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A Scalable Sampling Method to
High-Dimensional Uncertainties for

Optimal and Reinforcement
Learning-Based Controls

Junfei Xie, Yan Wan, Kevin Mills, James J. Filliben, and F. L. Lewis

Abstract—Modern dynamical systems often operate in
environments of high-dimensional uncertainties that modu-
late system dynamics in a complicated fashion. These high-
dimensional uncertainties, non-Gaussian in many realistic
scenarios, complicate real-time system analysis, design,
and control tasks. In this letter, we address the scalability
of computation for systems of high-dimensional uncertain-
ties by introducing new sampling methods, the multivariate
probabilistic collocation method (M-PCM), and its exten-
sion called M-PCM-orthogonal fractional factorial design
(OFFD) which integrates M-PCM with the OFFDs to break
the curse of dimensionality. We explore the capabilities of
M-PCM and M-PCM-OFFD-based optimal control and adap-
tive control using the reinforcement learning approach. The
analyses and simulation studies illustrate the efficiency
and effectiveness of these two approaches.

Index Terms—Uncertain systems, optimal control, adap-
tive control.

I. INTRODUCTION

MODERN dynamical systems, such as complex informa-
tion systems, power networks, and air traffic systems,

often operate in environments of high-dimensional uncertain-
ties. These high-dimensional uncertainties typically have the
following features: 1) they modulate system dynamics in a
complicated fashion that cannot be captured by simple additive
white noises, and hence significantly complicate real-time sys-
tem analysis, design and control tasks, and 2) their statistical
information can be obtained from environmental forecasting
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tools that are independent to system internal dynamics. For
instance, strategic air traffic flow management (ATFM) plans
traffic in the strategic time frame (with 2 − 15 hours look-
ahead time), during which a wide range of weather scenarios
can possibly occur [1]. The uncertain weather information is
available from probabilistic forecasting tools such as the Very
Short Range Ensemble Forecast System (VSREF). The weather
uncertainties modulate region capacities in the National
Airspace System, posing uncertain nonlinear constraints to
interweaving traffic flows [2]. Techniques are needed to
quickly design optimal and adaptive control strategies that are
robust and scalable to these high-dimensional uncertainties.

Stochastic optimal control has been widely studied in the
literature (e.g., [3]–[7]). For systems of linear dynamics, addi-
tive noise and quadratic cost, linear quadratic control can
easily find a solution [4]. However, for modern dynamical
system applications, the dynamics often may only be cap-
tured by complicated simulators rather than clean mathematics,
and uncertainties modulate system dynamics in a nonlinear
fashion. Backward-in-time dynamic programming approaches
(e.g., based on the Bellman optimality equation) and forward-
in-time Monte Carlo (MC) reinforcement learning-based adap-
tive control [4], [6] have been used. These methods typically
involve the discretization and sampling of the uncertainty
space to estimate expected cost. As evaluating system dynam-
ics over all discretized values of uncertain parameters is com-
putationally expensive for large-scale dynamical systems [3],
appropriate discretization and sampling schemes are pivotal
to the accuracy and scalability of stochastic optimal control
strategies [8].

The MC simulation method and its variants such as Markov
Chain MC and Sequential MC have been used to sam-
ple the uncertainty space. However, they require a large
number of simulations to converge to the mean cost esti-
mates, making it computationally impractical for the real-time
control of large-scale systems that typically consume consid-
erable computation for a single simulation run. To reduce the
computational cost, quadrature schemes such as Euler [9],
Composite-Simpson [10], LGL-quadrature [11], and sparse-
grid (SG) [12], have recently been applied to sample the
uncertainty space. However, their accuracy and computational
scalability are either unsatisfactory or unjustified for arbitrary

2475-1456 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



XIE et al.: SCALABLE SAMPLING METHOD TO HIGH-DIMENSIONAL UNCERTAINTIES 99

forms of uncertainties. Another approach is to approximate
the system dynamics modulated by uncertainties as a master
Markov chain of the state space being the Cartesian product of
the system state space and the uncertainty space, and solve the
problem using Markov decision process approaches [13]. This
approach is again not scalable. It works well for systems of
simple dynamics, but is ineffective for systems of large state
and uncertainty spaces.

