The Recovery of Houston

Peter Stout, Ph.D., F-ABFT

Objectives

Why HFSC?

What is HFSC?

How has it gone so far?

Tools that have been important?

The cost of wrong and the cost of late.

The New Hork Eimes

March 11, 2003

Worst Crime Lab in the Country Or is Houston Typical?

By ADAM LIPTAK

hen Josiah Sutton went on trial for rape in 1999, prosecutors in Houston had little to build a car was the only eyewitness, and her recollection was faulty. But they did have the rapist's DNA, the Houston police crime laboratory told the jury that it was a solid match.

That was enough to persuade the jurors to convict Mr. Sutton and send him to prison for 25 years.

But new testing has conclusively demonstrated that the DNA was not Mr. Sutton's, the Houston Polic yesterday.

What is HFSC

- 2012 -- formed a Local Government Corporation
 - A corporation "to aid and act on behalf of one or more local governments to accomplish any governmental purpose of those local governments." Tex.
 Transportation Code §431.101(a).

What is HFSC

- Corporate structure
 - 9 member board of directors
 - Corporate officers
 - Forensic functions from HPD
 - Justice Agency
 - -501(c)(3)
- April 2014 Took management responsibility

Would a City-County Merger Jeopardize Progress at Houston's New and Improved Crime Lab?

BY MEAGAN FLYNN

THURSDAY, APRIL 7, 2016 AT 9 A.M.

"...the lab is focusing too much on quality control and in turn is just slowing things down, creating more backlog that prevents police from solving crimes."

HPD Wants Its Crime Scene Unit Back. Crime Lab's Civilian Leadership Says No.

BY MEAGAN FLYNN

MONDAY, AUGUST 22, 2016 AT 6 A.M.

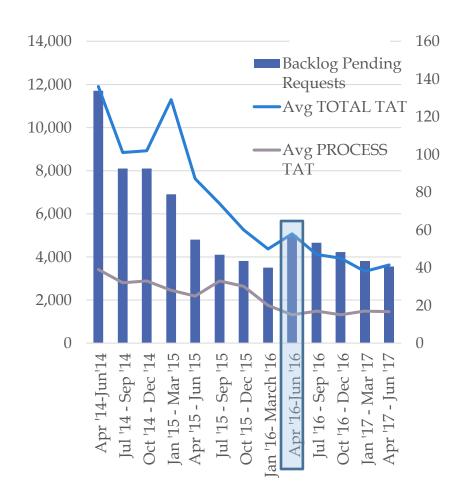
"In the past, we had a problem with rape kits; we had a problem with processing of evidence — but we didn't have any problem with CSU,"

Crime-scene errors put 65 cases under review, audit finds

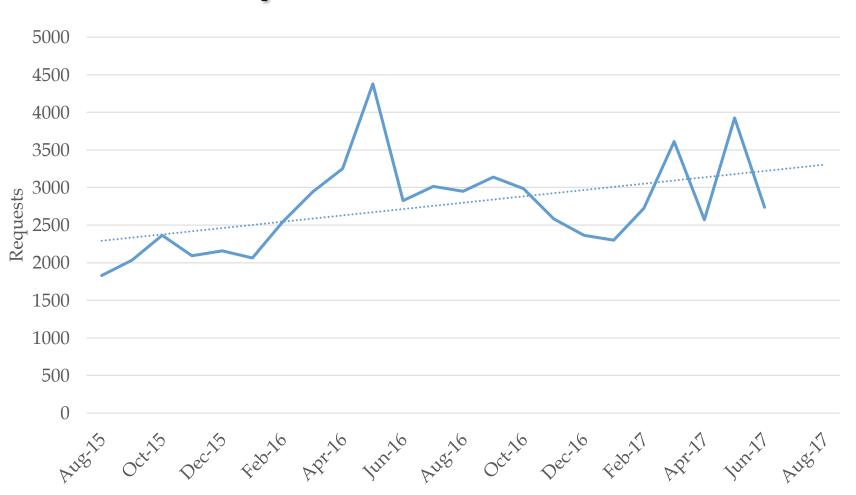
DNA swabs, fingerprints, bloody footprints left behind

By Brian Rogers, Cindy George, Keri Blakinger, and St. John Barned-Smith

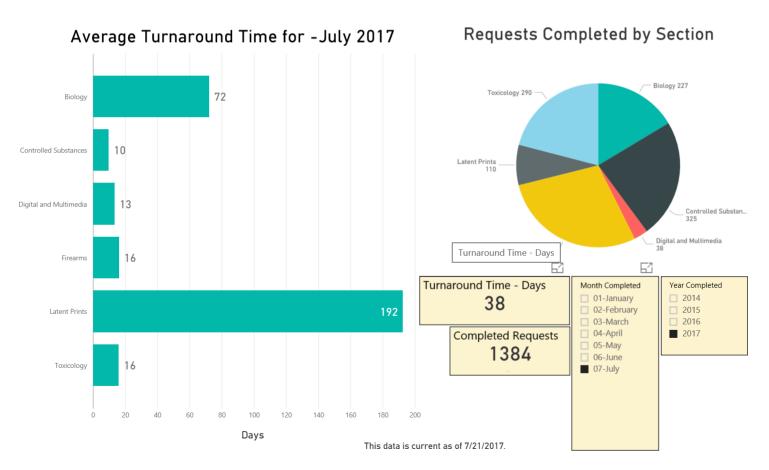
Updated 8:07 pm, Wednesday, April 12, 2017


"I'm tired of every time they have a problem, they want to put the blame on a police officer," Hunt said Wednesday. "So let's let it lie where it belongs –on the management of the Houston Forensic Science Center."

