the microwave-induced-carrier gate is investi-
gated by applying an analysis π/2-pulse with a variable phase. The contrast of the parity oscillation 
is determined by fitting A cos(2φ + φ0) + B to the data points. 
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Infidelities/Errors Microwave 

(×10−3) 
Laser 

(×10−3) 
Spontaneous emission 

State preparation and detection 

Carrier drive infidelities 

Debye-Waller factor 

Fast oscillation term 

Imperfect sideband drive 

Motional heating of strectch mode 

2.8 

9.1 

1.3 

∼ 10 

∼ 3 

∼ 1 

< 1 

19 

17 

16 

∼ 6 

< 1 

∼ 1 

< 1 

Table 7.1: Individually evaluated errors that contribute to the imperfect creation of the Bell state 
|Φ+i state with carrier excitation driven by (i) microwave field and (ii) laser field. See Sec. 4.4 for 
detail discussions on error sources in the implementation of two-qubit gates and their respective 
evaluation strategies. 

to be negligible in the gate implementation here. 

The errors for state preparation and measurement include imperfect optical pumping that 

initialized the ions to the |2, 2i state, and errors in the transfers of population into and out of the 

qubit manifold. The improved state preparation and detection for the microwave-induced-carrier 

gate was achieved by a more careful calibration of the optical pumping laser beams’ polarization and 

alignment with respect to the applied magnetic field. By using a microwave field for the qubit-state 

transfers and better composite pulse sequences (e.g. see Eq. 2.12 and Eq. 2.14), state preparation 

and detection errors could be further suppressed to the level demonstrated in Chap. 6. 

Errors due to fluctuations of the carrier Rabi frequency that are slow compared to the gate 

duration are highly suppressed by the spin-echo techniques (Fig. 7.5 and Fig. 7.6). However, 

fluctuations on the time scale of the gate duration cause error. This error source was characterized 

by performing the gate sequences with only the carrier drive applied to the ions and measuring the 

probability the ions end in |↓↓i state for the laser-induced carrier or the |↑↑i state for the microwave-

induced carrier. The higher error for the laser-induced-carrier can be attributed to laser intensity 

and beam-pointing fluctuations. We estimated the error caused by fluctuations in the laser-induced 

sideband excitation due to laser intensity and beam-pointing fluctuation to be approximately 10−3 

for both cases. This error was determined by performing a Monte Carlo simulation of the sideband 
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excitation incorporating measured laser-intensity and beam-pointing fluctuations. Errors related to 

laser intensity and beam-pointing fluctuations could be suppressed by better laser beam control as 

demonstrated in Chap. 6, e.g. UV fibers [Colombe 14] and better laser power stabilization including 

the dynamic shaping of laser power profile (see Sec. 3.8). A double-dressed state technique has 

been proposed to suppressed errors due to imperfect carrier excitation [Cohen 15]. 

As the spin-dependent force was applied on the axial stretch mode, the error due to mo-

tional dephasing associated with the anomalous heating [Turchette 00a] of this mode is negligible. 

However, due to (i) the finite temperature (n̄ ' 0.2) of the COM mode at the beginning of the 

gate implementation and (ii) the heating of the COM mode (∼ 1 quanta/ms), the performance of 

the gate was affected through a fluctuating Debye-Waller factor (see Sec. 4.4.7). This error was 

estimated with Eq. 4.47 and Eq. 4.51. The microwave-carrier gate suffered more from this error 

mechanism due to its longer gate duration, as compared to the laser-carrier gate. 

As shown in Eq. 7.4, the Hamiltonian describing the Bermudez gate contains two terms. 

The first represents the spin-dependent force and the second is a fast oscillation term which can 

be neglected if the Rabi rate of the carrier excitation is sufficiently high, i.e. ΩC � Ω. In our 

implementation this condition was not rigorously satisfied and caused errors in the gate. This error 

is determined by performing numerical simulations with experimental values as input parameters, 

assuming they are noise free. Figure 7.9 shows the master equation simulation results of Bell state 

fidelity as a function of ΩC for different levels of motional dephasing rate as described by Eq. 4.39. Ω 

Errors associated with the imperfections of carrier excitation and the fast-oscillating term 

can be suppressed by better microwave field delivery that increases the Rabi rate and fidelity of 

microwave-driven transitions. Furthermore, a higher carrier Rabi rate also allows the gate speed 

to be increased, reducing the effect of error mechanisms associated with motional heating and 

thermal-related issues. 

Other sources of error include qubit dephasing, motional frequency fluctuations, off-resonance 

coupling to spectator transitions, optical phase fluctuations, imperfect global rotations and calibra-
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Figure 7.9: Master equation simulations are used to study the Bell state fidelity as a function of 
carrier Rabi rate (ΩC ) to sideband Rabi rate (Ω) ratio. The Hamiltonian described in Eq. 7.1 
and the motional dephasing Lindblad term described by Eq. 4.39 are included. Four different 
motional dephasing rates, Γ, are considered and color coded in this figure. Two groups of the gate 
implementations are shown: (i) solid lines (marked with the asterisk symbol (∗) in the legend) 
indicate a spin-echo sequence using a π-pulse rotation with π/2 phase shift as depicted in Fig. 7.5, 
and (ii) dashed lines represent spin-echo sequence implemented by shifting the phase of the carrier 
drive at the middle of the gate, as shown in Fig. 7.6. Each simulation begins with the ions in 
the |↑↑i state and with the interactions turned on for a gate time of tgate. The duration of the 
single-qubit gate for the π-pulse rotation used in spin-echo sequence (i) is not included in tgate to 
provide a straightforward comparison. For (i), Ω is set to be δ and the fidelity of the created Bell 2 

1state is evaluated at tgate = δ . For (ii), the spin-echo sequence produces a two-loop gate. In this 
δ 2case, Ω is set to be √ and tgate = δ . A total of 11 Fock states are used in the simulation. 
2 2 
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tion errors. These sources are estimated to contribute errors on the order of a few 10−4 or lower to 

the gate, and they were not studied extensively here (see Sec. 4.4 for discussions regarding these 

error sources). 

7.4 Summary 

Inspired by the proposal presented in Ref. [Bermudez 12], which considered a dynamical-

decoupling entangling gate operating in the weak effective spin-spin coupling regime, we modified 

the proposal and demonstrated two gate schemes which operate in the strong coupling regime to 

maximize gate speed for a given laser-induced transition Rabi rate. By creating a Bell state and 

evaluating its fidelity, the performance of our gate implementations were investigated. The highest 

Bell state fidelity achieved was measured to be 0.974(4). The error sources that limit the creation 

of a perfect Bell state were studied and we determined that these errors were dominated by various 

technical issues at the time these gate schemes were implemented. Technical improvements that 

were made to allow the implementations of the high-fidelity universal gate set (described in Chap. 

6) would also benefit the gate scheme described here. 

A similar scheme has also been investigated in another trapped-ion group. In Ref. [Harty 16] 

a Bell state with a fidelity of 0.997(1) was created by employing a modified scheme which is 

referred to as the dynamical-decoupling Mølmer-Sørensen gate. The gate scheme was implemented 

with two detuned motional sideband excitations (similar to that of the Mølmer-Sørensen protocol 

described in Sec. 4.3.4), together with a carrier excitation that provided the dynamical decoupling. 

This gate scheme alleviates the requirement that the Rabi rate of the carrier excitation be much 

larger than the sideband excitations, while still providing protection against qubit dephasing. The 

gate implementation was accomplished by an all-microwave scheme, and the built-in dynamical 

decoupling reduced the gate error due to qubit dephasing caused by fluctuating AC Zeeman shifts 

induced by fluctuating microwave fields. 



Chapter 8 

Chained Bell Inequality Experiment 

In this chapter, we describe chained Bell inequality (CBI) [Pearle 70] experiments performed 

with pairs of trapped ions. Ion pairs used here include a pair of 9Be+ ions and a 9Be+ - 25Mg+ 

pair. The experiments were implemented with the techniques developed for a trapped-ion quan-

tum information processing (QIP) using a quantum charge coupled device architecture outlined in 

Ref. [Wineland 98] and Ref. [Kielpinski 02]. These include (i) magnetic field insenstive (“clock”) 

state qubits which offer long coherence time, (ii) robust state preparation and measurement, (iii) 

shuttling of ions for their individual addressing and measurements, (vi) generation of mixed-species 

entanglement (described in Chap. 5), (iv) high-fidelity deterministic generation of Bell states, 

and (v) single-qubit gates, (the latter two are described in Chap. 6). High performance of these 

techniques is essential for the realization of the experiments described here. 

The detection efficiency in our experiment is near 100 %, and the measurement outcomes of 

every trial in each experiment were recorded. This avoid making the “fair sampling” assumption, 

such that our experiments successfully close the “detection loophole” [Pearle 70, Clauser 74]. 

This chapter is organized in the following fashion: we will first use the better known Clauser, 

Horne, Shimony, and Holt (CHSH)-type [Clauser 69] experiment to provide background and then 

introduce the chained Bell inequality experiment, including a brief summary on loopholes in Bell 

inequality experiments and previous CBI experiments. After a brief description of the experiment 

setup, results are presented in Sec. 8.3. The lowest chained Bell inequality parameter determined 

from our measurements is 0.296(12). This value is significantly lower than 0.586, the minimum 
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fraction derived from a perfect CHSH-type experiment. Lastly in Sec. 8.4, we briefly discuss 

one consequence of our Bell inequality results in the context of quantum certification under the 

“self-testing” framework [Mayers 04, McKague 12]. 

8.1 Background and Motivation 

The incompatibility between quantum physics and local-realistic theory was first presented by 

Einstein, Podolsky, and Rosen [Einstein 35] and formulated by John Bell with a mathematical in-

equality [Bell 64]. This was followed by proposals for this conflict to be investigated in the so-called 

“Bell inequality experiments”. The most notable one is that presented by Clauser, Horne, Shimony, 

and Holt (CHSH) [Clauser 69]. With each particle subjected to two measurement settings, a CHSH 

experiment employs two particles to be jointly measured with four different measurement setting 

combinations. In such experiments, the correlation outcomes must satisfy the CHSH inequality if 

local realism is valid, the CHSH inequality can be written as [Rowe 01] 

BCHSH = |q(α1, β1) + q(α2, β1)| + |q(α1, β2) − q(α2, β2)| 

≤ 2, (8.1) 

with 

Ncorrelated(αk, βl) − Nanticorrelated(αk, βl) 
q(αk, βl) = , (8.2)

Ncorrelated(αk, βl) + Nanticorrelated(αk, βl)

where ak and bl with k, l = 1, 2 are the measurement setting choices applied on system a and b, 

respectively. 