To address these challenges, we develop in this letter
an optimal control framework that is scalable to high-
dimensional uncertainties. The framework builds on two
multi-dimensional uncertainty evaluation approaches that we
developed recently, the multivariate probabilistic collocation
method (M-PCM) [14], and the scalable M-PCM-OFFD that
integrates M-PCM with orthogonal fractional factorial designs
(OFFDs) [15], [16].

In this letter, we explore the capabilities of M-PCM and
M-PCM-OFFD in facilitating optimal control for systems
of high-dimensional uncertainties, which are introduced in
Section II. Three representative scenarios are considered:
1) finite-horizon optimal control with uncertain parameters
changing independently across time (Section III-A), 2) finite-
horizon optimal control with uncertain parameters evolving
according to Markov chains (Section III-B), and 3) infinite-
horizon forward-in-time optimal control using reinforcement
learning (Section IV). For arbitrary system dynamics captured
by a black-box simulator, we prove that the M-PCM and M-
PCM-OFFD based stochastic optimal controls find accurate
solutions with very limited computational costs, under sim-
ple assumptions that hold for broad realistic systems. These
features are further validated through illustrative examples
and comparative simulation studies with existing methods in
Section V.

II. UNCERTAINTY SAMPLING METHODS:
M-PCM AND M-PCM-OFFD

M-PCM [14] and M-PCM-OFFD [15], [16] are newly devel-
oped computationally effective sampling methods to evaluate
output statistics for system mappings of high-dimensional
uncertainties.

A. M-PCM

The M-PCM smartly selects a small set of samples accord-
ing to the statistics (e.g., pdfs) of uncertain parameters, and
runs simulations at these samples to produce a reduced-order
mapping that maintains precisely the output statistics of the
original mapping (see [14, Sec. II.B] for detailed design pro-
cedures). Lemma 1 shows the key result on the performance
of M-PCM in accurately estimating mapping statistics under
uncertainty.

Lemma 1 [14, Th. 2]: Consider a system mapping modu-
lated by m independent uncertain parameters:

G(a1, . . . , am) =
2n1−1∑

j1=0

2n2−1∑

j2=0

· · ·
2nm−1∑

jm=0

�j1,...,jm

m∏

i=1

aji
i (1)

where ai is an uncertain parameter with the degree up to
2ni − 1. ni are positive integers for all i ∈ {1, 2, . . . , m}, and

�j1,...,jm ∈ R are the coefficients. Each uncertain parameter ai
follows an independent pdf fAi(ai). The M-PCM approximates
G(a1, . . . , am) with the following low-order mapping

G′(a1, . . . , am) =
n1−1∑

j1=0

n2−1∑

j2=0

· · ·
nm−1∑

jm=0

�j1,...,jm

m∏

i=1

aji
i , (2)

with E[G(a1, . . . , am)] = E[G′(a1, . . . , am)] , where �j1,...,jm ∈ R
are coefficients. The M-PCM reduces the number of simula-
tions from 2m ∏m

i=1 ni to
∏m

i=1 ni.
Remarks: The knowledge of uncertainty is typically avail-

able to realistic system studies in the form of probabilistic
forecasts or historical data. We note that M-PCM is not limited
by the knowledge of precise pdfs. When low-order moments
or sample data of uncertain parameters are available, sample-
moment based approaches can be used to select M-PCM
simulation points (see [14, Sec. V.B]). We can also fit the sam-
ple data or low-order moments (e.g., mean and variance) with
canonical pdfs. Beyond accurate output mean estimation, M-
PCM also has other nice statistical properties such as accurate
cross-statistics estimation and tight connection to minimum
mean squares estimation (see [14, Sec. III.A]).

B. M-PCM-OFFD

M-PCM significantly reduces the number of simulations
to estimate output mean, however its computation cost does
not scale with the number of uncertain parameters. M-PCM-
OFFD [15], [16] further breaks the curse of dimensional-
ity through leveraging the systematic procedures and nice
properties of 2-level OFFD such as balance and orthogo-
nality [17], [18]. We show that M-PCM-OFFD has better
performance in terms of accuracy and computational scal-
ability for estimating output statistics, compared to existing
uncertainty sampling approaches, such as stochastic response
surface method and SG [12], [19]. Lemma 2 illustrates the key
capability of M-PCM-OFFD. Please refer to [16, Sec. 5.2] for
detailed design procedures.