What is so great about "independent"?

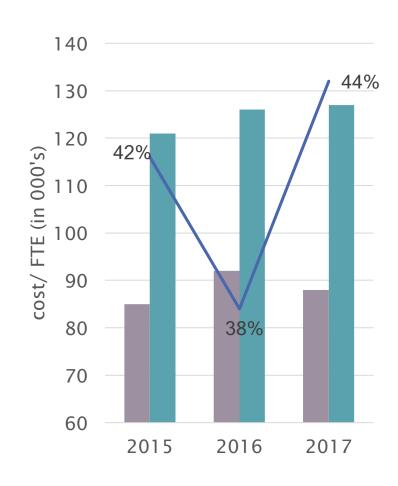

- Control of procurement
- Control of HR
- Control of quality systems
- Control of message
- Control of being transparent
- Parity

From the start of HFSC


- 69% in backlogged requests
- 69% in Avg TOTAL turnaround time
- 57% in Avg
 PROCESS
 turnaround time

Requests received

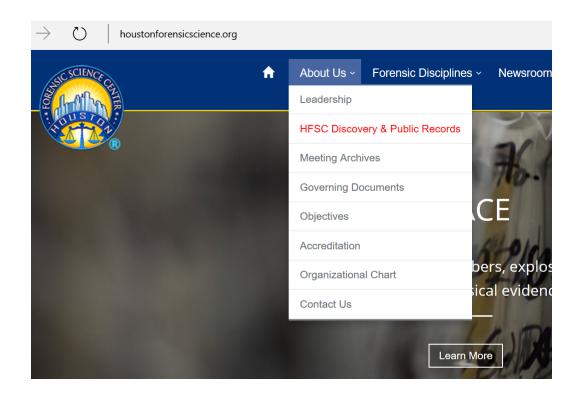
HFSC at a glance:

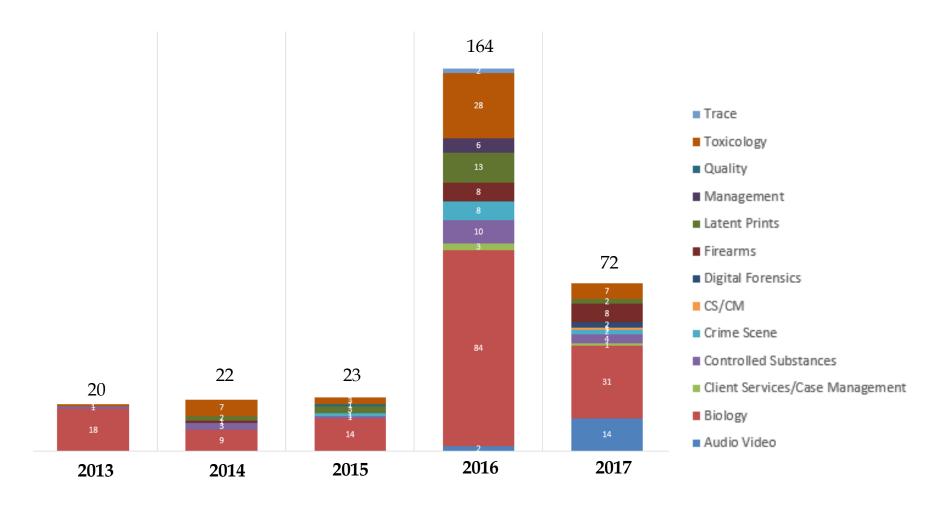


July 21, 2017: Backlogs >30 days

Latents: 2,683 | Biology: 693

Changes in the labor pool


- HFSC more than 40% less per FTE
- In April of 2014
 - 5 HFSC employees & 131COH
- In June of 2017
 - 161 HFSC
 - 35 COH
- Direct wage for HFSC 10% higher than COH


Information transparency

eDiscovery

- "Radical transparency"
 - Increased reporting
 - Increased access
 - Approximately 4,000 documents all public

Quality Tracking Events

Blind Quality Control

Blind Chocolate Chip Cookie Project

Method & Materials

- •Four staff members each baked their favorite chocolate chip cookie recipe
- •The cookies, labeled "A", "B", "C", and "D", were divided into three test groups
- •Each cookie was baked with the same brand of chocolate morsels
- •Each test group was the same size 14 people

Group 1

Control Group

 Participants did not know any information about the cookies

Group 2

Obvious Bias

- Participants were asked to look at the brand of chocolate chip morsel
- •A =
- •B =
- •C =
- •D =

Group 3

Obvious Bias

- Each cookie was packaged with a different color ribbon
- •A = White
- •B = Yellow
- •C = Hot Pink
- •D = Royal Blue

Does chocolate chip morsel brand or color of packaging influence taste test?