The first experimental confirmation of this violation by a quantum system was performed 

by Freedman and Clauser [Freedman 72], and refined by Aspect, Grangier and Roger [Aspect 82]. 

Along with many other Bell inequality experiments performed with various systems since these 

pioneering works, the experimental results provide evidence that quantum physics contradicts the 

predictions of local realistic theories. However, all of these experiments are subjected to certain 

“loopholes”, which in principle, could allow a local system to show violation of the Bell inequality. 

A major milestone was reached with three loophole-free CHSH-type Bell inequality experiments 
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[Hensen 15, Shalm 15, Giustina 15]. However, although these experiments reject with high confi-

dence the null hypothesis of “nature is local”, they are limited in the extent to which their data 

may assert the hypothesis that their data exhibits maximum nonlocality. Here, we are using the 

convention that “local” is referred to the distribution of outcomes which obeys Bell’s inequalities, 

and “nonlocal” is referred to the distribution that violates Bell inequalities. 

Elitzur, Popescu, and Rohrlich [Elitzur 92] described a model of the distribution of outcomes 

measured from a quantum state as a mixture of a local-realistic distribution, which obeys Bell’s 

inequalities, and another distribution that does not. That is, a probability distribution P for the 

outcomes of a experiment can be written as 

P = plocalP L + (1 − plocal)P NL , (8.3) 

where P L represents a local joint probability distribution and P NL represents a non-local distri-

bution, with plocal as the weight of the local component bound by 0 ≤ plocal ≤ 1. For an ideal 

CHSH Bell inequality experiment, the lowest attainable upper bound on the local content plocal in 

the distribution created by a maximally entangled state is ∼ 0.586 [Barrett 06, Christensen 15]. In 

principle, this bound can be lowered to zero by using a chained Bell inequality (CBI) experiment 

[Pearle 70]. 

As indicated in Fig. 8.1.(a), CBI experiments are a generalization of a CHSH-type experi-

ment. During each trial, a source that may be treated as a “black box” emits two systems labeled 

a and b, respectively. The experimentalist records the measurement outcomes after choosing a 

pair of measurements to perform separately on a and b. We use the symbols ak, bl to denote the 

respective measurement settings and akbl for the pair. There is a hierarchy in which the Nth CBI 

experiment involves 2N different settings. The N = 2 CBI experiment is equivalent to the CHSH 

Bell inequality experiment. The settings for general N are chosen from the set 

Z = {a1b1, a1b2, a2b2, a2b3, . . . , aN−1bN , aN bN , aN b1}. (8.4) 

Each local measurement has a binary outcome which we call B for “bright” or D for “dark”. The 

outcome of the trial is recorded as c(x, y) = 1 if x = y or 0 if x 6 y, where x is the outcome = 
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Source

Measurement 
setting: 𝒂𝒂𝒌𝒌

Measurement 
setting: 𝒃𝒃𝒍𝒍

Bell test

Measurement:
x = B or D

Measurement:
y = B or D

𝒂𝒂

𝒃𝒃
c(x,y) = 0 or 1

(a)

(b) 𝒂𝒂𝟏𝟏
𝒂𝒂𝟐𝟐
𝒂𝒂𝟑𝟑
⋮

𝒂𝒂𝑵𝑵−𝟏𝟏
𝒂𝒂𝑵𝑵

𝒃𝒃𝟏𝟏
𝒃𝒃𝟐𝟐
𝒃𝒃𝟑𝟑
⋮

𝒃𝒃𝑵𝑵−𝟏𝟏
𝒃𝒃𝑵𝑵

Figure 8.1: (a) Illustration of a Bell inequality experiment. A source emits two systems a and b, here 
two 9Be+ ions. After choosing measurement settings ak and bl, the experiment implements Hilbert-
space rotation operations (which are controlled with classical variables) on the ions respectively. 
Then a standard fluorescence based measurement in a fixed basis is applied to each ion. This is 
equivalent to choosing the measurement basis for the state that is present before the measurement 
settings are applied. Each system’s measurement outcome is labeled B for “bright” or D for “dark”, 
corresponding to the observation of fluorescence or not. From the joint measurement we record “c 
= 1” if the outcomes are the same and “c = 0” if they are not. (b) “Chaining” of the measurement 
settings for the Nth CBI experiment. The measurement settings can be visualized as a chain where 
akbk and ak+1bk+1 are linked by akbk+1, and the chain is closed by the settings aN b1. The CHSH 
Bell inequality experiment corresponds to the special case of N = 2. 
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from system a and y is the outcome from system b. The probability to obtain c(x, y) = 1 may 

depend on the choices ak and bl, so we define that probability to be the correlation C(ak, bl) = 

P (BB|akbl) + P (DD|akbl), where P (xy|akbl) is the probability that system a yields measurement 

outcome x and system b yields measurement outcome y when the measurement settings pair is akbl. 

We define the chained Bell parameter to be: 

IN = C(a1, b1) + C(a1, b2) + C(a2, b2) + C(aN , bN ) + (1 − C(aN , b1)) . (8.5) 

If the experiment is governed by a local hidden variable model, then the chained Bell inequality 

IN ≥ 1 (8.6) 

must be satisfied [Pearle 70]. Note that IN can be estimated using only the record of the settings 

akbl and outcomes c(x, y), without knowledge of the mechanism of the source, thus it is referred to 

as a “black box”. It was shown in Ref. [Barrett 06] that the chained Bell parameter IN is always 

an upper bound on plocal. Furthermore, IN is shown in Ref. [Bierhorst 16] to be a least upper 

bound for plocal under the assumption that the distributions are non-signaling, in the sense that 

each party’s measurement outcomes do not depend on the remote party’s setting choice. In the 

limit of N →∞ and with perfect experimental conditions, CBI experiments could be used to show 

that plocal → 0, demonstrating complete departure from local realism. 

8.1.1 “Loopholes” and Previous Experiments 

Similar to a CHSH-type experiment, a CBI experiment may be subject to “loopholes” that, 

in principle, allow local systems to show violation of the inequality. Loopholes can also be viewed 

as certain interpretations of the local-realistic theory. These loopholes arise when one must rely on 

various supporting assumptions that are made in the design and execution of the experiments, but 

which cannot be absolutely verified. Loopholes in Bell inequality experiments are reviewed in the 

recent articles of Ref. [Brunner 14] and Ref. [Å. Larsson 14]. 

For example, if the setting choice for a can be communicated to b (or vice-versa), the “locality 

loophole” is opened. Ensuring space-like separation between the choices and remote measurement 
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events closes this loophole [Bell 85]. The “detection loophole” [Pearle 70, Clauser 74] is opened by 

making the fair-sampling assumption, which says that a subset of the data can be used to represent 

the entire data set. This assumption is often used when some trials fail to produce outcomes due 

to inefficient detectors. High efficiency detectors are required to close the detection loophole and 

observe violation of the inequality [Cabello 09]. The minimum detection efficiency required to close 

the detection loophole for the Nth CBI experiment is given by [Cabello 09] 

2 
ηmin(N) = 

N , (8.7)
cos( π ) + 1 N−1 2N 

assuming that the measurement efficiencies on a and b are equal and that a maximally entangled 

state is measured. This emphasizes the important of high detection efficiencny in large N CBI 

experiments. If the analysis of the data assumes that the outcomes of the trials are independent 

and identically distributed (i.i.d.), the “memory loophole” is opened [Barrett 02]. For example, one 

way to determine IN is by running each of the CBI setting pairs akbl for a total number of Mk,l 

trials respectively and calculating PMk,l 
i=1 c(xi, yi)C(ak, bl) = , (8.8)

Mk,l 

(where i indexes the trials) to estimate each C(al, bk) term in Eq. 8.5. This analysis requires the 

i.i.d. assumption for standard error estimates to be valid. This loophole can also be associated with 

certain memory effects which can exists in experimental apparatus that produce data erroneously 

due to the time sequential nature of the execution of experiments. The memory loophole can 

be closed by applying appropriate analysis techniques to an experiment that uses randomized 

measurement settings from trial to trial [Gill 03]. 

Previous experiments on the CBIs (N ≥ 3) employed entangled photons pairs [Pomarico 11, 

Aolita 12, Stuart 12, Christensen 15]. The lowest yet reported upper bound on plocal is approxi-

mately 0.126 [Christensen 15]. However, to our knowledge all previous CBI experiments with N ≥ 3 

suffer from the locality, detection, and memory loopholes. 

There exist five previous CHSH-type Bell inequality experiments with trapped ions [Rowe 01, 

Matsukevich 08, Pironio 10, Ballance 15, Tan 15]; all of them closed the detection loophole. The 
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first detection-loophole-closing Bell inequality experiment was performed with two 9Be+ ions by 

Rowe et al. [Rowe 01]. In this case the ions were always confined in one potential well dur-

ing applications of measurement settings and measurements. In Ref. [Matsukevich 08] and Ref. 

[Pironio 10], two 171Yb+ ions were separately confined in two traps separated by a distance of ∼ 1 

m. Entanglement was created by a heralded scheme with photonic links, where each of the two 

remotely located ions was first entangled with the polarization states of an emitted photon, then 

the entanglement of the two ions was accomplished via interference and joint measurement of the 

two photons. Two different isotopes of calcium ions, i.e. 43Ca+ and 40Ca+ were subjected to a Bell 

inequality test in Ref. [Ballance 15]. Although the Bell state was created by a high-fidelity deter-

ministic entangling gate, this experiment suffered measurement errors on the 40Ca+ ion. Lastly, a 

CHSH Bell inequality experiment was also carried out on a pair of 9Be+ and 25Mg+ ions, described 

in Sec. 5.3.2 and in Ref. [Tan 15]. However, none of the trapped-ion experiments, including the 

experiments described here, are able to close the locality loophole. In Table 8.1 we list all CHSH 

Bell inequality experiments (across all platforms) that close the detection loopholes. 

