NISTIR 7297-A

FS-TST 2.0: Forensic Software

Testing Support Tools
Test Plan, Test Design Specifications, and Test Case Specification

April 25, 2005

Serban I. Gavrila
VDG Inc.

NIST
Technology Administration
U.S. Department of Commerce

Page i of 116

Page ii of 116

Abstract

This NIST Internal Report deals with Release 2.0 of a software package, Forensic
Software Testing Support Tools (FS-TST 2.0), developed to aid the testing of disk
imaging tools typically used in forensic investigations. The package includes programs
that initialize disk drives, detect changes in disk content, and compare pairs of disks. This
Internal Report consists of three parts.

This is Part A, Test Plan, Test Design Specifications, and Test Case Specification. It
covers the planning, design, and specification of testing of FS-TST 2.0. The setup of disk
drives and the testing is to be performed in the Linux environment; however, some tests
will require interaction with the MS-DOS operating system.

Part B, Test Summary Report, is a companion document. It reports the result of testing the
FS-TST 2.0 package according to Part A. Two programs might have had slightly more
convenient behavior in erroneous cases, but no anomalies were found in testing.

Part C, Code Review Report, is an additional companion document. It covers the planning
and specification of reviewing all the source code in the package and reports the results
of the code reviews. Nothing was found in the code reviews that should cause invalid
results, that is, that should lead to an imaging tool with systematic errors being
incorrectly passed as adhering to the assertions.

The intended audience for this document should be familiar with the Linux operating
system, computer operation, and computer hardware components such as hard drives.

Keywords: Computer forensic tool; disk imaging; software testing; testing support tools;
FS-TST.

Certain trade names and company products are mentioned in the text or identified. In no
case does such identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products are necessarily
the best available for the purpose.

Page iii of 116

Table of Contents

INEFOTUCTION oo 1
Section A: FS-TST TeSt PlaNcoii i 2
AL INTFOAUCTION oo 2
N N R @ o Y=o £ = P 2
ATL.2 BACKGIOUNG...oiiiiiiiiiiiitiei ettt e e et e e e e e e st r e e e e e e e e e ane 2
YN B Tod o] o TP TUPPPPPRRPTRN 2
N R L= =T =T o Y o = 2
A =T 1 =T 0 TP 2
A3 Features to be tested ..., 2
A3.1 Common fuNCLiONal FEALUTESevvviiiiieiieeiiiiiiieeieeieeeeee e ereeeenrennne 2
A3.2 Individual program featuresS/requUIreémMentsccccoocciimiriiieeeinniieee e 4
N o o1 o - T o P 7
AS PaSS/fail CrIteITa.....ceuuieiiii e 7
AB Test deliverables ... 8
A =2 B €= 1] S PRSP 8
A8 EnVironmental NEEASouviiiiiiiiiiiiiiiiieeeeieeeeeeeeee ettt 8
o T = U0 1= L= T 8
N TS 1o 1 1 1T = = 9
Section B: FS-TST Test Design Specificationcccceeviiiiiiiiiieiiiciie e 10
B1 diskwipe Test Design Specification............uuuiiiiiiiiiiiiiiiiiiii e 10
B2 partab Test Design SpecCification..........covvvuiiiiiii e 12
B3 diskchg Test Design Specificationcooouuiiiiiiiiiiiieeiiic e 14
B4 seccmp Test Design Specification ..o 17
B5 partcmp Test Design SpecifiCation.........cooouviiiiiiiiiiiiiieeiic e 19
B6 diskcmp Test Design SpecifiCationccccvviviiiiiiiiiiiiiiiieeeeeeeeeee 21
B7 corrupt Test Design Specificationvviiiiiiieeiiiieiee e, 22
B8 logsetup Test Design Specification ... 23
B9 logcase Test Design Specificationccccovviiiiiiicciieecce e, 24

Page iv of 116

B10 adjcmp Test Design Specificationocouuvieiiiee i 25

B11 sechash Test Design SpecifiCationcceeiiiiiiiiiiiiiiiiii e 28
B12 diskhash Test Design Specificationcccceeiiiieiiiiiiiiiiiii e, 30
B13 Disk Logging Test Design Specificationccccovveeiiiiiiiiiee e, 31
Section C: FS-TST Test Case SpecificationS...........cccceeiiiiiiiiiiieiiiiiii e, 32
Cl diskwipe Test Case SPecCifiCatioNSuuueiiiiiiiiiiiiiiiii e 32
C2 partab Test Case SPecCifiCatioNSoovvvviiiiiiii e 41
C3 diskchg Test Case SpecCifiCatioNS........couuvuiiiiiiiiiiiii e 48
C4 seccmp Test Case SpecCificationNS..........uvviiiiiiiciieeeeie e 66
C5 partcmp Test Case SPeCifiCatioNScouuvueiiiiiiiiiiiiiiii e 75
C6 diskcmp Test Case SPecCifiCatioNS..........uveciiiiieeiiiieeci e 83
C7 corrupt Test Case SPecCifiCatioNS........coouuuviiiiiiiiiiieii e 88
C8 logsetup Test Case SPeCifiCatioNSuvviiiiiii i 93
C9 logcase Test Case SPecCifiCatioNScouuuuiiiiii i 94
C10 adjcmp Test Case SPeCifiCatioNS..........uvueiiiiieeiiiieeicee e 95
Cl1 sechash Test Case SpecCifiCatioNSceiiiiiiiiiiiiiii e 101
C12 diskhash Test Case SpecCificatioNS.........ccceevvieeeiiiiiiiiiciee e 112