Lemma 2 [16, Sec. 5.2]: Consider an m-parameter system
mapping (Equation (1)) with each input parameter ai of degree
up to 3 (i.e., ni = 2,∀i ∈ {1, 2, . . . , m}). Assume that its coef-
ficients �j1,...,jm = 0 if more than τ of j1, . . . , jm are non-zero,
where 1 ≤ τ ≤ m. The integrated M-PCM and 2m−γ ∗

OFFD
approximates the original system mapping with the following
low-order mapping.

G∗(a1, . . . , am) =
1∑

j1=0

1∑

j2=0

· · ·
1∑

jm=0

�j1,...,jm

m∏

i=1

aji
i , (3)

such that E[G(a1, . . . , am)] = E[G∗(a1, . . . , am)], where coef-
ficients �j1,...,jm = 0 if more than τ of j1, . . . , jm
are non-zero, γ ∗ = max{γ | 1 ≤ γ ≤ m −
�log2(

∑τ
i=0

(
i
m

)
)	, and 2m−γ

R OFFD exists, with R ≥ 2τ + 1}.
The M-PCM-OFFD reduces the number of simulations from
22m to 2m−γ ∗

in the range of
[
2�log2(m+1)	, 2m−1

]
, making it

scalable with the number of uncertain parameters.
Remarks: The assumption on �j1,...,jm reflects that the inter-

acting effects that involve a large number of parameters are
less important to the output statistics than those that involve a
few parameters. This assumption typically holds for realistic
modern complex systems, and has been widely used in the
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field of statistical experimental designs [17], [18]. Other dis-
tinguishing features of M-PCM-OFFD that have been proved
include the robustness to computational approximations in sys-
tem simulators (see [16, Sec. 5.3]). We also note that in the
lemma, the term of the highest degree is of degree 3m. The
lemma can be generalized to higher degrees through replacing
the 2-level OFFD with higher-level OFFD, which we leave for
the future work.

III. OPTIMAL CONTROL FOR SYSTEMS OF HIGH

DIMENSIONAL UNCERTAINTIES

In this section, we study two optimal control problems for
systems of high dimensional uncertainties.

A. Optimal Control for Systems of Uncertain Parameters
Independent Across Time

Consider a generic dynamical system modulated by an
m-dimensional time-varying uncertain vector a[k]. Each ele-
ment of a[k], ai[k], changes independently over time with pdf
fAi[k](ai[k]). The system dynamic is

x[k + 1] = hk(x, u, a), (4)

with state vector x[k] ∈ S and control input vector u[k] ∈ C,
where S and C are the known state space and control space,
respectively. hk() is the system dynamic function of x[k], u[k]
and a[k]. The total expected cost equals [3]

JN(x[0]) = Ea[0]{· · · Ea[N−1]{
N−1∑

k=0

αkgk(x, u) + αNqN(x)} · · · }

(5)

where Ea[k]() is the expectation of function within () with
respect to the uncertain vector a[k]. α ∈ (0, 1] is a dis-
count factor. gk() and qk() are the running and terminal cost
at time step k, respectively. Consider the problem of find-
ing an optimal control policy π∗ = {μ∗

0, μ
∗
1, . . . , μ

∗
N−1},

with u∗[k] = μ∗
k(x[k]), such that the total expected cost is

minimized, i.e.,

π∗ = arg min
π

{JN(x[0])}. (6)

μk is a control function that maps S into C.
This finite-horizon control problem can be solved

using backward-in-time methods, e.g., dynamic
programming. As the uncertain parameters are inde-
pendent from the states, we define the value function
as Vk(x[k]) = Ea[k]{· · · Ea[N−1]{

∑N−1
i=k αi−kgi(x, u) +

αN−kqN(x)} · · · } = Ea[k]{· · · Ea[N−1]{gk(x, u) +
α[

∑N−1
i=k+1 αi−(k+1)gi(x, u) + αN−(k+1)qN(x)]} · · · } =

Ea[k]{gk(x, u) + αEa[k+1]{· · · Ea[N−1]{
∑N−1

i=k+1 αi−(k+1)gi(x, u) +
αN−(k+1)qN(x)} · · · }}, and VN(x[N]) = qN(x). The following
Bellman’s Equation holds.

