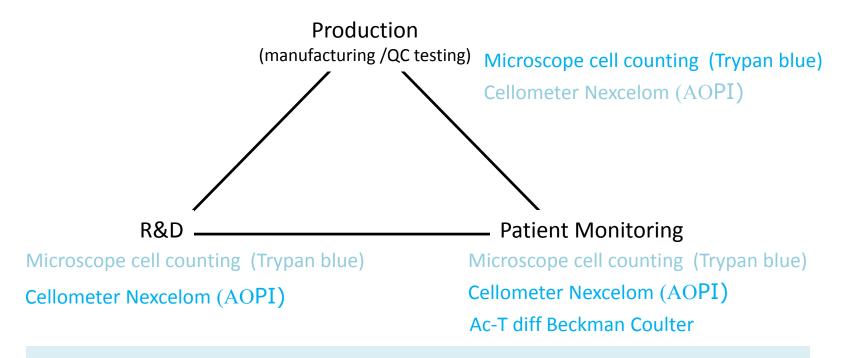
NIST-FDA Cell Counting Workshop: Sharing practices in cell counting measurements April 10, 2017-NIST West Square, Gaithersburg MD 20899

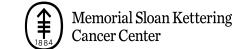
Case study 4
Memorial Sloan Kettering: Brigitte Senechal

CTCEF Cell Therapy and Cell Engineering Facility


HO3S

H3C

CH3


CTCEF / Isabelle Riviere Cell Therapy and Cell Engineering Facility (2015)

Production of CAR T cells from apheresis product

GTF Gene Transfer and Somatic Cell Engineering Facility

Research lab

Multiple factors that may affect cell counting measurements

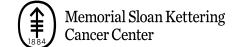
Lab space/equipment

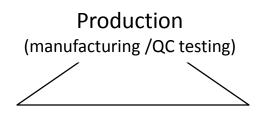
Different lab

Multiple pieces of the same equipment

Different methods (optical/diffraction, impedence, fluorescence-AOPI, TB...)

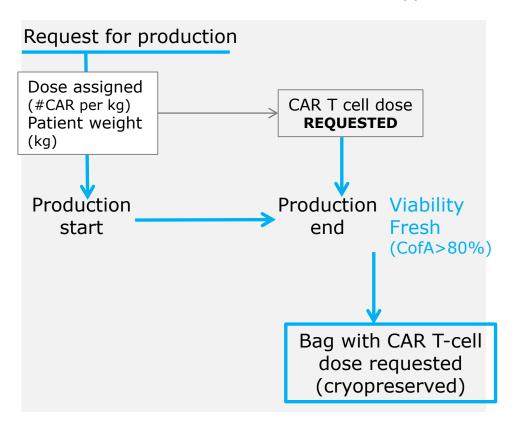
Operators

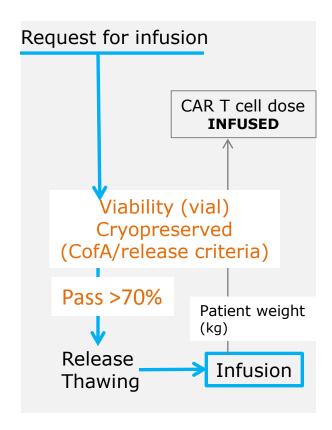

15 operators


Cell sample properties:

- •Fresh v frozen
- Cell lines v patient isolated
- Manipulated v un-manipulated
- Homogeneity / over time / over source
- •(species)

• • •


Verification SOP training



→ CAR cell dose preparation and release: process

current method: trypan blue

→ CAR cell dose preparation and release

Microscope cell counting (Trypan blue) / our reference

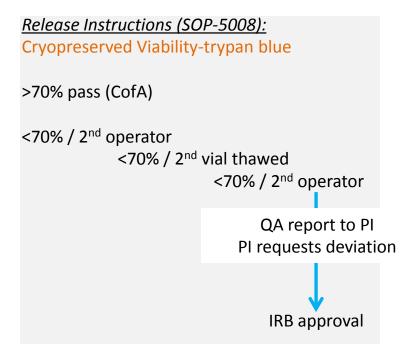
Counting Instructions (SOP-6010):