8.2 Experiment Setup 

Five trapping zones were used in this experiment, they are labeled as EL, E , S, E 0 , ER in 

Fig. 8.2. The ions can be confined together in a single harmonic well, or separately confined in 

different locations along the trap axis. Time varying potentials are applied to the control electrodes 

to deterministically separate ions and transport them between different locations [Blakestad 11, 

Bowler 12]. Two 9Be+ ions are initially confined in zone S to interact with laser beams for the 

generation of entanglement. Trapping parameters in S are set to be similar to that when ions 

are confined in E , where manipulation of ions in the experiments described in Chap. 5 and 6 

were performed. The two states of the ions are encoded in the “clock” qubit states described in 

Sec. 2.1, i.e. |F = 2,mF = 0i = |↓i and |1, 1i = |↑i. This clock qubit is realized by applying an 

external magnetic field of ∼ 119.446 G, which makes the transition frequency first-order insensitive 

to magnetic-field fluctuations [Langer 05]. We measured a qubit coherence time of approximately 
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Figure 8.2: Layout of the relevant segmented trap electrodes. Each CBI experiment begins with 
one ion located in zone E and  the other in zone E 0. The blue dots, which indicate the ions, are 
overlaid on a photograph showing the trap electrodes (gold). By transporting the ions in and out 
of zone S, we individually implement settings and measure each ion sequentially. The ions are 
separated by at least ∼ 340 µm when settings akbl are applied, a distance much larger than the 
laser beams waist of ∼ 25 µm. 
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1.5 s (see Sec. 2.1). Such a long-lived memory storage duration is essential when taking into account 

the duration for each trial, as detailed later. 

To deterministically create a Bell state, we employ a pulse sequence as depicted in Fig. 8.3. 

This sequence consists of a two-qubit entangling gate and multiple global rotations induced by 

laser beams, and is equivalent to that described in Sec. 5.2.3. The entangling gate is implemented 

using the Mølmer-Sørensen (MS) protocol [Sørensen 99, Sørensen 00] as described in Chap. 6. 

The global pulses shown inside the dashed box in Fig. 8.3 are induced by the same set of (non-

copropagating) laser beams (all three beams shown in Fig. 6.1) that drive the MS interaction. 

By embedding the MS interaction in such a Ramsey sequence, the overall pulse sequence in the 

dashed box produces entanglement which has negligible sensitivity to slow phase drift between laser 

beams [Lee 05, Tan 15], and implements the operations |↑↑i → |↑↑i, |↑↓i → i|↑↓i, |↓↑i → i|↓↑i, 

and |↓↓i → |↓↓i. Global rotations shown labeled as “Co Carrier” in Fig. 8.3 were induced by the 

copropagating laser beams used for the single-qubit rotations as described in Sec. 6.7. All laser 

beams are focused and directed at zone S (Fig. 8.2), with beam waists of ∼ 25 µm. With both 

ions initialized to the |↑↑i state, the overall pulse sequence in Fig. 8.3 creates the entangled state 

1 1|Φ+i = √ (|↑↑i + |↓↓i). From this state, we can effectively create the |Φ−i = √ (|↑↑i − |↓↓i) state 
2 2 

by appropriately shifting the phase of the pulses that implement the measurement settings bl. This 

is equivalent to a π/2-rotation around the z-axis of the Bloch sphere. 

By measuring the population and the coherence of the created Bell state [Sackett 00], we 

determine the fidelity of the overall sequence in Fig. 8.3 to be ' 0.99 (this evaluation of the Bell-

state fidelity is similar to that used and described in Chap. 5 and Chap. 7). The Bell state fidelity 

is lower than that achieved in Chap. 6 due to a higher error dominated by spontaneous emission of 

photons induced by the Raman laser beams [Ozeri 07]. Here, different laser parameters, including 

Raman detuning, laser intensities, and polarizations compared to those used in Chap. 6 are chosen 

to allow different operations (e.g. two-qubit gate, global rotation, and single-qubit rotation) to 

be implemented with the same laser beam lines. Furthermore, in Chap. 6 the entangling gate 

was applied with ions confined in zone E (Fig. 8.2), but here entanglement is created in S. We 
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Figure 8.3: Pulse sequence for generating the entangled state |Φ 1
+i = √ (|↑↑i + |↓↓i). The notation 

2 
R(θ, φ) represents the rotation with angle θ about an axis in the x-y plane of the Bloch sphere, 
and φ is the azimuthal angle of the rotation axis. Operation Rz(ξ) is the rotation with an angle 
ξ around the z axis of the Bloch sphere. The angle θ is adjusted by varying the length of the 
laser pulse, and φ and ξ are adjusted with the phases of the RF signal driving the AOMs that 
controls the laser beams. Laser pulses in the dashed box all use the same set of laser beams, which 
makes the sensitivity of the created state to slow phase drifts between the two Raman beam paths 
negligible [Lee 05, Tan 15]. The two laser beams used to drive the stimulated-Raman transitions for 
the pulses outside of the dashed box (labeled as “Co Carrier”) are copropagating (the laser beams 
labeled as k2a and k2b in Fig. 6.1) which eliminates phase drifts due to path length differences 
in the beams [Gaebler 16] (see also Sec. 6.7). The Rz rotation is implemented by shifting the 
phase of the direct digital synthesizer controlling the laser pulses that implement the subsequent 
measurement settings bl. 
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measure a factor of ∼ 2 higher axial motional heating [Turchette 00a] rate (∼ 80 quanta/s for the 

center-of-mass mode) at S than in E . All these factors reduce the fidelity of the entangling gate 

that creates the Bell states (see Sec. 4.4). � � 
After the states �Φ+/− are created at zone S (Fig. 8.2), the ions are separated and placed 

in two potential wells located in zone E and E 0, separated by ∼ 340 µm. These processes represent 

the source in Fig. 8.1 and prepare the two ions a and b for the measurement of IN described below. 

To apply the settings ak and bl to the ions individually, the ion in E is first transported to 

EL while the ion in E 0 is simultaneously transported to S (see Fig. 8.4). We then illuminate the 

ion with Raman-transition-inducing laser beams to zone S to implement the measurement setting 

ak without disturbing ion b. Subsequently, time-varying voltages are applied to implement the 

simultaneous well transportation operations S → ER and EL → S. With ion b located in zone 

S, the laser beams implement the measurement setting bl. The Raman laser beams used for the 

applications of measurement settings are the copropagating beams labeled as “Co Carrier ” in Fig. 

8.3. Ideally, these operation can be described as the following rotations: 

1 � � 
|↑i → √ |↑i − e −irk |↓i ,r r r

2 
1 � � 

|↓i → √ |↓i − e irk |↑i , (8.9)r r r
2 

where r = a or b to represent each of the ions, and the angles rk = ak or bk are 

(2k − 1)π 
ak = , (8.10)

2N 
(l − 1)π 

bl = − , (8.11)
N 

which are chosen from Eq. 8.4. These angles minimize the expected value of IN if the produced 

entangled state is ideal [Braunstein 90]. These rotation operations are implemented by setting the 

amplitude and phase of the Raman laser beams with an acousto-optic modulator (AOM) (see Sec. 

3.4.3). The radio-frequency electric field driving the AOM is produced by a field-programmable 

gate array (FPGA)-controlled direct digital synthesizer (see Fig. 3.11). The classical variable is 

the phase of the oscillating field that implements a particular setting ak or bl. The experiment 
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sequence is depicted in Fig. 8.4. 

After applying the measurement settings, the ions are recombined into zone S for “shelving” 

pulses to be applied on both ions simultaneously. Then, similar transport procedures separate 

and move the ions into zone S sequentially to be individually measured with the standard state-

dependent fluorescence technique. When the detection laser is turned on, we detect on average 30 

photon counts per ion for ion in the |↑i state on a photomultiplier tube and about 2 counts when 

the ion is in the |↓i state. See Sec. 2.1.6 and Sec. 2.1.7 for details on the shelving and fluorescence 

detection of the 9Be+ ions. The photon collection apparatus is positioned to image zone S with a 

field of view of approximately 50 µm in this experiment (see Sec. 3.3). We label a measurement 

outcome “dark” (D) if six or fewer photons are observed and “bright” (B) if more than 6 are 

observed. Figure 8.5 shows the typical detection photon histograms of the two 9Be+ ions. With 

this, we obtain the four possible joint-measurement fluorescence outcomes BB, BD, DB, DD, for 

each experiment. These outcomes correspond to the states |↑↑i, |↑↓i, |↓↑i, and |↓↓i. 

The durations taken for each separation are ∼ 300 µs, and simultaneous transport takes ∼ 

250 µs. With the detection duration of ∼ 330 µs and the durations taken by other operations, the 

total duration shown in Fig. 8.4 takes ∼ 3 ms. Due to this extended duration, it becomes important 

for the ion’s state memory storage time to be long lived. Using states associated with magnetic-

field sensitive transitions to encode the ions’ would not be ideal in this experiment, because the 

memory storage times of a magnetic-field sensitive transitions in a 9Be+ ion are typically a few ms, 

which is comparable to (or shorter than) the duration for the pulse sequence shown in Fig. 8.4. 

Magnetic-field sensitivities of hyperfine transitions in the electronic ground state of a 9Be+ ion are 

shown in Fig. A.1. 

