
UMON: Flexible and Fine Grained
Traffic Monitoring in

Open vSwitch

An Wang, Yang Guo,
Fang Hao, T.V. Lakshman and Songqing Chen

NIST

Outline

§ Introduction

§ UMON design and implementation

§ Evaluation

§ Summary

§ Credit:
– An Wang, Songqing Chen from GMU
– Fang Hao, T.V. Lakshman from Bell Labs

2

Introduction
§ Fine-grained network traffic monitoring is important for effective

network management
– Traffic engineering, anomaly detection, network diagnosis, traffic matrix

estimation, DDoS detection and mitigation, etc.
§ Scalability has been the main challenge

– High switching speed
– Large number of flows
– Solution: sampling, probabilistic based measurement, hardware enhanced

measurement solutions, etc.
§ Open vSwitch (OVS) is a popular software switch widely

employed by SDN
– Developed by Nicira as an edge switches for Data center SDN solution
– slower switching speed, smaller #flows, access to more CPU and memory

resources
– Similar monitoring tools as hardware switches: Netflow, sFlow, SPAN,

RSPAN, flow entry counts

3

Introduction
§ Recent push to use flow entry counts for traffic monitoring

§ Challenges in flow entry counts monitoring
– TCAM space is limited in hardware switches
– header fields of interest for packet forwarding may not overlap with those of

interest for monitoring
– Interaction between forwarding and monitoring is not trivial
– May force SDN to work in reactive mode: constant controller involvement

§ Our Idea: leverage software switch to provide user-defined traffic
monitoring

4

Introduction
§ Why software switch?

– Slower switching speed
– Access to more resources (both CPU and memory)
– Sitting at the edge
– Open source

§ What UMON likes to achieve?
– Monitor arbitrary fields
– Sub-flow monitoring, e.g., monitor micro/sub-flows of a mega-flow, without

constant controller involvement
– Allow to push other management functions, such as anomaly detection, to

the switches

5

UMON: Design and Implementation
§ How to instrument the software switch to support UMON?

– Decoupling monitoring from forwarding
– Monitoring does not interfere with forwarding

§ Design must integrate well with the OVS architecture
– Two-tiered forwarding architecture

• User-level: full blown pipelined routing
• Kernel-level: flow entry caching

6

UMON: Design and Implementation
§ User level decoupling

– a separate monitoring flow table, where the monitoring rules are stored

7

Table
0

Table
1

Table
n

Packet

Action
Set

Execute
Action Set

Ingress
Port

Action
Set	=	{}

Packet
Out

Moni-
toring
Table

Anomaly
Detection
module

Microflow	table

UMON: Design and Implementation
§ Kennel level decoupling

– Kernel rule does not support priority
– For a packet, at most one rule matches the header
– Adding a monitoring table in kernel is ‘heavy’
– carefully designed kernel flow rules that satisfy the monitoring requirements

• Kernel rule must be ‘finer’ than the monitoring rule

§ Let 𝒓𝒇,𝒎𝒇 be the generated kernel flow rule and its mask;
𝒓𝒊,𝒎𝒊 , 𝒊 ∈ 𝑰, be the monitoring rule set in the monitoring table

§ 𝒎𝒇
∗ ≜ 𝒎𝒇	|	 |𝒊∈𝑰𝒇	𝒎𝒊 ,

where
𝑰𝒇 ≜ 𝒊	 	𝒓𝒇	&	𝒎𝒇𝒊 = 	𝒓𝒊	&	𝒎𝒇𝒊, 𝒊 ∈ 𝑰}, 	 𝒎𝒇𝒊 ≜ 𝒎𝒇	&	𝒎𝒊	.

8

UMON: Design and Implementation

§ Traffic monitoring of non-routing fields
– New monitoring actions to collect stats of non-routing fields
– E.g. SYN Monitoring Action, ACK Monitoring Action, etc.

§ Sub-flow monitoring
– Sub-flows are the fine-grained flows that belong to a mega-flow as defined

by the monitoring rule
– Sub-flow is defined by sub-flow mask 𝑠1
– generate proper kernel flow rules

§ Monitoring rule insertion/deletion
– When removing a monitoring rule => ‘lazy’ approach
– When a monitoring rule is added => ‘complex’

• make sure the kernel rule’s granularity is still fine
• If not, purge the rules. Proper rule will be added when next packet arrives

9

Evaluation

§ Setting:
– Open vSwitch (version 2.3)
– A standalone machine with 2.67GHz CPU (12 cores), 64G memory, and an

Intel NIC of two 10G ports
– One server, one client
– Compare performance of UMON, default OVS, and micro-flow enabled

OVS

10

Evaluation
§ UMON overhead evaluation

– DECONF trace with 272 hosts and 4432 micro-flows
– Monitor 150 hosts with micro-flow monitoring on
– Transmit at 2.2 Gbps

11

‘Gap’ is due to Generic Receive Offload option (GRO) at NIC

Evaluation

§ UMON overhead evaluation

12

Handler Revalidator FlowTableSize MissPktRate
OVS 0.0% 0.60% 295 0

Microflow OVS 0.15% 6.8% 4381 30
UMON 0.21% 9.9% 4301 26

§ CPU utilizations are low for all three types of vSwitches
§ Revalidator threads consume much more CPU resources

than the handler threads due to large flow table size and
monitoring activity

Evaluation

§ Effect of monitoring rules

13

Tradeoff between #monitoring-rules, kernel flow table size, and
CPU utilization is possible

Conclusions and Future Work

§ UMON: decouples monitoring from forwarding, and offers flexible
and fine-grained monitoring in OVS

§ Design and implement UMON
§ Evaluate the prototype

§ Design and specify OpenFlow interface for UMON
§ Distributed UMON monitoring network for DDoS detection

14

Backup slides

15

Evaluation

§ Effect of monitoring rules

16