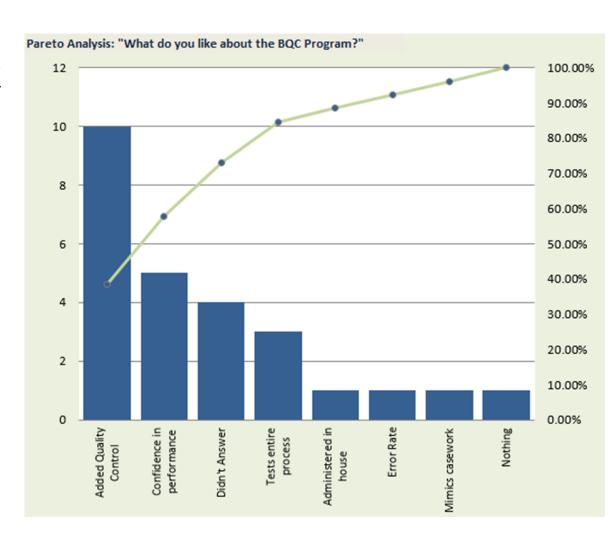
Blind Chocolate Chip Cookie Project

Results and Conclusions

Which cookie was your favorite?

- Biased groups (2 and 3) did not vary from control group 1
- •When intentional bias was introduced to Group 2 some analysts preferred to participate in the test first and then view brands so that their opinion would not be biased

Chocolate chip morsel brand and color of ribbon packaging did not influence the results for overall best cookie


Program Feedback

Anonymous survey

• 26 Participants
Sent to cookie project participants

Responses

- Added Quality Control
- Confidence in Performance

HFSC's Program

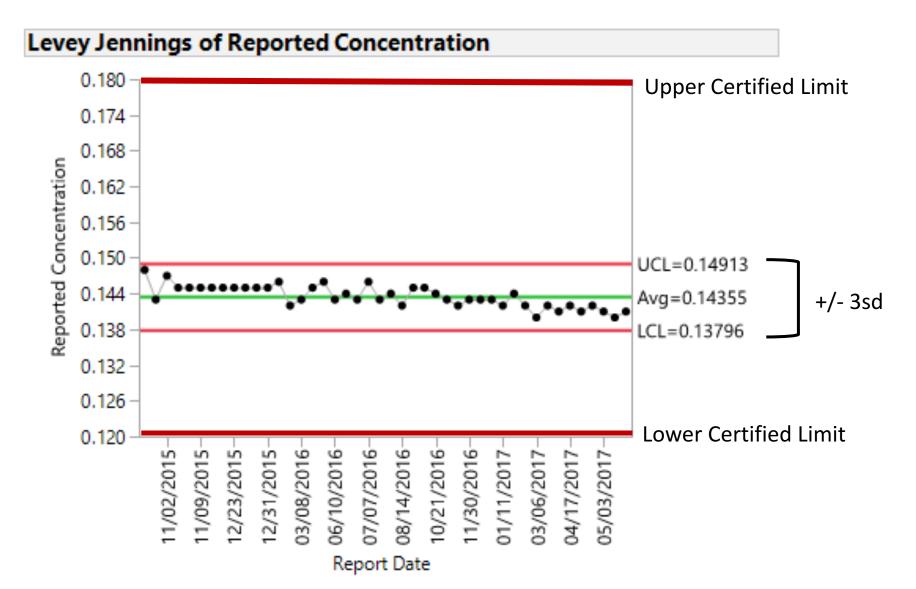
Blind Testing

- Materials Purchased
- Tests made in-house
- Mimic actual casework
- Analysts do not know whether they are analyzing a real case or participating in blind test
- Evaluates entire Quality Management System
- Issued by Quality Division

Blind Verification

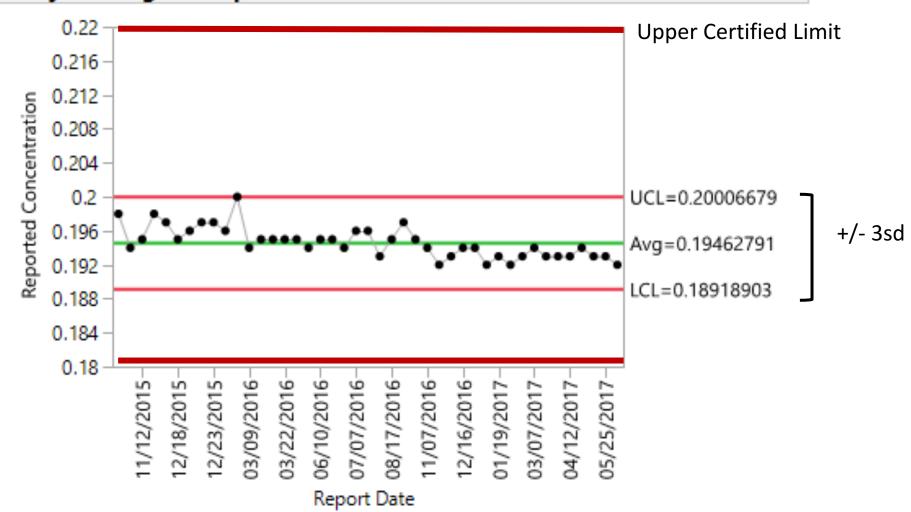
- Independent second review
- Case conclusions from 1st examiner masked
- 1st and 2nd examiner record conclusions
- Conclusions evaluated for consistency
- Issued by Section