When the state |Φ+i is prepared, we compute an estimate IbN of IN as shown in Eq. 8.5 with 

Eq. 8.8 used to estimate the C(ak, bl) terms. For the state |Φ−i we instead use anticorrelations and 

compute � � 
IbA = A(a1, b1) + A(a1, b2) + A(a2, b2) + A(aN , bN ) + 1 −A(aN , b1) , (8.12)N 
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Figure 8.4: Experimental sequence for one trial. The notation ELS refers to transport to place 
the ion b in zone EL and ion a in zone S. Similarly for the operation SER. The entangled state is 
generated as shown in Fig. 8.3 with the ions located in zone S. Time-varying potentials are applied 
to control electrodes for the separation, shuttling and recombination of the ions [Blakestad 11, 
Bowler 12]. The total duration of the entire sequence shown here is approximately 3 ms. The 
initial optical pumping, Doppler cooling and ground-state cooling which are applied prior to the 
Bell state generation are not shown here. The total duration of one trial is approximately 8 ms. 
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Figure 8.5: Typical detection photon histograms that were obtained when we apply the state-
dependent fluorescence detection on each ion sequentially. During the state measurement of ion 
a (b) at zone S, ion b (a) is located in zone EL (ER) such that it does not interact with the 
detection laser beam. We choose the threshold of 6 for the differentiation of the “bright” and 
“dark” measurement outcomes. 
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where A(ak, bl) = 1 −C(ak, bl). The measured IbA is equivalent to b for the purpose of quantifying N IN 

plocal 

8.3 Experiment Results 

We performed the experiment for the CBI parameter N ranging from 2 to 15. Figure 8.6 

shows the experimentally obtained CBI parameter IbN as a function of N . The data points in Fig. 

8.6 were obtained with multiple sequential trials having the same settings, then iterated across 

different choices of settings. The error bars are calculated under the assumption that the settings qP 
and outcomes are i.i.d. The error bars indicate the propagated standard errors �2 

j , withj p
�j = χj (1 − χj )/(Mj − 1) where Mj is the number of trials (here Mj ∼ 2, 000) and χj is the 

averaged correlated or anticorrelated outcome for the jth setting pair. 

Two different data sets are collected using two 9Be+ ions. The first data set was obtained with 

the Bell state |Φ−i undergoing trials and by computing the CBI parameters according to Eq. 8.12. 

The second data set was carried out with |Φ+i and the CBI parameters were calculated according 

to Eq. 8.5. These two data sets were collected ∼ 6 months apart. Due to miscalibrations and our 

inability to completely reproduce the experimental conditions, there exists noticable differences 

between the two data sets and finer features within each data set. Furthermore, the very high 

demands of fidelity and the high sensitivities to errors of the elementary operations required for the 

realization of these experiments can also contribute to these observed behaviors. The Ib2 experiment 

took a total of ∼ 5 minutes, the one for Ib15 ∼ 20 minutes. The lowest value of IbN is obtained for 

the N = 9 data run, where Ib9 = 0.296(12). 

Using the same apparatus, we also performed the CBI experiment on an entangled pair of 

9Be+ and 25Mg+ ions. The computed IbN values are shown as orange dots in Fig. 8.6. The 

generation of the mixed-species entangled state is described in Chap. 5 and Ref. [Tan 15]. In 

this experiment, the ions remain confined in a single zone throughout the entire sequence. The 

rotations implementing the settings choices are applied with microwave fields tuned to each ion. The 

frequencies are ' 1.2 GHz for the 9Be+ ion and ' 1.8 GHz for the 25Mg+ ion. The determinations 
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 Figure 8.6: Experimentally measured values IbN and IbAN as a function of N . Data represented by 
black and  blue dots are obtained with two 9Be+ ions, with black (blue) dots corresponding to tests 
on |Φ+i (|Φ−i). These two data sets were obtained approximately six months apart. The difference 
between them and the finer features within each data set are probably due to miscalibrations and 
our inability to reproduce exact experimental conditions. Orange dots are data from test on |Φ+i 
prepared on  a 9Be+-25Mg+ pair. The dashed line indicates the lowest upper bound on the local 
content attainable in a perfect CHSH-type experiment. 
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of the final states of the two ions are made with detection lasers at ∼ 313 nm for the 9Be+ and at 

∼ 280 nm for the 25Mg+ ion. Due to higher background photon counts when the CBI experiments 

were performed on the 9Be+-25Mg+ pair, bright thresholds of 11 and 12 were used for 9Be+ and 

25Mg+, respectively. See Chap. 2 for detailed energy level structures, and descriptions of detection, 

and manipulation of the 9Be+ and 25Mg+ ions. 

8.4 Self-Testing of Bell States 

It was shown in Ref. [Popescu 92] that if the CHSH inequality (Eq. 8.1) is violated at 
√ 

the maximum value of 2 2 by a bipartite system, the system must be in a maximally entangled 

state. This is a remarkable result because it enables the validation of the quantum entanglement 

using only the observed correlations. In other words, violation of Bell inequality can serve as an 

entanglement witness. Such a characterizations with minimal assumptions on the quantum devices 

is formalized under the self-testing framework [Mayers 04, McKague 12]. With this framework, an 

experimentalist is able to quantify the quality of the entangled state given an amount of violation 

of a Bell inequality [Bardyn 09, Yang 14, Bancal 15, Kaniewski 16]. Furthermore, because the 

quantum device is treated as a black box, such characterization can offer a device-independent 

assessment of the physical system under inspection. Thus, self-tested certification can be used as 

a benchmark for QIP devices across different platforms. 

Here, we use the method provided by Ref. [Kaniewski 16] to infer a self-tested Bell-state 

bfidelity. Our lowest measurement of I2 corresponds to a CHSH inequality parameter (sum of 

correlations) of BCHSH = 2.80(2), which is calculated using the following equation: 

BCHSH = 2 (1 − I2) + 2. (8.13) 

We infer a self-tested Bell-state fidelity lower bound (at the 95 % confidence level) of FL ∼ 0.958. 

This is calculated with [Kaniewski 16] � � 
1 BCHSH − βS

FL = 1 + √ , (8.14)
2 2 2 − βS 
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√ 
where βS = (16+14 2)/17. There also exist other methods to infer a self-testing Bell-state fidelity, 

see for example Ref. [Bardyn 09] and Ref. [Bancal 15]. 

Our self-tested fidelity appears to be the highest for a deterministically created Bell state. 

Several previous experiments have reported violation of the CHSH inequality (the CBI with N = 2) 

while closing the detection loophole [Rowe 01, Matsukevich 08, Pironio 10, Ballance 15, Tan 15, 

Ansmann 09, Hofmann 12, Pfaff 13, Vlastakis 15, Dehollain 16], and [Hensen 16] closed all loop-

holes. Other experiments [Shalm 15, Giustina 15] have closed the detection loophole, but they 

reported violation of other Bell inequalities, for which self-tested fidelity bounds are not available. 

Table 8.1 summarizes the BCHSH parameters determined in several previous detection-loophole 

closing experiments and ours, as well as the resulting self-testing singlet-fidelity lower-bound ac-

cording to Eq. 8.14 at the 50 % and 95 % confidence levels. For the 50 % confidence fidelity lower 

bound we use the point estimates of BCHSH given in Table 8.1, and for the 95 % confidence lower 

bound we replace BCHSH in the equation above with a 95 % confidence lower bound on BCHSH 

assuming that each estimate of BCHSH is normally distributed with standard deviation given by 

the uncertainties in the table. 

8.5 Summary 

In summary, we used the quantum information processing (QIP) techniques based on trapped-

ions described in this thesis to perform a chained Bell inequality (CBI) experiment. The lowest CBI 

parameter determined from our measurements is 0.296(12) in a N = 9 CBI experiment. This value is 

significantly lower than 0.586, the minimum fraction derived from a perfect Clauser-Horne-Shimony-

Holt (CHSH)-type experiment (the CBI with N = 2). Furthermore, for the conventional case of 

the CHSH inequality, the fidelity of the Bell state is certified to be 0.958 at the 95 % confidence 

level under a self-testing protocol [Kaniewski 16]. This result is the highest for a deterministically 

created Bell state, and verifies that the basic elements of trapped-ion QIP techniques employed here 

work well in combination, demonstrating the versatility and promising capabilities of QIP based 

on trapped-ions. 
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Reference System BCHSH F 50% 
L F 95% 

L 

[Rowe 01] Two 9Be+ 2.25(3) 0.600 0.566 

[Matsukevich 08] Two 171Yb+ 2.54(2) 0.800 0.778 

[Ansmann 09] Phase qubits 2.0732(3) 0.477 0.477 

[Pironio 10] Two 171Yb+ 2.414(58) 0.713 0.647 

[Hofmann 12] Two Rb0 2.19(9) 0.558 0.456 

[Pfaff 13] One NV 2.30(5) 0.634 0.577 

[Vlastakis 15] Trans. & cavity 2.30(4) 0.634 0.589 

[Ballance 15] 40Ca+ & 43Ca+ 2.228(15) 0.584 0.567 

[Tan 15] 9Be+ & 25Mg+ 2.70(2) 0.911 0.888 

see also Sec. 5.3.2 

[Dehollain 16] One 31P in Si 2.70(9) 0.911 0.809 

[Hensen 16] Two NV 2.38(14) 0.690 0.530 

This work Two 9Be+ 2.80(2) 0.980 0.958 

Table 8.1: Results from CHSH experiments without the fair-sampling assumption. The table shows 
each experiment’s measured CHSH parameter BCHSH with one standard deviation uncertainty from 
the references and self-testing fidelity lower bounds at the 50 % (F 50%) L and 95 % (F 95%) confidence L 
levels determined according to Eq. 8.14. 



Chapter 9 

Outlook 

This dissertation work focuses on implementing two-qubit entangling gates in the context of 

scaling trapped-ion quantum information processing (QIP) in the quantum charge coupled device 

(QCCD) architecture [Wineland 98, Kielpinski 02]. That is, the entangling gates were implemented 

inside ion traps which are designed for scaling and some of the experiments utilize all of the basic 

features required for scaling. Furthermore, the use of multiple ion species is incorporated which 

is also regarded as an important utility for the realization of a practical trapped-ion based QIP 

device. 

While improvements on gate performance have been made, and incorporation of most trapped-

ion QIP elementary operations in one experiment which can be used as benchmarks for these oper-

ations has been demonstrated, it still remains a tremendous challenge for an operational large-scale 

trapped-ion quantum information processor to be realized. Based on the experience and lessons 

learned from these experiments, here we briefly summarize potential areas of improvement for 

future experiments. 