Vk(x[k]) = Ea[k]
[
gk(x, u) + αVk+1(x[k + 1])

]
, (7)

The optimal cost J∗
N(x[0]) = V∗

0 (x[0]) can then be derived
by working backward in time using dynamic programming
according to the Bellman optimality equation [20]:

V∗
k (x[k]) = min

π
Ea[k]

[
gk(x, u) + αV∗

k+1(x[k + 1])
]

(8)

Defining Gk(x, u, a) = gk(x, u) + αV∗
k+1(x[k + 1]), we then

notice that given an admissible state x[k] and control value
u[k], Ea[k][Gk(x, u, a)] can be approximated by the mean
output of a system mapping Gk(x, u, a) using M-PCM or
M-PCM-OFFD. When each uncertain parameter ai[k] has a
degree up to 2ni[k] − 1, Gk(x, u, a) has the following form

Gk(x, u, a) =
2n1[k]−1∑

j1=0

...

2nm[k]−1∑

jm=0

�j1,...,jm(x[k], u[k])
m∏

i=1

aji
i [k],

(9)

Theorem 1 holds, where �j1,...,jm(x[k], u[k]) ∈ R are the
coefficients determined by state x[k] and control input u[k].

Theorem 1: Consider a dynamical system described by
Equation (4), with cost and value functions given by
Equation (5) and Equations (7)–(9), respectively. By applying
dynamic programming, and sampling the uncertainty space at
each iteration using M-PCM, the true optimal control policy
can be obtained with no error.

Proof: First, we introduce a set of notions for the
optimal control obtained using M-PCM. According to
Lemma 1, for a given admissible state x[k] and con-
trol input u[k], Gk(x, u, a) can be approximated using M-
PCM as a low-order function of the form G′

k(x, u, a) =
∑n1[k]−1

j1=0 · · · ∑nm[k]−1
jm=0 �j1,...,jm(x[k], u[k])

∏m
i=1 aji

i [k] , such that
Ea[k]

[
Gk(x, u, a)

] = Ea[k]
[
G′

k(x, u, a)
]
. Denote V ′∗

k (x[k]) =
min
u[k]

Ea[k][G
′
k(x, u, a)] and π ′∗ = {μ′∗

0 , μ′∗
1 , . . . , μ′∗

N−1}. The opti-

mal control policy can be found by evaluating V ′∗
k (x[k]) at

only the M-PCM samples at each iteration. Denote u′∗[k] =
μ′∗

k (x[k]).
In order to prove this theorem, we need to show u∗[k] =

u′∗[k], i.e., for each x[k] ∈ S, arg min
u[k]

Ea[k][Gk(x, u, a)] =
arg min

u[k]
Ea[k]

[
G′

k(x, u, a)
]
. This is equivalent to the fol-

lowing two statements: 1) �u′∗[k] �= u∗[k], such that
Ea[k]

[
G′

k(x, u′∗, a)
]

< Ea[k]
[
Gk(x, u∗, a)

]
, and 2) �u∗[k] �=

u′∗[k], such that Ea[k]
[
Gk(x, u∗, a)

]
< Ea[k]

[
G′

k(x, u′∗, a)
]
. To

prove statement 1 using contradiction, we assume that such a
u′∗[k] �= u∗[k] exists. Lemma 1 leads to Ea[k]

[
G′

k(x, u′∗, a)
] =

Ea[k]
[
Gk(x, u′∗, a)

]
< Ea[k]

[
Gk(x, u∗, a)

]
, which violates the

fact that u∗ = arg min
u[k]

Ea[k][Gk(x, u, a)]. Similarly, to prove

statement 2, we assume such a u∗[k] �= u′∗[k] exists.
Lemma 1 leads to Ea[k]

[
Gk(x, u∗, a)

] = Ea[k]
[
G′

k(x, u∗, a)
]

<

Ea[k]
[
G′

k(x, u′∗, a)
]
, which violates the fact that u′∗ =

arg min
u[k]

Ea[k][Gk(x, u, a)]. The results that u∗[k] = u′∗[k] and

π∗ = π ′∗ naturally follow.
We can also apply M-PCM-OFFD to estimate the mean cost

Ea[k][Gk(x, u, a)] using fewer samples. Following similar pro-
cedures in the above proof and through replacing G′

k(x, u, a)

according to Lemma 2 instead of Lemma 1 in the proof, we
can derive Theorem 2. The proof is omitted here for the sake
of space.

