UMON: Flexible and Fine Grained
Traffic Monitoring in
Open vSwitch

An Wang, Yang Guo,
Fang Hao, T.V. Lakshman and Songqing Chen

NIST

National Institute of

Standards and Technology



Outline

Introduction

UMON design and implementation

Evaluation

Summary

Credit:
— An Wang, Songqing Chen from GMU
— Fang Hao, T.V. Lakshman from Bell Labs



Introduction

* Fine-grained network traffic monitoring is important for effective
network management
— Traffic engineering, anomaly detection, network diagnosis, traffic matrix
estimation, DDoS detection and mitigation, etc.
= Scalability has been the main challenge
— High switching speed
— Large number of flows
— Solution: sampling, probabilistic based measurement, hardware enhanced
measurement solutions, etc.
= Open vSwitch (OVS) is a popular software switch widely
employed by SDN
— Developed by Nicira as an edge switches for Data center SDN solution

— slower switching speed, smaller #flows, access to more CPU and memory
resources

— Similar monitoring tools as hardware switches: Netflow, sFlow, SPAN,
RSPAN, flow entry counts



Introduction

= Recent push to use flow entry counts for traffic monitoring

= Challenges in flow entry counts monitoring
— TCAM space is limited in hardware switches
— header fields of interest for packet forwarding may not overlap with those of
interest for monitoring
— Interaction between forwarding and monitoring is not trivial
— May force SDN to work in reactive mode: constant controller involvement

= Our Idea: leverage software switch to provide user-defined traffic
monitoring



Introduction

= Why software switch?
— Slower switching speed
— Access to more resources (both CPU and memory)
— Sitting at the edge
— Open source

= What UMON likes to achieve?

— Monitor arbitrary fields

— Sub-flow monitoring, e.g., monitor micro/sub-flows of a mega-flow, without
constant controller involvement

— Allow to push other management functions, such as anomaly detection, to
the switches



UMON: Design and Implementation

* How to instrument the software switch to support UMON?
— Decoupling monitoring from forwarding
— Monitoring does not interfere with forwarding

= Design must integrate well with the OVS architecture

— Two-tiered forwarding architecture
» User-level: full blown pipelined routing
» Kernel-level: flow entry caching



UMON: Design and Implementation

User level decoupling
— a separate monitoring flow table, where the monitoring rules are stored

Ingress ———— P;(a)ck:t
Port Table Table Table : u
 ——— 0 » 1 5, — N Ex_ecute [
Action c | Action Set |
Set = {} et !______!
Anomaly
—»| Detection
module

Microflow table



UMON: Design and Implementation

= Kennel level decoupling
— Kernel rule does not support priority
— For a packet, at most one rule matches the header
— Adding a monitoring table in kernel is ‘heavy’

— carefully designed kernel flow rules that satisfy the monitoring requirements
» Kernel rule must be ‘finer’ than the monitoring rule

* Let (ry, my) be the generated kernel flow rule and its mask;
(r;, m;), i € I, be the monitoring rule set in the monitoring table

= my 2 mp| (lier, mi),
where
If — {l | Tf &mf, = ri&mﬁ,i (S I}, mﬁ — mf&m,



UMON: Design and Implementation

» Traffic monitoring of non-routing fields
— New monitoring actions to collect stats of non-routing fields
— E.g. SYN Monitoring Action, ACK Monitoring Action, etc.

= Sub-flow monitoring

— Sub-flows are the fine-grained flows that belong to a mega-flow as defined
by the monitoring rule

— Sub-flow is defined by sub-flow mask s;
— generate proper kernel flow rules

= Monitoring rule insertion/deletion
— When removing a monitoring rule => ‘lazy’ approach

— When a monitoring rule is added => ‘complex’
» make sure the kernel rule’s granularity is still fine
« If not, purge the rules. Proper rule will be added when next packet arrives



Evaluation

= Setting:
— Open vSwitch (version 2.3)

— A standalone machine with 2.67GHz CPU (12 cores), 64G memory, and an
Intel NIC of two 10G ports

— One server, one client

— Compare performance of UMON, default OVS, and micro-flow enabled
OVS

10



= UMON overhead evaluation

Throughput (Mbps)

Evaluation

— DECONEF trace with 272 hosts and 4432 micro-flows
— Monitor 150 hosts with micro-flow monitoring on
— Transmit at 2.2 Gbps

2500

2000 |

1500 -

1000 |

500

CERRIERRIpRgpEEEEERYRpaiLaT
Rx Mbps  +
Tx Mbps =
OVS Mbps = |
0 5 10 20 25 30

1I5
Exp ID

Throughput (Mpps)

0.5

04

03

0.2}

0.1

L
xxxxxxxxxxxxxxxxxxxxxxx

OVSpps = |

w NN ON w M OK oM owox %o ow oo N X ow XN X o ou oxoxow ¥ X ox

5 10 15 20 25
Exp ID

30

‘Gap’ is due to Generic Receive Offload option (GRO) at NIC

11



Evaluation

= UMON overhead evaluation

Handler Revalidator FlowTableSize MissPktRate

OVS 0.0% 0.60% 295 0
Microflow OVS 0.15% 6.8% 4381 30
UMON 0.21% 9.9% 4301 26

= CPU utilizations are low for all three types of vSwitches

= Revalidator threads consume much more CPU resources
than the handler threads due to large flow table size and
monitoring activity

12



Evaluation

= Effect of monitoring rules

10 m
9 L
R .l
C "l
S 7y
T .
N 6
= handler —e—
- 5 i
> revalidator --&--
o 4+ 4
O
T 3t g
o
c 27 - w
P e
1t x’
0 o——o o . o —@—o0 ¢
0 50 100 150 200 25 300

Number of Monitored Hosts

Tradeoff between #monitoring-rules, kernel flow table size, and
CPU utilization is possible

13



Conclusions and Future Work

UMON: decouples monitoring from forwarding, and offers flexible
and fine-grained monitoring in OVS

Design and implement UMON
Evaluate the prototype

Design and specify OpenFlow interface for UMON
Distributed UMON monitoring network for DDoS detection

14



Backup slides

15



Evaluation

= Effect of monitoring rules

Il revalidator 1
I revalidator 2
" revalidator 3

revalidator 4
Il detector

180

160

- - —
(=] N S
o o o

CPU Usage (%)
[+
o

60

40

20

500

1000 1500
Time (seconds)

2000

2500

16