Trypan blue

1:1 cell:tb

Read within 3 minutes

2 chambers


Average %

AOPI (Nexcelom)

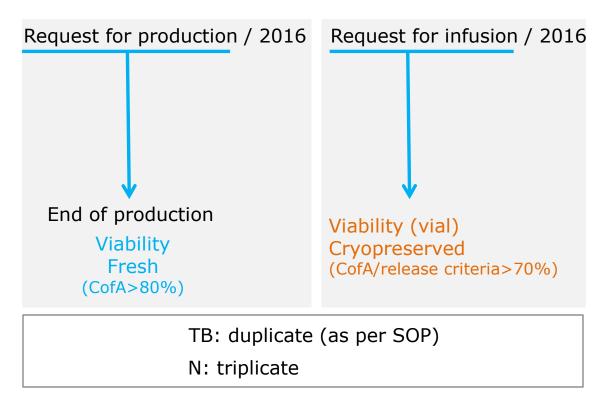
1:1

1 reading

Dilution if >10e7

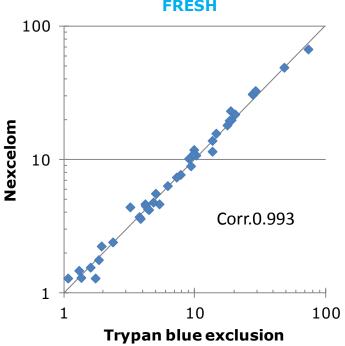
Cellometer Nexcelom (AOPI)?

Microscope cell counting (Trypan blue)


- Subjective
- Great inter-operator variability
- Fully manual
- Time consuming

- -> not subjective
- -> minimal inter run variability
- -> automated
- -> rapid

Health & safety: TB v PI


Microscope cell counting (Trypan blue) v Nexcelom (AOPI):study design

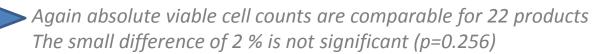
- •Data for 39 CAR products / fresh
- Data for 23 CAR products / cryopreserved
- •Data paired for 23 products

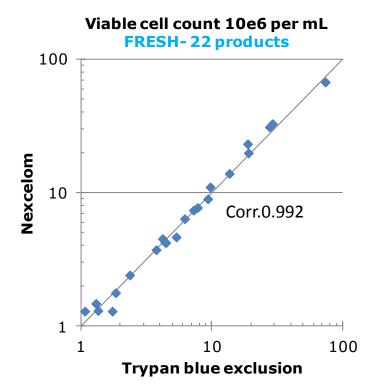
Data for 39 <u>fresh</u> CAR T cells products Comparison of viable cell counts with two methods

	ТВ	N
median	7,250,000	7,386,667
average	12,007,179	12,481,111
min	1,070,000	1,296,667
max	73,750,000	67,200,000

n 39 ttest 0.044 median of difference 2.9%

Absolute viable cell counts are comparable for 39 products assessed in parallel

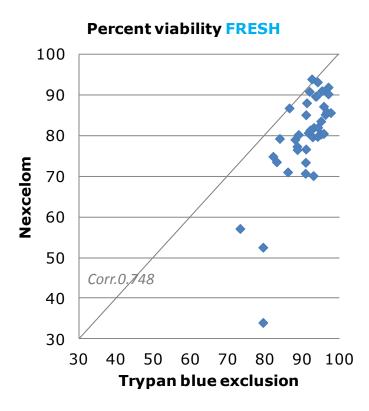

(the small difference of 2.9% is limit significant p=0.044)



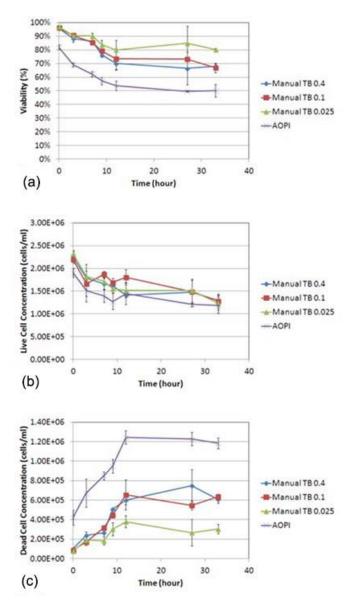
Data for 39 <u>fresh</u> CAR T cells products Comparison of viable cell counts with two methods (continued)