Theorem 2: Consider a dynamical system described by
Equation (4), with cost and value functions given by
Equation (5) and Equations (7)–(9), respectively. Then the
control policy π∗ = {μ∗

0, . . . , μ
∗
N−1} optimal to the sam-

ples selected by M-PCM-OFFD at each time step, is also
optimal to all possible values of the uncertain parameters, if
ni[k] = 2,∀i ∈ {1, 2, . . . , m} and k ∈ {0, 1, . . . , N − 1}, and
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�j1,...,jm(x[k], u[k]) = 0 when more than τ of j1, . . . , jm are
non-zero, where 1 ≤ τ ≤ m.

B. Optimal Control for Systems of Uncertain Parameters
Evolving According to Markov Chains

Consider a generic dynamical system modulated by an m-
dimensional time-varying uncertain vector a[k]. Each element
of a[k], ai[k], evolves according to a Markov chain of tran-
sition matrix Pi ∈ RMi×Mi , where Mi is the total number of
possible values (or states) of the uncertain parameter ai[k].
The (j, l)th entry of Pi, Pijl , represents the probability for
ai[k] to be at state l in the next step if the current state is
j. The system dynamics and the total expected cost are shown
in Equations (4) and (5). Similar to Equation (6), given the
probability of ai[0] at each state for all i ∈ {1, 2, . . . , m},
consider the problem of finding an optimal control policy
π∗ = {μ∗

0, μ
∗
1, . . . , μ

∗
N−1} that minimizes the total expected

cost. This problem finds broad applications where dynamical
systems operate in uncertain environments. For instance, in
realistic systems such as the air traffic systems, uncertainties
like convective weather have correlations across time, which
can be captured by Markov chains.

Consider the i-th uncertain parameter, ai[k], in a system of
m uncertain parameters. Suppose initially ai[0] is at state j, i.e.,
ai[0] = j, then the conditional probability of ai[k] = l can be
obtained using p(ai[k] = l | ai[0] = j) = Pk

ijl
. Suppose ri[k] ∈

R1×Mi is a vector of the possibilities of ai[k] at each state,
with its j-th element, denoted as rij[k], equal to the possibility
of ai[k] at state j, i.e., rij[k] = p(ai[k] = j). Then we have
ri[k] = ri[0]Pk

i . Since ri[0] and the transition matrix Pi are
given, we can calculate ri[k] at each time step k. Let us now
apply dynamic programming to solve this problem. Denoting
the set {1, 2, . . . , Mi} as Mi, the optimal value function is

V∗
k (x[k]) = min

u[k]
{Ea1[k]{· · · Eam[k]{gk(x, u)

+ αV∗
k+1(x[k + 1])} · · · }}

= min
u[k]

{Ea1[k]{· · · Eam−1[k]{
∑

j∈Mm

p(am[k] = j)

{gk(x, u) + αV∗
k+1(x[k + 1])}} · · · }}

= min
u[k]

{Ea1[k]{· · · Eam−1[k]{
∑

j∈Mm

rmj[k]

{gk(x, u) + αV∗
k+1[hk(x, u, a1, . . . , am = j)]}} · · · }}

= min
u[k]

{
∑

l∈M1

r1j[k]{· · · {
∑

j∈Mm

rmj[k]{gk(x, u)

+ αV∗
k+1[hk(x, u, a1 = l, . . . , am = j)]}} · · · }} (10)

This problem then transforms to the first problem discussed
in Section III-A, with the pdfs of the uncertain parame-
ters replaced by the probability mass functions (pmf) that
can then be solved by M-PCM or M-PCM-OFFD based
stochastic optimal controls. The sample points can be selected
according to the pdfs approximated by pmfs, or directly
using the sample-moment based approach [14]. The proof of
Theorem 3 is omitted as it can be easily derived following the
proof procedure of Theorem 1 with V∗

k (x[k]) represented by
Equation (10).

