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Introduction

* Fine-grained network traffic monitoring is important for effective
network management
— Traffic engineering, anomaly detection, network diagnosis, traffic matrix
estimation, DDoS detection and mitigation, etc.
= Scalability has been the main challenge
— High switching speed
— Large number of flows
— Solution: sampling, probabilistic based measurement, hardware enhanced
measurement solutions, etc.
= Open vSwitch (OVS) is a popular software switch widely
employed by SDN
— Developed by Nicira as an edge switches for Data center SDN solution

— slower switching speed, smaller #flows, access to more CPU and memory
resources

— Similar monitoring tools as hardware switches: Netflow, sFlow, SPAN,
RSPAN, flow entry counts



Introduction

= Recent push to use flow entry counts for traffic monitoring

= Challenges in flow entry counts monitoring
— TCAM space is limited in hardware switches
— header fields of interest for packet forwarding may not overlap with those of
interest for monitoring
— Interaction between forwarding and monitoring is not trivial
— May force SDN to work in reactive mode: constant controller involvement

= Our Idea: leverage software switch to provide user-defined traffic
monitoring



Introduction

= Why software switch?
— Slower switching speed
— Access to more resources (both CPU and memory)
— Sitting at the edge
— Open source

= What UMON likes to achieve?

— Monitor arbitrary fields

— Sub-flow monitoring, e.g., monitor micro/sub-flows of a mega-flow, without
constant controller involvement

— Allow to push other management functions, such as anomaly detection, to
the switches



UMON: Design and Implementation

* How to instrument the software switch to support UMON?
— Decoupling monitoring from forwarding
— Monitoring does not interfere with forwarding

= Design must integrate well with the OVS architecture

— Two-tiered forwarding architecture
» User-level: full blown pipelined routing
» Kernel-level: flow entry caching



UMON: Design and Implementation

User level decoupling
— a separate monitoring flow table, where the monitoring rules are stored
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UMON: Design and Implementation

= Kennel level decoupling
— Kernel rule does not support priority
— For a packet, at most one rule matches the header
— Adding a monitoring table in kernel is ‘heavy’

— carefully designed kernel flow rules that satisfy the monitoring requirements
» Kernel rule must be ‘finer’ than the monitoring rule

* Let (ry, my) be the generated kernel flow rule and its mask;
(r;, m;), i € I, be the monitoring rule set in the monitoring table

= my 2 mp| (lier, mi),
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UMON: Design and Implementation

» Traffic monitoring of non-routing fields
— New monitoring actions to collect stats of non-routing fields
— E.g. SYN Monitoring Action, ACK Monitoring Action, etc.

= Sub-flow monitoring

— Sub-flows are the fine-grained flows that belong to a mega-flow as defined
by the monitoring rule

— Sub-flow is defined by sub-flow mask s;
— generate proper kernel flow rules

= Monitoring rule insertion/deletion
— When removing a monitoring rule => ‘lazy’ approach

— When a monitoring rule is added => ‘complex’
» make sure the kernel rule’s granularity is still fine
« If not, purge the rules. Proper rule will be added when next packet arrives



Evaluation

= Setting:
— Open vSwitch (version 2.3)

— A standalone machine with 2.67GHz CPU (12 cores), 64G memory, and an
Intel NIC of two 10G ports

— One server, one client

— Compare performance of UMON, default OVS, and micro-flow enabled
OVS
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= UMON overhead evaluation

Throughput (Mbps)

Evaluation

— DECONEF trace with 272 hosts and 4432 micro-flows
— Monitor 150 hosts with micro-flow monitoring on
— Transmit at 2.2 Gbps
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Evaluation

= UMON overhead evaluation

Handler Revalidator FlowTableSize MissPktRate

OVS 0.0% 0.60% 295 0
Microflow OVS 0.15% 6.8% 4381 30
UMON 0.21% 9.9% 4301 26

= CPU utilizations are low for all three types of vSwitches

= Revalidator threads consume much more CPU resources
than the handler threads due to large flow table size and
monitoring activity
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Evaluation

= Effect of monitoring rules
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Conclusions and Future Work

UMON: decouples monitoring from forwarding, and offers flexible
and fine-grained monitoring in OVS

Design and implement UMON
Evaluate the prototype

Design and specify OpenFlow interface for UMON
Distributed UMON monitoring network for DDoS detection
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Backup slides
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Evaluation

= Effect of monitoring rules
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