Out of the 39 products tested, 17 were tested without respecting dilution instructions for the Nexcelom


Same comparison was repeated for 22 products tested with respect to dilution instructions



	ТВ	N
median	5,772,500	5,516,667
average	11,544,318	11,836,515
max	1,070,000	1,296,667
min	73,750,000	67,200,000
	n	22
	ttest	0.256
	median of difference	2.0%


viable cell counts condition the formulation, therefore the two counting methods will allow the preparation of the same cell dose

Data for 39 <u>fresh</u> CAR T cells products Comparison of % viability with two methods

http://www.nexcelom.com/Applications/cell-viability-3-comparing-trypan-blue-and-aopi-staining-methods.php

Data for 39 <u>fresh</u> CAR T cells products

Comparison of % viability with two methods (continued)

	ТВ	N
median	92.19	80.67
average	90.87	79.75
max	73.34	34.03
min	97.71	93.90

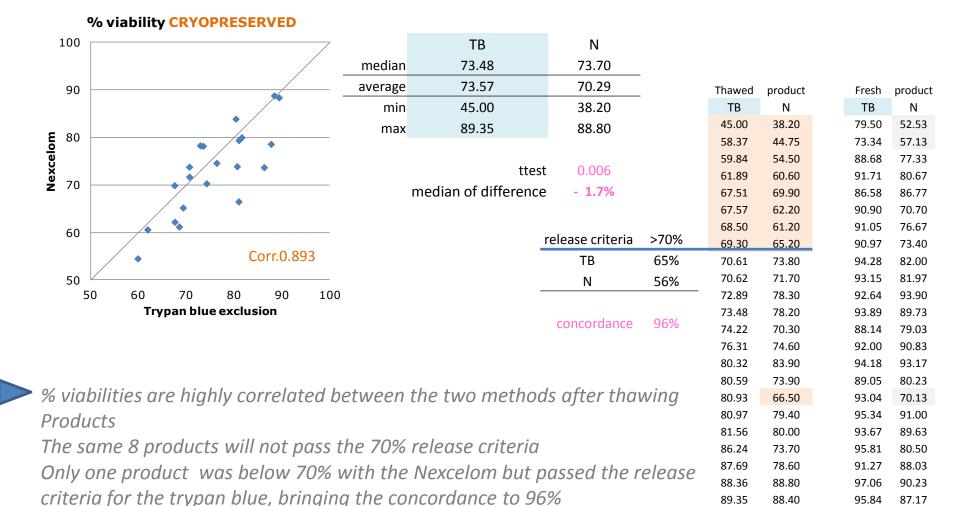
	fresh	frozen
release criteria	>80%	>70%
ТВ	92%	100%
N	92%	92%
concordance	100%	92%

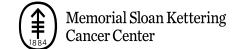
		Percent viability FRESH
	100	
	90	
	80	
Nexcelom	70	
lexc	60	
2	50	•
	40	
	30 3	0 40 50 60 70 80 90 100 Trypan blue exclusion

 $\begin{tabular}{ll} ttest 2.09E-$10 \\ median of difference $-$11.0\% \\ \end{tabular}$

ТВ	NEXCELOM
73.34	57.13
79.50	52.53
79.51	34.03

→ Three products did not pass the 80% criteria with both methods

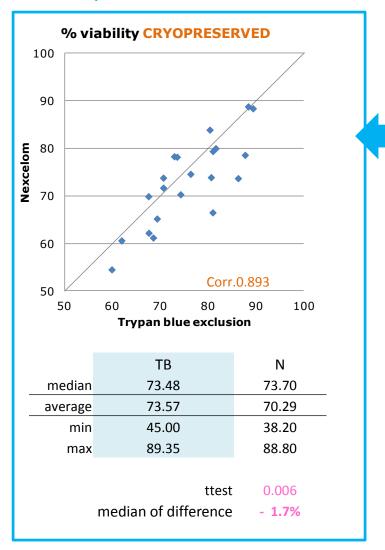


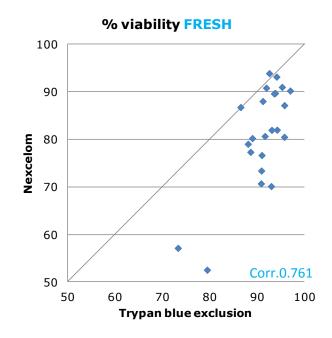

Despite the low correlation between % viability determined by the 2 methods, The same three products will not pass the cut-off of 80%, thus 100% agreement