9.1 Better Trap design 

9.1.1 Axial Micromotion 

In our experiment a major source of error for two-qubit entangling gates is the spontaneous 

scattering of photons induced by the laser beams used for exciting stimulated-Raman transitions 

(Sec. 4.4.2). In the X-junction trap, due to axial micromotion caused by the particular trap design 
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and imperfections in the trap construction (see Sec. 3.1 and Ref. [Blakestad 10]), the Raman 

scattering rate for a 9Be+ ion is increased by a factor of ∼ 4 compared the case where micromotion 

is absent. Therefore future trap designs must be carefully simulated to suppress this effect and 

fabrication techniques need to be further developed. 

9.1.2 Segmented-Stray-Fields Compensating Electrodes 

Segmented electrodes are useful for the compensation of stray electric fields, as depicted in 

Fig. 9.1. The X-junction trap has only one bias electrode that provides a micromotion compensating 

electric field along the x axis (see Fig. 9.1). While it is possible to null excess RF micromotion at any 

given location along the z-axis with only the diagonal control electrodes and the bias electrode, it is 

a non-trivial problem to simultaneously null excess RF micromotion at different locations along the 

z direction with this configuration. Simultaneous minimization of excess micromotion at multiple 

locations along the axis is important for storing ions at different locations simultaneously and for 

shuttling operations. Such designs have been pursued in a linear Paul trap [Pyka 14, Kienzler 15] 

and might be employed for future work in scalable traps. 

9.2 Cooling of Trap Apparatus 

A major limiting factor to increasing the number of trapped ions is due to collisions of ions 

with background gas in the vacuum chamber. Such collisions can cause unacceptable heating and 

ion reordering, and ion loss through exothermic chemical reactions [Wineland 98]. This can be 

mitigated by employing cryogenic pumping [Wilson 14, Niedermayr 14, Bruzewicz 15, Alonso 16]. 

Most gases which are commonly found in the background of a high vacuum system condense 

on material surfaces at temperatures ≤ 20 K; therefore operating at these temperatures should 

substantially reduce the background gas collisions rates. Another advantage of cooling is that the 

heating rate of motional modes [Turchette 00a] due to uncontrolled noisy electric fields could also 

be suppressed [Labaziewicz 08, Bruzewicz 15, Brownnutt 15]. Low heating rates are important to 

suppress errors in two-qubit entangling gates as discussed in Chap. 4. 
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Figure 9.1: Schematic showing the cross section of a potential linear Paul trap with multiple shim
electrodes. Our X-junction trap (see Sec. 3.1) consists of two pairs of RF electrodes and two 
pairs of control electrodes (inside the grey dashed box), as well as a single bias electrode. The 
control electrodes are segmented along the z direction. In the proposed design, in addition to the 
electrodes inside the dashed box, two segmented “shim” electrodes that run parallel to the RF and 
control electrodes along the z axis will also be included. This design enables excess micromotion at 
different locations along the z-axis to be better compensated simultaneously. In addition to being 
important for the implementations of motional mode cooling and fluorescence detection, better 
compensation of excess micromotion is particularly crucial for implementing two-qubit entangling 
gates and shuttling of ions. Shuttling operations include transporting, separating, and recombining 
ions. 
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Drawbacks of operating a trapped-ion apparatus at the cryogenic temperatures include (i) 

restrictions on the heat load allowable, (ii) restrictions on laser beams access due to cryogenic 

apparatus and heat shields, and (iii) for liquid Helium bath cryostats, the cost of Helium. 

9.3 Rapid Loading of Ions 

A fast loading mechanism for ions can be advantageous. This becomes increasingly important 

as the required number of ions increases for more complicated experiments. Currently, loading uses 

resistively-heated ovens in combination with photoionization laser beams. The ion loading rate is 

typically one ion per minute limited by the need to control the number of ions loaded; furthermore, 

the heat generated by the ovens can increase background pressure. 

Two approaches for the rapid loading of ions have been investigated in several groups: (i) in-

tegration of a neutral atom magneto-optical trap (MOT) with an ion trap [Cetina 07, Sage 12], and 

(ii) ablation loading of ions [Hashimoto 06, Leibrandt 07, Hendricks 07, Sheridan 11, Zimmermann 12, 

Hankin 16, Chen 16, Todaro 16]. 

The ablation loading technique usually employs a pulsed laser beam that strikes a target 

and leads to a rapid ejection of a mixture of atoms, molecules, ions, and electrons. If needed, a 

photoionization laser beam can be added to create the desired ions. In addition to providing a fast 

loading rate, this technique also minimizes the heat load compared to the conventional resistively-

heated oven. This makes the ablation technique particularly attractive for a cryogenic ion trap. 

In addition, no wire connections and electrical feedthroughs are required for the ablation target. 

Furthermore, for multiple species applications, different mixtures of the desired atom species can 

be infused into one ablation target [Guggemos 15, Hankin 16]. 

Another approach for a rapid loading of ions is to incorporate an “ion reservoir” in a QCCD 

trap; a reserve of ions is maintained in a designated trap zone and individual ions can be transported 

into the experimental region “on demand”. This strategy can be combined with any loading 

technique. 
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Operation Duration (typical values) 

Single-qubit gate 
Two-qubit gate 

Qubit state preparation 
Transport of one ion 
Separation of two ions 
Sideband cooling 
Doppler cooling 
“Shelving” 
Measurement 

10 µs 
30 µs 
50 µs 
250 µs 
300 µs 
2000 µs 
600 µs 
200 µs 
300 µs 

Table 9.1: Typical durations required for elementary operations using the X-Junction trap. The 
actual durations of these operations vary, as they depend on motional mode structure, transition 
excitation methods, and ion location in the trap array. “Shelving” refers to the pulses that transfer 
ions’ states from the computation qubit to the measurement qubit before making fluorescence 
measurement (see Sec. 2.1.7 and Sec. 2.2.6). 

9.4 Improved Microwave Delivery 

One strategy to improve the delivery of microwave fields to the ions is to integrate a microwave 

antenna with an ion trap [Ospelkaus 08, Harty 14, Weidt 16]. With an antenna placed in close 

proximity with the trapped ions, Rabi rates and fidelities of magnetic-dipole transitions in ions 

can be significantly increased for a given microwave power, or with reduced power, the temporal 

instability of the microwaves would be improved due to a reduced thermal effect. Benefits include: 

(i) performance of the mapping operation between the computational qubit and the measurement 

qubit could be improved (see Sec. 2.1.6 and Sec. 2.2.5), (ii) in the implementation of the dynamical 

decoupling gate described in Chap. 7, the error source associated with the infidelity of microwave-

induced transition could be suppressed (see Sec. 7.3), and (iii) with higher fidelity microwave 

transitions, one could explore more complicated dynamical decoupling schemes [Cohen 15]. 

9.5 Switchable Noise Filtering for Control Electrodes 

As shown in Table 9.1, durations required for shuttling operations are currently a factor of 

∼ 10 greater than the durations taken by quantum gates. One reason for this is because a series of 

low-pass filters are incorporated to reduce externally-injected electric potential noise on the control 
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electrodes (see Sec. 3.1), which is important to suppress errors of two-qubit gates. We want to be 

able to keep this feature but also enable high speed ion shuttling [Bowler 12] which is prevented if 

we include strong low-pass filtering. 

A potential approach is to implement different filtering stages that can be chosen with high 

speed switches. Arranged in a parallel configuration, one stage provides heavy filtering, the other 

provides minimal or no filtering. The latter is chosen during shuttling, the heavy filter is then 

switched in when a static potential well is applied for the application of quantum gates. High-

speed switching of trapping potential has been investigated in Ref. [Alonso 13]. 

9.6 Electronically-Induced-Transparency Cooling with an Atomic Tripod 

System 

Another possibility to speed up the overall processing is to employ more efficient scheme 

for the cooling of motional modes. The typical duration of a Raman-sideband cooling sequence 

is on the order of a few ms, and is currently the longest-duration operation (see Table 9.1) in an 

experimental sequence. 

This could be mitigated by employing an electronically-induced-transparency (EIT) cooling 

scheme [Morigi 00, Morigi 03]. Compared to cooling with Raman-sideband transitions, EIT cooling 

has been demonstrated to offer (i) speed up of the cooling processes, (ii) reduction in the required 

laser intensities, and (iii) simplifications of experimental implementations. In addition, it can also 

provide broad cooling bandwidth such that multiple motional modes are cooled simultaneously 

[Roos 00, Lin 13b, Lechner 16]. 

Previous implementations of EIT cooling relied on close approximations to three-level “Λ” 

atomic systems (one excited level which is connected to two lower energy levels), including one 

demonstrated with 24Mg+ ions [Lin 13b] in the legacy system where the experiments described 

in Chap. 7 were performed. However, there exists no simple Λ systems in the ions used in this 

thesis. It was suggested in Ref. [Evers 04] that a tripod-EIT cooling scheme (one excited level and 

three lower energy levels) could offer better cooling efficiency compared to a Λ system. Here, using 
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an additional ground state to engineer a double-EIT profile that can offer better suppression of 

both the carrier and the blue-sideband excitations, improved cooling should be possible. Reference 

[Lu 15] proposes a similar tripod-EIT cooling scheme that employs two laser beams paired with a 

microwave-induced transition. These possibilities should be investigated for extensions of the work 

presented here. 
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Nonlinear coupling of continuous variables at the single quantum level. Phys. 
Rev. A, vol. 77, page 040302(R), 2008. 

[Rosenband 08] T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. 
Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist & D. J. 
Wineland. Observation of the 1S0 → 3P0 clock transition in 27Al+ . Phys. Rev. 
Lett., vol. 98, page 220801, 2008. 

[Rowe 01] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe 
& D. J. Wineland. Experimental violation of a Bell’s inequality with efficient 
detection. Nature, vol. 409, pages 791–794, 2001. 

[Ryan 09] C. A. Ryan, M. Laforest & R. Laflamme. Randomized benchmarking of single-
and multi- qubit control in liquid-state NMR quantum information processing. 
New J. Phys., vol. 11, page 013034, 2009. 

[Ryan 10] C. A. Ryan, J. S. Hodges & D. G. Cory. Robust decoupling techniques to extend 
quantum coherence in diamond. Phys. Rev. Lett., vol. 105, page 200402, 2010. 

[Sackett 00] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. My-
att, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland & C. Monroe. 
Experimental entanglement of four particles. Nature, vol. 404, pages 256–259, 
2000. 