Forensic Disciplines

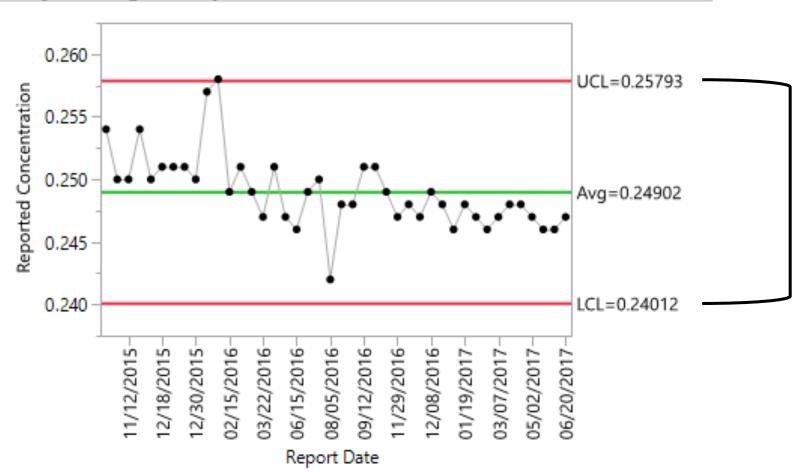


Toxicology

Blind Quality Control Error rate determination



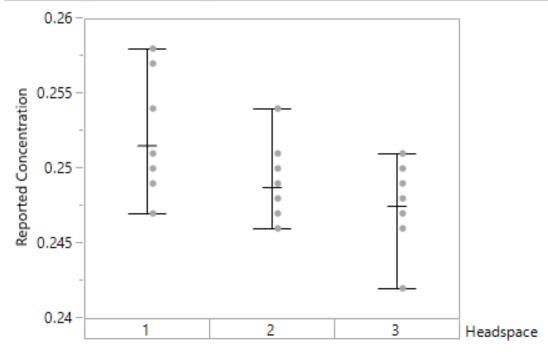
Toxicology blinds – 0.15 g/100mL

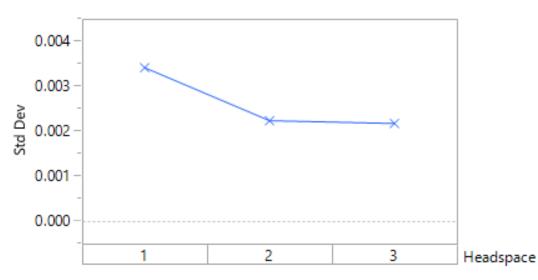

Toxicology blinds – 0.20 g/100mL

Levey Jennings of Reported Concentration

Toxicology blinds – 0.25 g/100mL

Levey Jennings of Reported Concentration

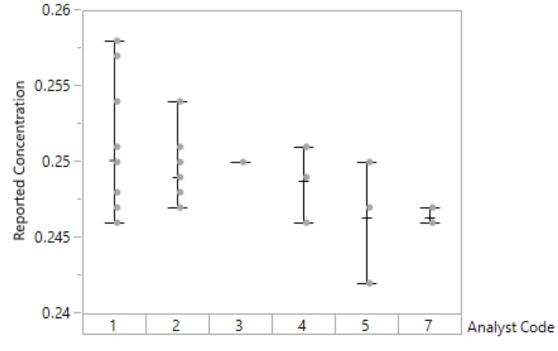


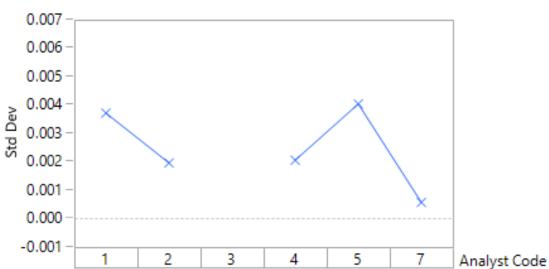

+/-3sd

Instrument contribution

Variability Gauge Expected Concentration Code=0.25

Variability Chart for Reported Concentration



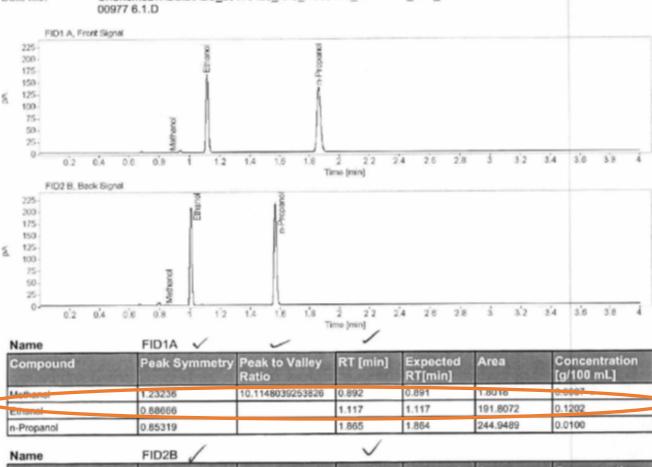


Analyst contribution

Variability Gauge Expected Concentration Code=0.25

Variability Chart for Reported Concentration

Methanol in Samples

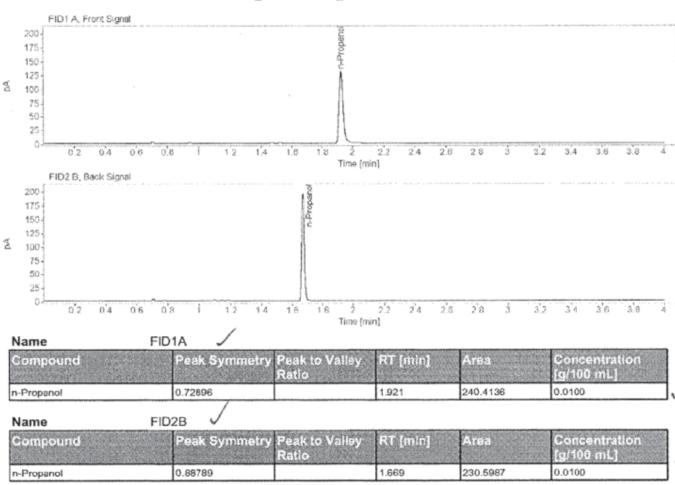

Houston Forensic Science Center, Inc. Forensic Analysis Division Toxicology - Volatile Analysis Chromatograms

 Sample name:
 2017-00977 6.1
 Description:
 Alq 2
 Vial Number:
 63

 Instrument:
 Headspace 3
 Acq. method:
 VOLATILES.M
 Injection date:
 1/23/2017 8:53:52 PM

 Data file:
 C:\Chem32\1\Data\ALC_20170123_AAJ_HS3\ALC_20170123_AAJ_HS3 2017-01-23 15-22-42\F-063-63-2017 1/23/2017 8:53:52 PM

Name Compound	FID2B /	✓				