Data for 23 <u>cryopreserved</u> CAR T cells products

Comparison of % viability with two methods after thawing 23 cryopreserved products

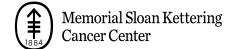
95.84

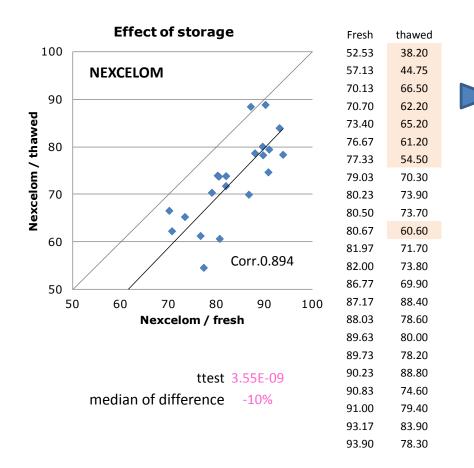

87.17


89.35

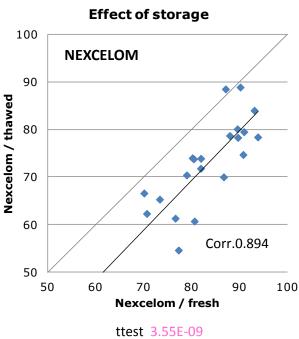
88.40

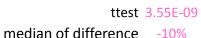
Data for 23 cryopreserved CAR T cells products

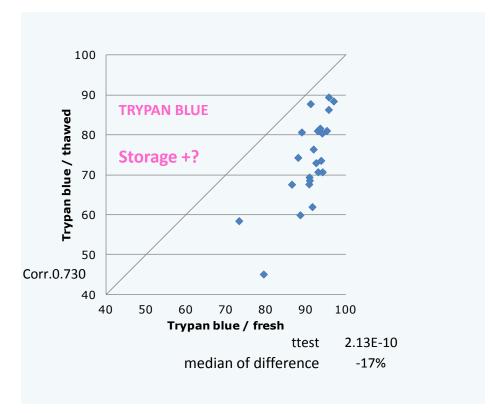

% viability with two methods correlate well on thawed products but not on fresh products


	ТВ	N
median	92.00	81.97
average	90.96	80.99
min	73.34	52.53
max	97.06	93.90

ttest 1.18E-06 median of difference - 10%


Fresh-cryopreserved data for 23 CAR T cells products

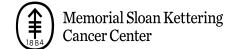

Comparison of viability before and after cryopreservation with the same assay



Upon thawing there is on average a 10% decrease of the viability when measured with Nexcelom

<u>Fresh-cryopreserved</u> data for 23 CAR T cells products

the viability measured on thawed products by trypan blue is not well correlated to the viability before thawing decrease of viability after thawing seems higher with the Trypan blue (-17%) than with the Nexcelom (-10%)


! the viability of fresh products determined by Trypan blue is higher than with Nexcelom (~+10%) [slide 10]

Hypothesis:

PI more sensitive than TB to detect dead cells?

PI is less specific than TB?

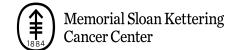
1 F/T cycle increases correlation between the 2 assays: the discrepant signal wiped out?

Preliminary Conclusions

Trypan blue to Nexcelom / formulation and release of cryopreserved CAR T cells

Viable cell count is not affected -> formulation of the same CAR T cell dose

% viability fresh significantly different with nexcelom detecting more dead cells (-11%, p<0.001)


But 100% agreement for a provisional release criteria of 80% on fresh products

% viability cryopreserved slightly different between the two methods (-1.7%, p=0.006)

With excellent agreement of 96% for a release criteria of 70% (only 1 discrepant)

..to confirm with more products

...to gain confidence and understanding of discrepant data observed on fresh products: AOPI detected more dead cells than TB in T cells expanded in vitro