217 

[Sage 12] J. M. Sage, A. J. Kerman & J. Chiaverini. Loading of a surface-electrode ion 
trap from a remote, precooled source. Phys. Rev. A, vol. 86, page 013417, 2012. 
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Appendix A 

Details of 9Be+ 

The relevant properties of the neutral 9Be atom and the 9Be+ ion are summarized in Table 

A.1. 

The 9Be+ ion has a nuclear spin of 3/2, and the interaction between the nuclear and elec-

tron spin gives rise to hyperfine structure. Also, Zeeman sublevels are split in energy when an 

external magnetic field is applied. In the intermediate field regime where the hyperfine and Zee-

man interaction strengths are comparable, the energy levels exhibit curvature as a function of the 

applied external magnetic field due to the competition between these two interactions. At cer-

tain magnetic-field strengths, some transition frequencies become insensitive to small changes in 

the applied magnetic field. Such transitions are sometimes referred to as “clock” transitions or 

field-insensitive transitions. 

The eigenenergies and eigenstates that take both the hyperfine and Zeeman interactions into 

account can be determined by solving the Breit-Rabi formula (see Ref. [Langer 06, Jost 10] for 

details in the case of 9Be+). Table A.2 summarizes the magnetic-field independent points and their 

respective transitions available in a 9Be+ ion. 

The detailed energy level diagram in the 2S1/2 electronic ground state of the 9Be+ ion at a 

field B = 0.0119446 T (119.446 G) is shown in Fig. A.1. 



222 

9Be+ ion properties 

Nuclear spin 

Electron g-factor 

Nuclear to electron g-factor ratio 

3/2 

-2.00226206(42) 

0.0002134779853(2) 

[Wineland 85] 

[Wineland 85] 

Hyperfine constant of the 2S1/2 state 

Magnetic dipole (A) 

Hyperfine constant of the 2P1/2 state 

Magnetic dipole (A) 

Hyperfine constant of the 2P3/2 state 

Magnetic dipole (A) 

Electric quadrupole (B) 

-625.008837.048(10) MHz 

-118.6(3.6) MHz 

|A| ≤ 0.6 MHz 

Not available 

[Wineland 85] 

[Bollinger 85] 

[Poulsen 75] 

P1/2 and P3/2 levels natural decay rate 2π × 19.4(5) MHz [Poulsen 75] 

Fine structure splitting of 

P1/2 and P3/2 levels at B = 0 197.150(64) MHz [Bollinger 85] 
2S1/2 state hyperfine splitting at B = 0 
2P1/2 state hyperfine splitting at B = 0 

1,250.018 MHz 

237.2 MHz 

Calculated value 

Calculated value 
2S1/2 ↔ 2P1/2 transition frequency 

(line center of hyperfine structure) 
2S1/2 ↔ 2PP/2 transition frequency 

(line center of hyperfine structure) 

957,199.6525(1200) GHz 

957,396.8020(1349) GHz 

[Bollinger 85] 

[Bollinger 85] 

Neutral Be atom properties 

2s2 ↔ 2s2p transition wavelength 

2s2p to continuum excitation wavelength 

234.9329 nm 

306.4919 nm 

[Kramida 97] 

[Kramida 97] 

Table A.1: Relevant properties of the 9Be atom and 9Be+ ion which are important for this thesis. 
The references from which the properties are extracted are shown in the last column. See also Ref. 
[Shiga 11] for the 9Be+ ion’s ground state hyperfine constant that takes the diamagnetic correction 
into account. The hyperfine energy level splittings at a field B = 0 is calculated by solving the 
Breit-Rabi equation at a vanishing field. 
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Transition B-field 

(T) 

Transition 

frequency (MHz) 

d2f 
dB2 

(MHz/mT2) 

|F = 2, mF = 0i ↔ |1, 1i 
|2, 1i ↔ |1, 0i 
|2, 1i ↔ |1, 1i 
|1, 1i ↔ |1, 0i 
|2, 1i ↔ |2, 0i 

0.0119446 

0.0119643 

0.0223073 

0.160182 

0.174719 

1,207.496 

1,207.353 

1,082.547 

322.552 

324.548 

0.6097 

0.6097 

0.7252 

1.059 × 10−3 

0.6247 × 10−3 

Table A.2: Magnetic-field insensitive transitions and their respective magnetic-field strengths in 
the 2  S1/2 electronic ground state for the 9Be+ ion in the intermediate field regime. The transition 
frequencies and the second-order magnetic-field sensitivities are also given. 
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Appendix B 

Details of 25Mg+ 

Table B.1 lists the relevant properties of the neutral magnesium atom and the 25Mg+ ion’s 

properties. Table B.2 shows the magnetic-field insensitive points and their respective transitions for 

the 25Mg+ ion’s 2S1/2 electronic ground state. For the work presented in this thesis, the magnetic 

field is set at a insensitive point for the 9Be+ ion, i.e. ∼ 119.446 G. The detailed energy levels 

diagram in the 2S1/2 electronic ground state of the 25Mg+ at B = 119.446 G is shown in Fig. B.1. 



226 

25Mg+ ion properties 

Nuclear spin 

Nuclear to electron g-factor ratio 

5/2 

9.299484(75) × 10−5 [Itano 81] 

Hyperfine constant of the 2S1/2 state 

Magnetic dipole (A) 

Hyperfine constant of the 2P1/2 state 

−596.254376(54) MHz [Itano 81] 

Magnetic dipole (A) −101.70 MHz (theory) [Sur 05] 

Hyperfine constant of the 2P3/2 state 

−102.16(16) MHz (experiment) [Nguyen 09] 

Magnetic dipole (A) -18.89 MHz [Sur 05] 

Electric Quadrupole (B) 22.91 MHz [Sur 05] 

P1/2 and P3/2 levels natural decay rate 2π × 41.3(3) MHz [Clos 14] 
2S1/2 state hyperfine splitting at B = 0 
2P1/2 state hyperfine splitting at B = 0 

1,788.763 MHz 

305.1 MHz 

Calculated value 

Calculated value 
2S1/2 ↔ 2P1/2 transition frequency 

(line center of hyperfine structure) 

1,069,339.957(5) GHz [Clos 14] 

2S1/2 ↔ 2PP/2 transition frequency 

(line center of hyperfine structure) 

1,072,084.547(5) GHz [Clos 14] 

Isotope shift between 25Mg+ and 24Mg+ 

2S1/2 ↔ 2P1/2 1,620(19) MHz [Batteiger 09] 
2S1/2 ↔ 2P3/2 

Isotope shift between 26Mg+ and 24Mg+ 

1,621(19) MHz [Batteiger 09] 

2S1/2 ↔ 2P1/2 3,084.905(93) MHz [Batteiger 09] 
2S1/2 ↔ 2P3/2 3,087.560(87) MHz [Batteiger 09] 

Neutral Mg atom properties 

3s2 ↔ 3s3p transition wavelength 

3s3p to continuum excitation wavelength 

285.296 nm 

375.647 nm 

[Martin 80] 

[Martin 80] 

Table B.1: Relevant properties of the 25Mg+ ion and neutral magnesium. The references from 
which the properties are extracted are shown in the last column. See also Ref. [Drullinger 80] and 
Ref. [Ansbacher 89] for precision spectroscopy measurements in Mg+ ions. The hyperfine energy 
level splittings at a field B = 0 is calculated by solving the Breit-Rabi equation at a vanishing field. 
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Transition B-field 

(T) 

Transition 

frequency (MHz) 

d2f 
dB2 

(MHz/mT2) 

|F = 3, mF = 0i ↔ |2, 1i 
|3, 1i ↔ |2, 0i 
|3, 1i ↔ |2, 1i 
|3, 1i ↔ |2, 2i 
|3, 2i ↔ |2, 1i 
|3, 2i ↔ |2, 2i 
|2, 2i ↔ |2, 1i 
|3, 2i ↔ |3, 1i 
|2, 1i ↔ |2, 0i 
|3, 1i ↔ |3, 0i 

0.0109464 

0.0109584 

0.0212784 

0.0331568 

0.0331673 

0.0425569 

0.122563 

0.123202 

0.340915 

0.438352 

1,763.031 

1,762.974 

1,686.462 

1,539.102 

1,538.929 

1,333.265 

346.187 

346.827 

301.558 

303.524 

0.4330 

0.4330 

0.3902 

0.4979 

0.4979 

0.5889 

8.293 × 10−3 

8.035 × 10−3 

0.1066 × 10−3 

0.02140 × 10−3 

Table B.2: The magnetic-field insensitive transitions and their respective magnetic-field strengths in 
the 2S1/2 electronic ground state for the 25Mg+ ion in the intermediate field regime. The transition 
frequencies and the second-order magnetic-field sensitivities are also given. 
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Appendix C 

Atom-light Interaction Hamiltonian 

In this appendix, we give the Hamiltonians describing an atom’s interaction with monochro-

matic light fields and the Hamiltonians governing the spin-motion transitions driven by stimulated-

Raman processes. We will start with the simplest case of a two-level system. 

C.1 Two-Level Atoms - Light Interaction 

The Hamiltonian of a two-level system interacting with a monochromatic electromagnetic 

(EM) field (Fig. C.1) can be written as 

H = H0 + V (t), (C.1) 

where H0 = ~ω1|1ih1|+~ω2|2ih2| is the system’s bare Hamiltonian, with |1i and |2i representing the 

unperturbed states with energies ~ω1 and ~ω2, respectively. Their energy difference is ω0 = ω2 −ω1. 

detuning Δ

⟩|1

⟩|2

𝜔𝜔𝜔𝜔0

Figure C.1: A two-level system with a detuned interaction. 
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V (t) describes the interaction between the atom dipole operator, d, with an externally applied 

monochromatic EM field, i.e. 

V (t) = −d · Eσ̂E cos (ωt − φ) , (C.2) 

where E, ω, and φ are the amplitude, frequency, and the phase the of applied EM field, respectively. 

The electric field’s polarization vector σ̂E is expressed in terms of linear (π̂), left (σ̂−) and right � �
+       − −  

(σ̂ ) circular polarizations such that σ̂E = � σ̂ + �0π̂ + + � σ̂+ with − 2 | | + ��0 � �2 + |�+ 2 | = 1. 