Theorem 3: Consider a dynamical system shown in
Equation (4), with each element of a[k], ai[k], evolves accord-
ing to a Markov chain and the total expected cost shown
in Equation (5). The optimal control policy can be found
by sampling the uncertainty space using M-PCM under the
assumptions in Theorem 1, or using M-PCM-OFFD under the
assumptions in Theorem 2.

IV. REINFORCEMENT LEARNING-BASED

INFINITE HORIZON CONTROL

The uncertainty sampling methods can also be integrated
with reinforcement learning to bring the backward-in-time
optimal control to forward-in-time adaptive control for sys-
tems of high-dimensional uncertainties [5]–[7]. For the infinite
horizon case, the adaptive solution is also the optimal solution.

Consider a generic dynamical system described by
Equation (4), but with time horizon N → ∞ and ai[k] fol-
lowing a time-invariant pdf fAi(ai[k]). Consider the problem
of finding the optimal control policy π∗ = {μ,μ, . . .} that
minimizes the total expected cost:

J(x[k]) = Ea[k]{Ea[k+1]{· · · Ea[∞]{
∞∑

i=k

αi−kgi(x, u)} · · · }} (11)

The value function V(x[k]) = J(x[k]), and the Bellman’s
equation becomes

V(x[k]) = Ea[k]

{
gk(x, u) + αV(x[k + 1])

}
, (12)

where the same value function V() appears on both sides.
Therefore, given a control policy π , we can calculate the total
expected cost by solving Equation (12). The optimal control
policy

π∗ = arg min
π

V(x[k]) (13)

can be found by repeatedly iterating two procedures policy
evaluation and policy improvement. In the policy evaluation
step, the value function V(x[k]) is solved using Equation (12)
for a set of admissible states x[k] ∈ S′ ⊆ S, given a current
control policy π . A best control policy is then derived based
on the value function V(x[k]) determined in the previous step
using Equation (13) in the policy improvement step. Various
approaches can be used to implement these two procedures,
and here we use value iteration. In particular, starting from an
arbitrary initial control policy π0, the following two steps are
iterated until convergence [5], [6]:

Value Update: ∀x[k] ∈ S′
j ⊆ S

Vj+1(x[k]) = Ea[k]

[
gk(x, μj(x)) + αVj(x[k + 1])

]
(14)

Policy Improvement: ∀x[k] ∈ S′
j ⊆ S

μj+1(x[k]) = arg min
μ(·) Ea[k]

[
gk(x, μ(x)) + αVj+1(x[k + 1])

]

(15)

where j is the iteration step index. For systems of infinite
state and control spaces, approximators (e.g., neural net-
work and polynomial functions) can be used to estimate
the value function by V(x) = WT�(x), where �(x) =
[φ1(x), φ2(x), . . . , φL(x))] is the basis vector, W is the weight
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vector, and the estimation error approaches 0 when the number
of terms in �(x), L → ∞. The value update then becomes

WT
j+1�(x[k]) = Ea[k]

[
gk(x, u) + αWT

j �(x[k + 1])
]

(16)

which can be solved using the least squares estimation.
Similarly, the control function can be estimated by μ(x) =
UTσ(x), where σ(x) and U are the basis and weight vectors,
respectively. For systems of x[k + 1] = A(x[k]) + B(x[k])u[k]
and gk(x, u) = Q1(x[k]) + uT [k]Q2u[k], where Q1(x[k]) > 0
and Q2 > 0, the policy improvement step can then be per-
formed using the gradient descent method according to the
following equation [5], [6]:

Ui+1
j+1 = Ui

j+1 − βσ(x[k])
{

2Q2(U
i
j+1)

Tσ(x[k])

+ Ea[k]
[
αB(x[k])T��T(x[k + 1])Wj+1

]}T
, (17)

where ��(x) = ∂�(x)/∂x, and β is a tuning parameter and
i is the tuning index [5], [6]. For systems of finite state and
control spaces, value iteration can be achieved by storing and
updating lookup tables. Please refer to [5] and [6] for detailed
descriptions of different approaches.