Page v of 116

Page vi of 116

Introduction

The Computer Forensics Tool Testing (CFTT) project at the National Institute of
Standards and Technology (NIST), an agency of the United States Department of
Commerce, provides a measure of confidence in the software tools used in computer
forensic investigations. This document focuses on a class of tools called disk-imaging
tools that copy or “image” hard disk drives. Forensic Software Testing Support Tools
version 2.0 (FS-TST 2.0) is a software package that supports the testing of disk imaging
tools. FS-TST 2.0 includes 10 tools that perform hard disk initialization, faulty disk
simulation, hard disk comparisons, extraction of information from a hard disk, and
copying of disks or disk partitions.

This document covers the planning and specification of testing the tools included in the
FS-TST 2.0 package.

A portion of this work was funded by the National Institute of Justice (NI1J) through an
interagency agreement with the NIST Office of Law Enforcement Standards.

Page 1 of 116

Section A: FS-TST Test Plan
A1l Introduction

Al.1 Objectives
A test plan for FS-TST should support the following objectives:

(1) To detail the activities required to prepare for and conduct the testing of FS-TST.
(2) To define the sources of the information used to prepare the plan.
(3) To define the test tools and environment needed to conduct the FS-TST tests.

Al.2 Background

The Software Conformance and Diagnostics Testing (SCDT) Division of NIST has
developed a software package called Forensic Software Testing Support Tools (FS-TST)
version 2.0, comprising tools used in testing of disk imaging tools, which, in turn, are
used in forensic investigations. Testing the FS-TST tools provides a degree of confidence
in using them to test the disk imaging tools.

Al1.3 Scope
The test plan covers:

(1) Testing of the functionality of FS-TST, as described in document [FST-RDU-20] -
see section Al.4 References below.
(2) Testing FS-TST compliance with requirements stated in document [FST-RDU-20].

Al.4 References
The following documents were used as sources of information for the test plan:

1. FS-TST: Forensic Software Testing Support Tools. Requirements, Design Notes, and
User Manual. Version 2.0, February 2005 (FST-RDU-20).
2. |EEE Standard for Software Test Documentation, IEEE Std. 829-1998 (IEEE-01).

A2 Test Items

The items to be tested are the tools included in FS-TST 2.0, namely: diskwipe, corrupt,
adjcmp, diskemp, partcmp, logcase, logsetup, partab, diskchg, and seccmp.

A3 Features to be tested

This section describes the features/requirements of each tool that need to be tested. Most
of the support tools share common functionality. These common requirements and
features are described once for all tools and then referenced as needed.

A3.1 Common functional features
A3.1.1 Hard disk drive logging

Page 2 of 116

A program required to do disk logging must record the following information in the
specified log file for the specified disk drive:
1. The type of the hard disk drive interface - IDE or non-IDE (SCSI).
2. The disk geometry, i.e., maximum allowed cylinder value, maximum allowed
head value, number of sectors per track, and total number of sectors.
3. The disk drive model number and serial number.

A3.1.2 Program execution logging

A program required to do program execution logging must record:
1. The program name, version number, source file creation date and time, and
compile date and time.
The support library name, version number, source file creation date and time, and
compile date and time.
The header file name, version number, and source file creation date and time.
The command line (including command line options).
The date and time program execution begins and ends, and the elapsed time.
The test case ID.
The name of the computer where the program is executed.
A user supplied comment.
Either start a new log file or append to an existing log file.
0. Print a summary of the program command line and command line options, then
exit.

no

BO0N U ~W

A3.1.3 Partition table logging

A program required to do partition table logging must record the following information
for the partition table of the specified disk drive in the specified log file:

1. For each partition table entry in the master boot record partition table and each
partition table in any extended partition, print the following: starting LBA
address, partition length, starting cylinder/head/sector address, ending
cylinder/head/sector address, bootable flag, partition code (in hexadecimal).

2. For common partition types (FAT12, FAT16, FAT32, extended, Linux ext2,
Linux swap, and NTFS) print a descriptive string, e.g., Fat32 for type code 0x0B.