Transforming into the interaction picture of the unperturbed system by writing 

iH t −iH t 0 0
H  = e ~ I V (t)e ~ , (C.3) 

and after making the rotating-wave approximation, we get 

H −iΔt 
I = ~Ω|2ih1|e + h.c., (C.4) 

where Ω = −d·Eσ̂E and Δ = ω − (ω2 − ω1) are the resonant transition Rabi rate and the detuning 2~ 

of the electromagnetic field from the resonant transition frequency, respectively. For simplicity, we 

have set φ = 0. In our case, Eq. C.4 is applicable to a transition induced by laser fields between 

an electronic ground state and an excited state. It can also describe magnetic dipole transitions 

driven by microwave fields. 

C.2 Stimulated-Raman Transition 

The simplest case of a stimulated-Raman transition can be seen as a three-level system 

interacting with two monochromatic light fields (Fig. C.2). For simplicity, we assume that the 

laser field with frequency ωa only couples the |1i and |3i states, and does not couple the |2i and 

|3i states, similarly for the laser field (with frequency ωb) coupling the |2i and |3i states. Following 

Eq. C.4, the interaction Hamiltonian in this case is 

 H = ~Ω |3ih1|e− iΔ1t + ~Ω |3ih2|e− iΔ2t
I 1 2 + h.c., (C.5) 

where |3i is the state in which both the |1i and |2i states are coupled to with two light fields that 

are coherent with each other. The two light fields are detuned by Δ1 and Δ2 from each of the 
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⟩|3
Δ1

⟩|1
⟩|2

Δ2

𝜔𝜔𝑎𝑎 𝜔𝜔𝑏𝑏

Figure C.2: A three-level system with two detuned interactions. For simplicity, we assume that the 
light field labeled as ωa does not couple the |2i and |3i states, and the light field labeled as ωb does 
not couple the |1i and |3i states. 
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transitions, respectively. To relate to our qubit system, we will write |1i = |↓i and |2i = |↑i. Thus, 

−iΔ1t −iΔ2tHI = ~Ω1|3ih↓|e + ~Ω2|3ih↑|e + h.c.. (C.6) 

This equation can be transformed into an effective Hamiltonian written as 

~Ω21 ~Ω22Heff = − (|3ih3| − |↓ih↓|) − (|3ih3| − |↑ih↑|) + 
Δ1 Δ2� �Ω1Ω2 i(Δ2−Δ1)t −i(Δ2−Δ1)t~ |↑ih↓|e + |↓ih↑|e , (C.7)
2Δ̄

¯ Δ1Δ2where Δ = . There are multiple approaches to arrive at Eq. C.7, see for example, Ref. Δ1+Δ2 

[Wineland 98] with a Schrodinger’s equation approach and Ref. [James 07] which give a relatively 

compact formula for the derivation of the effective Hamiltonian describing the time-averaged dy-

namics of the system. 

The first and second term of Eq. C.7 represent the AC Stark shifts induced by the laser fields, 

and the third term represents the effective Hamiltonian coupling the qubit |↑i and |↓i states via 

the stimulated-Raman transition. The latter term can be separated out from the AC Stark shifts 

terms when we are only interested in the dynamics between the qubit states. A quick inspection 

and comparison between this term and Eq. C.4 indicates that stimulated-Raman transition can be 

viewed as an effective coherent Rabi oscillation on the |↑i ↔ |↓i transition described by 

i(Δ2−Δ1)tσ+HRaman = ~ΩRaman ̂ e + h.c., (C.8) 

with an effective Rabi rate of 

Ω1Ω2
ΩRaman = , (C.9)

2Δ̄

where σ̂+ = |↑ih↓| and its conjugate is σ̂− = |↓ih↑|. Equation C.8 can be rewriten as 

i(Δω−ω0)tσ+HRaman = ~ΩRaman ̂ e + h.c., (C.10) 

where Δω = ωb − ωa, is the frequency difference of the two EM fields depicted in Fig. C.2. A 

spin-flip oscillation can be driven by setting Δω = ω0. 

One important effect that has not yet been considered here is the spontaneous emission 

of photon from the electronic excited state when driving the stimulated-Raman transition. The 
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spontaneous photon emission rate is approximately proportional to Δ
Γ 
R 
×Ωeff where Γ is the excited 

state’s decay rate and ΔR = Δ1 or Δ2. In most cases, ΔR � Γ such that photon scattering process 

is suppressed compared to the coherent interaction described by Eq. C.8. Details of spontaneous 

emissions are described in Sec. 4.4.2. 

C.2.1 Rabi Rate of Stimulated-Raman Transitions 

The descriptions above provide a simple framework for stimulated-Raman transitions without 

detailing the coupling strength. The Rabi rate depends on the laser beam electric fields parameter 

as well as the electronic structure and properties of the addressed atom. If there are j possible 

excited states that give coupling between the |↑i and |↓i states, the Rabi rate of stimulated-Raman 

transition driven by two laser fields which are copropagating is [Wineland 98] 

P P 
σp1 σp2X E1E2 p1 

h↑|dE · ˆE,1|ji p2 
hj|dE · ˆE,2|↓i

ΩRaman = , (C.11)
4~2 Δjj 

where p1 and p2 index the polarization components for each of the laser beams, respectively. The 

atom’s electric dipole operator is denoted by dE . 

C.3 Spin-Motion Stimulated-Raman Transition 

The descriptions above deal only with the interaction between the internal states (spin) of an 

atom with the electromagnetic fields. Now, adding the motional degree of freedom, the unperturbed 

system Hamiltonian for a single trapped atom can be written as 

3Xω0 †H0 = ~ (|↑ih↑| − |↓ih↓|) + ~ων,iâi âi, (C.12)
2 

i 

where ω0 is the qubit frequency. For one ion, there are three motional modes, each with a harmonic 

oscillator frequency of ων,i, and âi represents the harmonic oscillator annihilation operator for the 

ith mode. 

Consider the two-photon stimulated-Raman transition described in Sec. C.2. Taking into ac-

count the propagation direction of the two laser beams, the interaction between the dipole operator 
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and the applied EM waves is 

2X 
V (t) = − dE · Eiσ̂E,icos (ki · ẑ − ωit + φi) , (C.13) 

i 

where ki, ωi and φi are the wave vector, the laser frequency, and the laser beam phase of the ith 

beam at the location of the ion. The operator of the ion’s motion is given by � � 
ẑ = z0 â+ â † , (C.14) 

p
where z0 = ~/(2mων ) is the zero-point amplitude of the ion’s motional wavefunction, with m as 

the mass of the ion. The effective Hamiltonian associated with this dipole-light interaction takes 

the form of Eq. C.10: 

i[Δk·ẑ−(Δω−ω0)t+(φ2−φ1)]σ+HI = ~Ωˆ e + h.c., (C.15) 

where Ω is the Rabi rate which can be computed with Eq. C.11. 

In this thesis, we use a pair of laser beams with their wave vector difference Δk = k2 − k1 

aligned along the axial (z) direction. In this configuration, we only have to consider one motional 

mode for the interaction. For a 9Be+ ion in a trap with ωz = 2π × 3.6 MHz, we have z0 ' 12.5 nm. 

With Eq, C.14, Eq. C.15 can be rewritten as 

σ+ i[η(â+â†)−(Δω−ω0)t+(φ2−φ1)]HI = ~Ωˆ e + h.c., (C.16) 

where η = |Δk|z0 is the Lamb-Dicke parameter. In the limit where η � 1, we can expand the first 

term in the exponent: 

i(η(â+â †)2 e 
†)) = 1 + iη(â + â †) − η2(â + â + ... (C.17) 

such that Eq. C.16 becomes h i 
σ+ iω0t †)2 i[−Δωt+(φ2−φ1)]HI = ~Ωˆ e 1 + iη(â + â †) − η2(â + â + ... e + h.c.. (C.18) 

Now, we will go into the interaction frame (Eq. C.3) of the harmonic oscillator describing the ion’s 

motion, then h i 
σ+ iω0t † iωz t) − η2(ˆ † −iωz t)2HI = ~Ωˆ e 1 + iη(âe −iωz t + â e ae −iωz t + â e + ... 

i[−Δωt+(φ2−φ1)]×e + h.c.. (C.19) 
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In most cases, the laser frequency difference Δω = ω1 − ω2 is set near the qubit frequency ω0 

or ω0 ± mωz, where m = 1, 2, ... such that most non-resonant terms in Eq. C.19 can be neglected. 

For example, by setting Δω = ω0, and dropping high frequency terms, we have 

HCarrier = ~Ωσ̂+ e i(φ2−φ1) + h.c., (C.20) 

which is analogous to Eq. C.10 and describes a carrier excitation that drives |↓, ni ↔ |↑, ni spin-flip 

oscillations. Likewise, by setting Δω = ω0 − ωz, the Hamiltonian after dropping fast oscillating 

terms is 

i(φ2−φ1)HRSB = ~ηΩσ̂+ˆ + h.c.,ae (C.21) 

which induces a spin-flip |↓, ni ↔ |↑, n − 1i while removing a quanta from the motional harmonic 

oscillator. This excitation is a red-sideband transition. Analogously, a blue-sideband transition is 

described by the Hamiltonian 

† i(φ2−φ1)HBSB = ~ηΩσ̂+â e + h.c., (C.22) 

after setting Δω = ω0 + ωz and neglecting fast oscillating terms. 

It is straightforward to generalize these Hamiltonians to the case where multiple ions are 

interacting with the laser light fields. For example, for two ions trapped in a harmonic well, there 

are two normal modes along the axial direction. In this case, we can write the position operator ẑj 

of the jth ion in terms of normal mode coordinates X 
ẑj = z0,kξk,j (âk + â † ), (C.23)k

k=1,2 p
where z0,k = ~/(2mωk) with ωk, ξk,j and âk are the normal mode frequency, mode amplitude (of 

the jth ion) and the annihilation operator for the kth motional mode. 