We note that given an admissible state x[k] and control
function μj(x), the value function Vj+1(x[k]) in Equation (14)
can be approximated by the mean output of a system map-
ping Gk(x, a) = gk(x, μ(x)) + αVj(x[k + 1]), using M-PCM
or M-PCM-OFFD. Similarly, to derive μj+1(x) in the policy
improvement step, the expected cost of a candidate control
function can also be approximated by M-PCM or M-PCM-
OFFD. Theorem 4 describes the utilization of M-PCM and
M-PCM-OFFD to find the optimal control policy, the proof
of which can be easily derived based on above analysis and
proof of Theorem 1 and is thus omitted.

Theorem 4: Consider a dynamical system shown in
Equation (4), with time horizon N → ∞ and ai[k] following a
time-invariant pdf fAi(ai[k]). The optimal control policy can be
found by applying value iteration of reinforcement learning,
and approximating the value function using M-PCM under the
assumptions in Theorem 1, or using M-PCM-OFFD under the
assumptions in Theorem 2.

V. ILLUSTRATIVE EXAMPLES

In this section, we use three simple examples to illustrate
and validate the M-PCM and M-PCM-OFFD based stochastic
optimal controls. As the validation requires extensive Monte
Carlo simulations, we limit the dimension of uncertainties
in the first two examples. The third example illustrates the
capability of the M-PCM-OFFD based approach in addressing
high-dimensional uncertainties.

A. Dynamic Programming Based Finite-Horizon Control

Consider a system of the dynamics x[k + 1] = a1[k]x[k] +
a2[k]u[k] + a3[k], where ai[k] are uncertain parameters that
follow independent non-Gaussian distributions: fA1(a1[k]) = 5

3
with −0.1 ≤ a1[k] ≤ 0.5, fA2(a2[k]) = 5

3 with −0.2 ≤ a2[k] ≤
0.4 and fA3(a3[k]) = 10

7 , 0 ≤ a3[k] ≤ 0.7. The optimal control
policy π∗ = {μ∗

0, . . . , μ
∗
N−1} is sought to minimize the total

expected cost given by Equation (5) with qN(x) = (x[N]−10)2,
gk(x, u) = (x[k] − 10)2 + u[k]2, and α = 1. The state space

Fig. 1. The optimal control policies found by applying the four
approaches to sample the uncertainty space.

and control space are S = {−2,−1.9, . . . , 1.9, 2} and C =
{−1,−0.9, . . . , 0.9, 1}, respectively.

We apply M-PCM and M-PCM-OFFD (with τ = 1) based
stochastic optimal controls to find the optimal solution. Linear
interpolation is used to approximate costs at intermediate
points [7]. As a comparative study, we also apply the SG
with Gauss-Legendre quadrature rules to sample the uncer-
tainty space [21]. For a fair comparison, the accuracy level1

of the SG is set to 2 such that a similar number of samples
is produced. The MC method is also applied to estimate the
true optimal solution for the validation purpose.

The optimal control policies found by the four methods are
shown in Figure 1, with N = 2. The number of samples n
selected by MPCM, MPCM-OFFD, SG and MC at each iter-
ation are 8, 4, 7 and 100000, respectively. M-PCM-OFFD (or
M-PCM) based method finds accurate control solutions, with
significantly reduced number of simulations (4 or 8). The SG
method is relatively efficient but is less accurate.

B. Reinforcement Learning Based Infinite-Horizon
Control

Consider a system of the dynamic x[k + 1] = A[k]x[k] +
Bu[k] + Ca3[k], where x[k] = [x1[k], x2[k]]T , A[k] =
[a1[k], 0; 0, a2[k]], B = [1, 0.5]T , and C = [1, 1]T . a1[k], a2[k]
and a3[k] are uncertain parameters following fA1(a1[k]) = 5

2
with 0.1 ≤ a1[k] ≤ 0.5, fA2(a2[k]) = 2 with −0.5 ≤ a2[k] ≤ 0
and fA3(a3[k]) = 10

3 , 0.2 ≤ a3[k] ≤ 0.5, respectively.
The optimal control policy π∗ is sought to minimize the
total expected cost given by Equation (11), with α = 0.8,
gk(x, u) = 8x2

1[k] + 2x2
2[k] + u[k]2. Both state and control

spaces are continuous and infinite.
We use value iteration, with cost and control functions

approximated as polynomials, i.e., J(x) = WT�(x) and
μ(x) = UTσ(x), where �(x) = [1, x1, x2, x2

1, x2
2, x1x2]T ,

1The accuracy level reflects the accuracy of the underlying quadra-
ture rule [21]. Higher accuracy level requires more sample runs to reach
convergence.
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Fig. 2. Illustration of the a) convergence of U and b) trajectory of total
expected cost J(x[0]) with x[0] = [0.1, 0.1]T .