	Peak Symmetry	Peak to Valley Ratio	RT [min]	Expected RT[min]	Area	Concentration [g/100 mL]
Methanol	1.32738		0.852	0.853	2.0275	0.0007 '
Ethanol	0.93978		1.008	1.008	204.0158	0.1216
n-Propanol	0.90283		1.568	1.568	257.4041	0.0100


Houston Forensic Science Center, Inc. Forensic Analysis Division Toxicology - Volatile Analysis Chromatograms

Clean blind

Sample name: 2016-20951 1.1 Description: Alq 1 Vial Number: 13
Instrument: Headspace 2 Acq. method: VOLATILES.M Injection date: 11/14/2016 1:38:47 PM

Data file: C:\Chem32\1\Data\20161114_AAJ\20161114_AAJ 2016-11-14 12-27-22\013F1301.D

Methanol at collection

Houston Forensic Science Center, Inc. Forensic Analysis Division Toxicology - Volatile Analysis Chromatograms

Sample name:

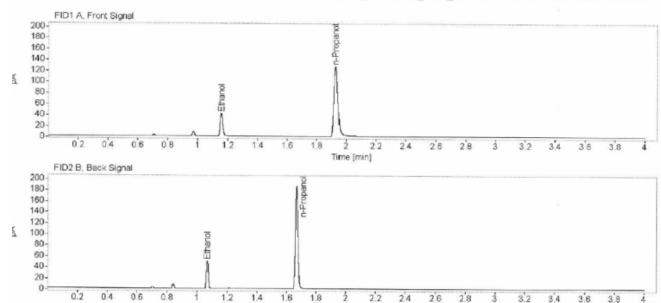
BZK Antiseptic Towelette - 1

Description:

Vial Number

instrument:

Headspace 2


Acq. method: VOLATILES.M

Injection date:

3/17/2017 12:07:13 AM

Data file:

C:\Chem32\1\Data\ALC_20170316_ASG_HS2\ALC_20170316_ASG_HS2 2017-03-16 16-58-14\082F8201.D

Name Compound	FID1A							
	Peak Symmetry	Peak to Valley Ratio	RT [min]	Expected RT[min]	Area	Concentration [g/100 mL]		
Ethanol	0.76941		1.157	1.156	49.4507	0.0330		
n-Propanol	0.71240		1.930	1.929	233.1467	0.0100		

Time [min]