Following Eq. C.16, the interaction Hamiltonian describing two ions interacting with light 

fields arranged such that their Δk aligned along the axial direction is [Wineland 98] " # � �X X 
σ+ †HI = ~ Ωj ̂ j Exp i ηkξk,j âk + â − i(Δω − ω0)t + i(φ2,j − φ1,j ) + h.c., (C.24)k 

j=1,2 k 

where Ωj is the resonant Rabi rate of the laser-induced carrier transition for the jth ion, it can be 

computed with Eq. C.11. 



Appendix D 

Matrix Representations of State Vectors and Qubit Operations 

D.1 Qubit State Vectors 

For a two-level atom, the qubit |↑i and |↓i states are defined as the following matrices: ⎛ ⎞ ⎛ ⎞ ⎜ 1 ⎟ ⎜ 0 ⎟|↑i = ⎝ ⎠ , |↓i = ⎝ ⎠ . (D.1) 
0 1 

The state vectors for the compound system of two two-level atoms are the results from tensor 

products of individual atom’s state vectors, for example ⎛ ⎞ ⎜ 1 ⎟⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ 1 ⎟ ⎜ 1 ⎟ ⎜ 0 ⎟
|↑↑i = ⎝ ⎠⊗ ⎝ ⎠ = ⎜ ⎟⎜ ⎟ . (D.2)⎜  ⎟0 0 ⎜ 0 ⎟⎝ ⎠ 

0 

Likewise, ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
 ⎜ 0 ⎟ ⎜ 0 ⎟ ⎜ 0 ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ 1 ⎟ ⎜ 0 ⎟ ⎜ 0 ⎟

|↑↓i = ⎜ ⎟⎜ ⎟ , |↓↑i = ⎜ ⎟ ⎜ ⎟⎜ ⎟ , |↓↓i = ⎜ ⎟ . (D.3) ⎜  ⎟ ⎜  ⎟ ⎜ ⎟⎜ 0 ⎟ ⎜ 1 ⎟ ⎜ 0 ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 
0 0 1 
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D.2 Qubit Rotations 

Rotation about an axis in the x-y plane of the Bloch sphere of a two-level atom is represented 

by the following matrix: ⎛ ⎞ ⎜ cos (θ/2) −ie−iφsin (θ/2) ⎟
R(θ, φ) = ⎝ ⎠ , (D.4) 

−ieiφsin (θ/2) cos (θ/2)

where θ is the rotation angle and φ is the azimuthal angle of the rotation axis. 

The rotation around z axis of the Bloch sphere with an angle of ξ is defined as ⎛ ⎞ ⎜ e−iξ/2 0 ⎟
Rz(ξ) = ⎝ ⎠ . (D.5) 

0 eiξ/2

Similar to the construction of a compound system from smaller systems, the operator rep-

resenting a global rotation on a two-qubit compound system can be constructed using the tensor 

product: 

Rtwo(θ, φ) = R(θ, φ) ⊗ R(θ, φ). (D.6) 

Likewise, the (two-qubit) operator representing a rotation applied on the first qubit without influ-

encing the second qubit is ⎛ ⎞ ⎜ 1 0 ⎟
R(θ, φ) ⊗ ⎝ ⎠ . (D.7) 

0 1 

D.3 Fock State Vectors 

Each motional degree of freedom is described by a simple harmonic oscillator. The Fock basis 

state |ni can be represented by the following matrices: ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ 1 ⎟ ⎜ 0 ⎟ ⎜ 0 ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ 0 ⎟ ⎜ 1 ⎟ ⎜⎟ ⎜ 0 ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
|0i = ⎜ ⎟ , |1i = ⎜ ⎟ , |2i = ⎜ ⎟⎜ 0 ⎟ ⎜ 0 ⎟ ⎜ 1 ⎟ , etc. (D.8) ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜⎜ . ⎟ ⎜  ⎟⎟ ⎜ . ⎟ ⎜ .. .  ⎜ . ⎟ ⎜ . ⎟ ⎜ .⎟ ⎜ . ⎟⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 

0 0 0 
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D.4 Creation and Annihilation Operators 

The simple harmonic oscillator annihilation operator, â, and creation operator, â†, can be 

represented by the following matrices ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

, 

0 1 0 0 · · · 0 · · · 
√ 

0 0 2 0 · · · 0 · · · 
√ 

0 0 0 3 · · · 0 · · · 
. . 

0 0 0 0 . . . . · · · 
. . . . . √ . . . . . . . . . . n · · · 

0 0 0 0 · · · 0 · · · 
. . . . . . . . . . . . . . .. . . . . . 

â = (D.9) 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 0 0 · · · 0 · · · 

1 0 0 0 · · · 0 · · · 
√ 

0 2 0 0 · · · 0 · · · 
√ 

0 0 3 0 · · · 0 · · · 
. . . . .. . . . . . . . . . . . . · · · 

√ 
0 0 0 0 n 0 · · · 
. . . . . . . . . . . . . . . .. . . . . 

† â (D.10)= . 

when applying â or â† to a Fock state |ni, they give 

√ 
â|ni = n|n − 1i, (D.11) 

√
â†|ni = n + 1|n + 1i. (D.12) 

D.5 Atom and Motion Compound System 

Similar to that in Eq. D.2, the state vector of the compound system consisting of a two-level 

atom and one motional mode can be constructed with the tensor product. For example, an atom 
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in the |↑i state prepared in the ground state of motion is ⎛ ⎞ ⎜ 1 ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ 0 ⎟⎜ 1 ⎟ ⎜ ⎟
|↑i|n = 0i = ⎜ ⎟⎝ ⎠⊗ ⎜ 0 ⎟ . (D.13) 

 ⎜ ⎟0 ⎜ ⎟⎜ ⎟⎜ 0 ⎟⎝ ⎠ . . . 

Similarly, operators acting on the compound system can be constructed with tensor products. It 

is straightforward to generalize state vectors and operators to a systems of higher dimension. 

D.6 Summary of Qubit Operators 

Here we write down some of the common qubit operators which are frequently used in this 

thesis. 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ 0 1 ⎟ ⎜ 0 −i ⎟ ⎜ 1 0 ⎟
σ̂x = ⎝ ⎠ , σ̂y = ⎝ ⎠ , σ̂z = ⎝ ⎠ . (D.14) 

1 0 i 0 0 1 

⎛ ⎞ 
+ σ̂x + iσ̂ 0

y ⎜ 1 ⎟
σ̂ = |↑ih↓| = = ⎝ ⎠ , (D.15)

2 
0 0 ⎛ ⎞ 

− σ̂x − iσ̂y ⎜ 0 0 ⎟
σ̂ = |↓ih↑| = = ⎝ ⎠ . (D.16)

2 
1 0 

D.7 Three-Level Atom 

For some cases, it is desirable to include an auxiliary atomic state to study the dynamics of 

the system such as (i) the implementation of the Cirac-Zoller protocol [Cirac 95] (see also Sec. 4.2 

and Sec. 5.6), (ii) the effect of out-of-manifold Raman spontaneous scattering processes (see Sec. 

4.4.2.1), and (iii) imperfect qubit state preparation and measurement (see for example, Sec. 6.6.2). 

We label the auxiliary state as |Ai. 
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In this case, the state vectors are modified such that ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ 1 ⎟ ⎜ 0 ⎟ ⎜ 0 ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
0 ⎜ ⎟ 0 ⎜ ⎟ ⎜ ⎟|↑i = ⎜ 0 ⎟ , |↓i = ⎜ 1 ⎟ , |Ai = ⎜⎟ ⎜ 0 ⎟ . (D.17) ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 

0 0 1 

Here, we use the superscript 0 to differentiate these state vectors from those of Eq. D.1. 

D.8 Qubit Operators in a Three-Level Atom 

The R(θφ) rotation (Eq. D.4) between the qubit |↑i and |↓i states becomes ⎛ ⎞ ⎜ cos (θ/2) −iφe−iφsin (θ/2) 0 ⎟⎜ ⎟
R0

⎜ ⎟
(θ, φ) = ⎜  cos ⎜ −iφeiφsin (θ/2) (θ/2) 0 ⎟ . (D.18)⎟⎝ ⎠ 

0 0 1 

Similarly for the Rz rotation (Eq. D.5) between the |↑i and |↓i states: ⎛ ⎞ ⎜ e−iξ/2 0 0 ⎟⎜ ⎟⎜ ⎟
R0 z(ξ) = ⎜ 0 eiξ/2 0 ⎟ . (D.19)⎜ ⎟⎝ ⎠ 

0 0 1 
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Other commonly used operators are: ⎛ ⎞ ⎜ 0 1 0 ⎟⎜ ⎟
σ̂+0

⎜ ⎟
= 0 0 |↑i h↓| = ⎜⎜ 0 0 0 ⎟ , (D.20)⎟⎝ ⎠ 

0 0 0 ⎛ ⎞ ⎜ 0 0 0 ⎟⎜ ⎟
−0 0 0 ⎜ ⎟

σ̂ = |↓i h↑| = ⎜ 0 0 ⎟⎜ 1 , (D.21)⎟⎝ ⎠ 
0 0 0 ⎛ ⎞ ⎜ 0 0 1 ⎟⎜ ⎟

+ 0 ⎜ ⎟
σ̂ = |↑i hA|↑  = A ⎜ 0 0 ⎟⎜ 0 , (D.22)⎟⎝ ⎠ 

0 0 0 ⎛ ⎞ ⎜ 0 0 0 ⎟⎜ ⎟⎜ ⎟
σ̂−   0= |↓i h |↓ A  = A ⎜ 0 0  ⎜ 1 ⎟ , (D.23)⎟⎝ ⎠ 

0 0 0 ⎛ ⎞ ⎜ 0 0 0 ⎟⎜ ⎟
 0 ⎜ ⎟

σ̂+  = |Aih↑|A↑ = ⎜ 0 (D.24)⎜ 0 0 ⎟ , ⎟⎝ ⎠ 
1 0 0 ⎛ ⎞ ⎜ 0 0 0 ⎟⎜ ⎟

0 ⎜ ⎟
σ̂− = |Aih↑|A↓ = ⎜ 0 0 0 ⎟ . (D.25)⎜ ⎟⎝ ⎠ 

0 1 0 

With these, it is straightforward to generalize and construct other operators, as needed. 