σ(x) = [1, x1, x2]T , W ∈ R6×1 and U ∈ R3×1 are weight
vectors. We iteratively update W and U vectors according
to Equations (16)–(17) (β = 0.1) until convergence, with
mean values Ea[k]() in Equations (16) and (17) estimated
using M-PCM, M-PCM-OFFD (τ = 1), and MC. The num-
ber of samples n used by M-PCM, M-PCM-OFFD, and MC
to estimate each mean value are 8, 4 and 10000, respectively.
Figure 2 shows the convergence of U along with the asso-
ciated total expected cost J(x[0]) using M-PCM-OFFD. The
weight vectors derived by M-PCM (or M-PCM-OFFD) based
method are W = [1.076, 0.118,−0.133, 8.192, 2.136, 0.104]T

and U = [−0.329,−0.246, 0.028]T , which are close to
W = [1.076, 0.118,−0.130, 8.203, 2.130, 0.103]T and U =
[−0.327,−0.249, 0.026]T obtained by the MC based method.
When x[0] = [0.1, 0.1]T , the optimal total expected cost found
by M-PCM (or M-PCM-OFFD) and MC based methods are
1.175 and 1.180, respectively.

C. Control Under High-Dimensional Uncertainties

Consider a system modulated by 50 time-invariant
uncertain parameters and 2 time-invariant control
inputs. The system dynamics are described by x[k] =
0.2

[∑10
i=1 ai −∑20

i=11 ai

0
∑25

i=1 a2
i

]
x[k] + 0.1

[
0 0
0

∑50
i=26 ai

]
u,

where x[k] = [x1[k], x2[k]]T and u = [u1, u2]T are state
and control vectors, respectively. ai, i ∈ {1, 2, . . . , 50},
is an uncertain variable that follows a uniform dis-
tribution fAi(ai) = 1, 0 ≤ ai ≤ 1. The state space
is x[k] ∈ R2 and the control space is of size 121:
u1 ∈ {1, 1.1, . . . , 1.9, 2} and u2 ∈ {−0.5,−0.4, . . . , 0.4, 0.5}.
The optimal control inputs u∗ are sought to mini-
mize the following total expected cost: JN(x[0]) =
Ea[0]{· · · Ea[N−1][

∑N−1
k=0 αk(xT [k]Q1x[k] + uTQ2u)] · · · }

where α = 0.8, N = 5, x[0] = [0, 1]T , Q1 =
[

2 0
0 3

]
and

Q2 =
[

0.5 0
0 1

]
.

With the high number of uncertain parameters, MC sim-
ulations are impractical to use. M-PCM based control also
requires 250 simulations to estimate the total expected cost for
each admissible control vector u. Theorem 2 proves the feasi-
bility of M-PCM-OFFD in handling this high dimensionality.
Integrating M-PCM with 250−44

III OFFD (τ = 1), the M-PCM-
OFFD can further reduce the number of simulations from 250

to 26 = 64. The optimal control inputs and corresponding
total expected cost obtained by M-PCM-OFFD based control
are u∗ = [1,−0.5]T and J∗

N(x[0]) = 167.351, respectively.

VI. CONCLUSION

This letter develops two multi-dimensional uncertainty eval-
uation based approaches to address the scalability issue of
stochastic optimal control for systems of high-dimensional
uncertainties. For three cases covering varying scenarios,
we prove that the control solution optimal to the sampled
uncertainty space produced by M-PCM or M-PCM-OFFD is
also optimal to the original uncertainty space under simple
assumptions on the forms of the cost functions and orders
of uncertain parameters. Simulation and comparison stud-
ies demonstrate the accuracy and computational efficiency of
these two approaches.
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