Name Compound	FID2B						
	Peak Symmetry	Peak to Valley Ratio	RT [min]	Expected RT[min]	Area	Concentration [g/100 mL]	
Ethanol	0.88855		1.068	1.068	48.1844	0.0332	
n-Propanol	0.89151		1.669	1.668	221.3510	0.0100	

Actual error rate determination

- 95% confidence, rate of error in positive samples is <3%
- 95% confidence, rate of error in negative sample is <9%

Firearms

Blind Quality Control Blind Verification

Firearms Blind Testing v. Blind Verification

Blind Testing

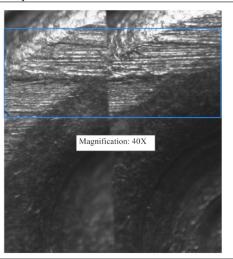
Evidence varies by quantity and type Scenario:

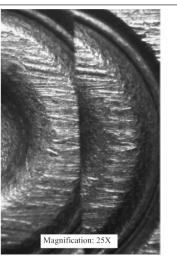
- Two firearms of same make and model as the source of fired bullets and casings
- One of the firearms is submitted as a known
- Examiner determines which, if any, of the fired evidence was fired in known gun
- 12 Cases submitted; 0 Consultations

Blind Verification

Evidence varies to account for what is seen in casework Examples:

- Fired casings and bullet not fired in the firearm submitted
- Three groups of casings
- 6 fired casings fired in one gun. 8 fired casings from a second gun
- Comparisons between two cases
- 25 Cases submitted; 5
 Consultations

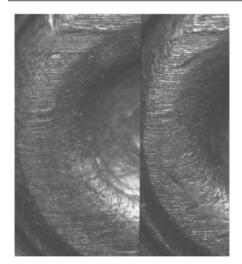

Firearms: Independent Second Verification

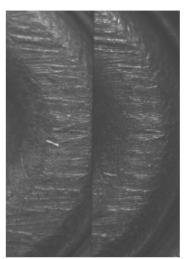

Both examiners concluded in same region of evidence, exact same spot – 6 o'clock

Primary Examiner

Evidence Items Compared: Items 1.2-1.6 to Item 1.1

Result of Comparison: Identification

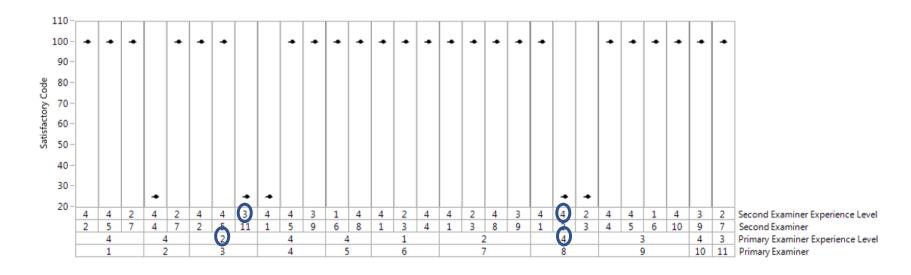

Item 1.2 to Item 1.1 Item 1.2 to Item 1.1


Evidence Index Identification: Dot at 6 Photo Date: 10/31/2016

Second Examiner

Evidence Items Compared: Items 1.2 - 1.6 to Item 1.1

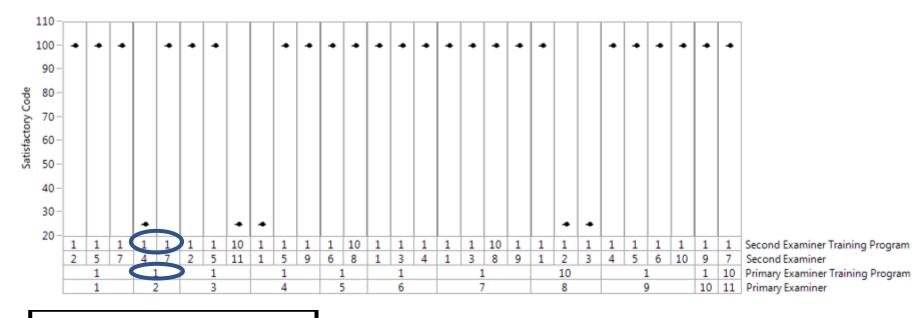
Result of Comparison: Identification



Item 1.2 to Item 1.1 Item 1.2 to Item 1.1

Evidence Index Identification: Mark at 6 o'clock (Both Photos)

Photo Date: 11/01/2016


Firearms: Consultation not due to experience level

Experience Level:

- 1 Less than 2 years of experience
- 2 2-5 years of experience
- 3 5 years of experience
- 4 5+ years of experience

Firearms: Consultation not due to training program

Training Program:

- 1 Trained at HFSC
- 10 Training obtained at laboratory other than HFSC

Firearms: What causes consultation

Complexity of examination

- Firearms that mark fired bullets and casings poorly
- Brand of ammunition

Challenges

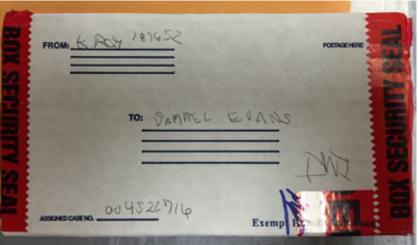
Toxicology

Controlled Substances

Firearms

Biology

Latent Prints


- Samples
- BAC Kit

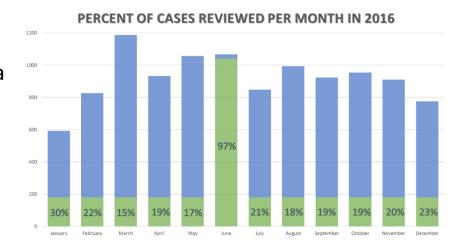
- Street Drugs
- Customer Process
- Firearms
- Request for Testing
- CODIS
- SAKs
- Section Size
- AFIS
- Digital Comparison

Challenges

- Obtaining Samples
- Create test that mimics casework
- Internal logistics
- Analyst detection incentive

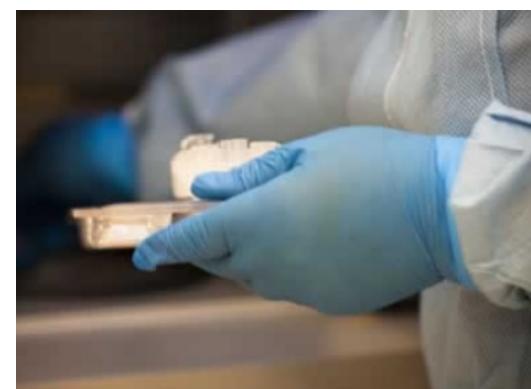
Lessons Learned

- Champion for project
- Collaborators needed
- Not all will be "Blind"
- Integrated LIMS
- Test your system

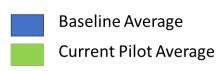

Statistical audit

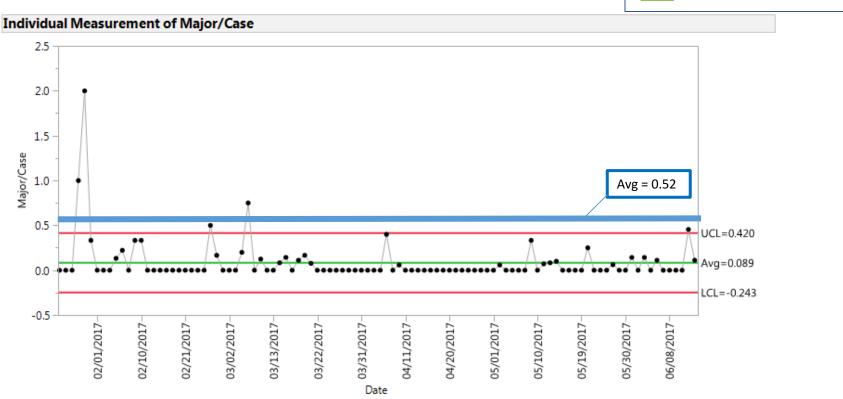
Defect rate detection Controlled Substances

Statistical audit

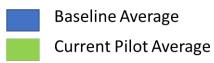

- Controlled substances record defect found on internal audit
- How often does this defect occur?
- Binomial power distribution analysis
 - 3000 records sampled allows for a 90%+ confidence the defect rate is < 0.4% (1 in 250)
- 3,061 records audited 2 defects noted
 - 95% confidence that this defect occurs
 - >2 in 10,000
 - <2.4 in 1,000

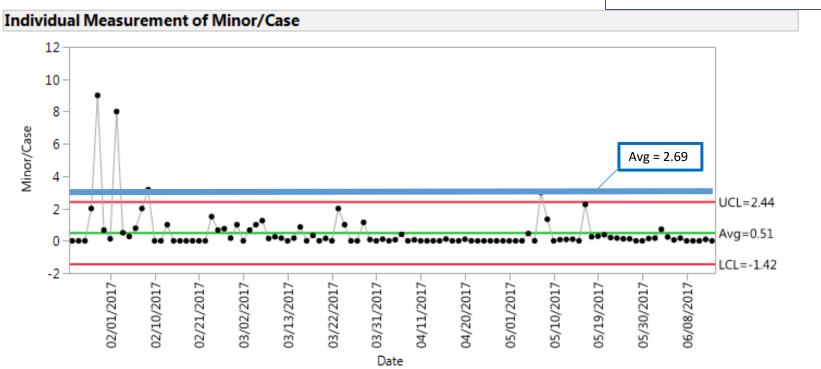
 ~ 40 hours for audit or about \$3,000


Defect analysis

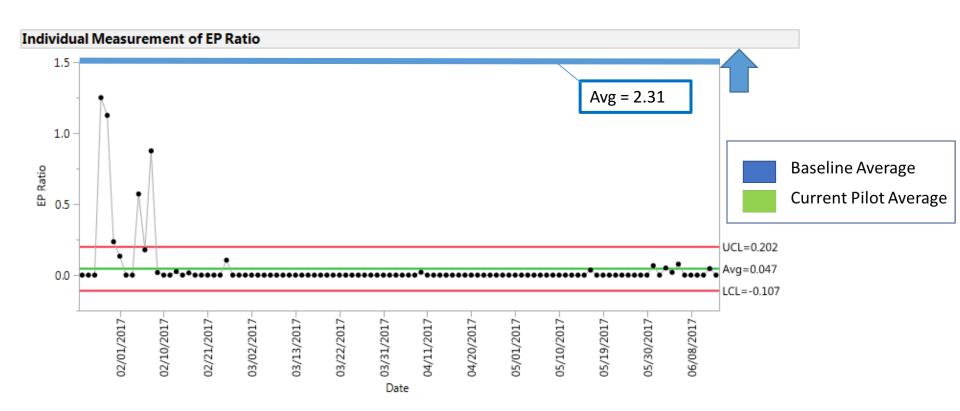

Lean Six Sigma Biology Process Improvement

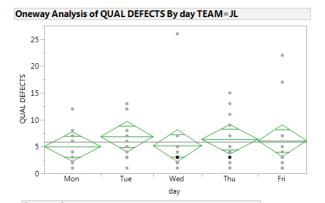
Control Chart: Major Number of Defects per Case Completed


Independent Data Tracking/Daily Success Action Plan



Control Chart: Minor Number of Defects per Case Completed


Independent Data Tracking/Daily Success Action Plan


Control Chart: Number of Evidence Processing Defects per Number of Items Processed

Independent Data Tracking/Daily Success Action Plan

Quality Defects by Day per Team

Reported Independently in Daily Success Action Plan

Oneway Anova Summary of Fit Rsquare

 Rsquare
 0.020317

 Adj Rsquare
 -0.045

 Root Mean Square Error
 5.130773

 Mean of Response
 5.892308

 Observations (or Sum Wgts)
 65

Analysis of Variance

		Sum of			
Source	DF	Squares	Mean Square	F Ratio	Prob > F
day	4	32.7562	8.1891	0.3111	0.8695
Error	60	1579.4899	26.3248		
C. Total	64	1612.2462			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Mon	14	5.00000	1.3713	2.2571	7.7429
Tue	13	6.84615	1.4230	3.9997	9.6926
Wed	12	5.16667	1.4811	2.2040	8.1294
Thu	14	6.35714	1.3713	3.6142	9.1001
Fri	12	6.08333	1.4811	3.1206	9.0460

Std Error uses a pooled estimate of error variance

Missing Rows 48

Oneway	Analysis c	f QUAL DE	FECTS By day	TEAM=ST	
18 —					
16-					
10					
14-					
s 12-					
QUAL DEFECTS					
出 10-					
8					
⊣ 8−					
⊇.		•		_	
O 6-		\longleftrightarrow	/ · \		
-	\longrightarrow	· · ·		\longleftrightarrow	
4-	•	\rightarrow			\longleftrightarrow
				~	/
2 –					
0	Mon	Tue	Wed	Thu	Fri
			day		
			gav		

Oneway Anova

Summary of Fit						
Rsquare	0.030708					
Adj Rsquare	-0.02548					
Root Mean Square Error	3.989732					
Mean of Response	5.108108					
Observations (or Sum Wgts)	74					

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F		
day	4	34.7958	8.6990	0.5465	0.7022		
Error	69	1098.3393	15.9180				
C. Total	73	1133.1351					

Means for Oneway Anova						
Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
Mon	14	5.14286	1.0663	3.0156	7.2701	
Tue	12	6.00000	1.1517	3.7023	8.2977	
Wed	16	5.56250	0.9974	3.5727	7.5523	
Thu	16	5.12500	0.9974	3.1352	7.1148	
Fri	16	3.93750	0.9974	1.9477	5.9273	

Std Error uses a pooled estimate of error variance

Missing Rows 39

It ain't what you don't know that gets you in trouble. It's what you know for sure that just ain't so.

-- Mark Twain

Cost of poor quality

Cost of "wrong"

 The cost of one mistake = George Rodriguez ~\$9M

Homicide = \$5M-\$14M Rape = \$448K Burglary = \$41K

The cost of "late"

- 4 homicides (~300 homicides/year)
- 50 sexual assaults (~1200 kits / year)
- 580 burglaries
 (~11,000 calls to B&T/month)

Murder by numbers: monetary costs imposed by a sample of homicide offenders, Matt DeLisi, Anna Kosloski, Molly Sween, Emily Hachmeister, Matt Moore and Alan Drury, The Journal of Forensic Psychiatry & Psychology Vol. 21, No. 4, August 2010, 501–513

Why should you care?

Cost of "wrong"

- 31,000 requests last CY
- Simple risk = \$279B/year
- 1:10,000 is ~3 failures/year
 - \$27M risk
- Statistically demonstrating a <1:5,000 error rate
 - Would require >150,000 tests to have a 95% power
 - ~\$135M

2,000 blinds / year

- \$500k \$1M
- 95% confidence that error rate is < 0.2%

Why should you care?

2,000 blinds / year

- \$500k \$1M
- 95% confidence that error rate is < 0.2%