A3.1.4 Comparison logging

A program that compares a source to a destination is required to do comparison logging.
A source or destination is defined to be a block of contiguous disk sectors. A source or
destination can be an entire disk, a disk partition, or a block of sectors located between
two partitions. The source is assumed to have been initialized by diskwipe with the
source fill byte, and the destination is assumed to have been initialized by diskwipe with
the destination fill byte.
1. Summarize corresponding sectors of the source and destination with counts of the
sectors compared, sectors matching, sectors differing and the total number of
bytes that are different. Note that if large disk drives with few matching bytes are

Page 3 of 116

compared, then the total number of differing bytes may exceed the maximum
integer that can be represented by a variable. In this case, overflow is permitted
without notification.

2. If the source and destination are not the same size, log the size of each and the
difference in size.

3. If the destination is larger than the source, categorize the excess sectors according
to the following: zero fill (every byte is zero), diskwipe-style fill, and other
contents. The diskwipe-style fill is actually three categories: source fill byte,
destination fill byte, and other fill byte.

4. For each category, the first few sectors belonging to the category are logged. A
contiguous block of sectors is logged as a hyphen-separated pair of integers, i.e.,
start sector - last sector.

A3.1.5 Error reporting
The following requirements apply to all programs except as noted under each program.

1. If the command line parameters are not valid, print an error message indicating

the problem, print a summary of the program command line and command line

options, then exit.

If any 1/0 operation fails, print a diagnostic message and exit.

3. If any /O operation fails, the content of the log file is undefined (the log file
should be considered corrupt).

N

A3.2 Individual program features/requirements

A3.2.1 diskwipe features

1.
2.
3.
4.

5.

Log the specified hard disk drive.

Log the program execution.

Allow specification of at least three log file names: one for a source disk, one for a
destination disk, and one for a media disk.

Write the specified content from Table 2 of document FST-RDU-20 to each disk
sector of the specified drive.

By default, use the number of heads obtained from the BIOS extensions; however,
optionally allow specification of the number of heads to override the value from
BIOS.

A3.2.2 partab features

1.
2.
3.

Log the specified hard disk drive.

Log the program execution.

For each partition table entry in the master boot record partition table and each
partition table in any extended partition, print the following: starting LBA address,
partition length, starting C/H/S address, ending C/H/S address, bootable flag, partition
type code (in hexadecimal).

For common partition types (FAT12, FAT16, FAT32, extended, Linux Ext2, Linux
swap, NTFS) print a distinctive string, e.g., “Fat32” for FAT32 partitions.

Page 4 of 116

5.
6.

7.

Use a different log file name for each hard disk drive.

Log (optionally by command line control) a unique identification for each partition
that can be used by the partcmp tool to select partitions for comparison.

Log (optionally by command line control) empty partition table entries.

A3.2.3 diskchg features

arONOE

8.
9.

Log the specified hard disk drive.

Log the program execution.

Allow specification of disk sector addresses in either CHS or LBA format.

Set every byte of a specified sector to zero.

For a specified sector s, a specified address a (possibly not the same as the specified
sector), a specified disk geometry, and a specified fill value, fill sector s with the
contents of a diskwipe style fill using a as the address value for the fill. In other
words, set sector s to the contents that diskwipe would use for the sector at location a
on a disk with the specified geometry using the specified fill value.

For a specified sector, a specified offset within the sector, and a specified value, set
the byte at the offset within the sector to the specified value.

For a specified hard drive, a specified sector, a specified offset within the sector, and
a specified count count, log the contents of count bytes from the specified sector
starting at the specified offset.

Allow interactive examination of sector contents.

Use a different log file name for each function.

A3.2.4 seccmp features

1.
2.
3.
4
5.

6.

Log the specified source drive.

Log the specified destination drive.

Log the program execution.

If the sectors to compare are not diskwipe style filled or zero filled, log any
differences between the source sector and the destination sector.

diskwipe style filled sectors or zero filled sectors are logged with no need for
comparison.

Allow specification of an alternate log file name.

A3.2.5 partcmp features

1.
2.
3.
4.

Log the specified source drive.

Log the specified destination drive.

Log the program execution.

Log the comparison between the source partition and the destination partition.

A3.2.6 diskcmp features

agrwdE

Log the specified source drive.

Log the specified destination drive.

Log the program execution.

Log the comparison between the source drive and the destination drive.
If there is a read error the comparison results are undefined.

Page 5 of 116

6.

If there are any read errors, then continue scanning the disk and log a count of the
number of tracks with read errors on each disk.

A3.2.7 corrupt features

1.
2.
3.
4.

Log the program execution.

Change a specified byte at a specified location in a specified file to a specified value.
Log the original value at the specified location.

Log the new value at the specified location.

A3.2.8 logsetup features

1.

Record the following: disk label, host computer, operator, operating system loaded,
date and time.

A3.2.9 logcase features

1.

Record the following: Test case ID, host computer, operator, source disk drive,
destination disk drive, other disk drive, date and time.

A3.2.10 adjcmp features

agrpwdE

IS

11.

Log the specified source drive.

Log the specified destination drive.

Log the program execution.

Log the partition table for the specified hard drive.

For each disk, assign each sector to a contiguous block of sectors, called a disk chunk,
such that each disk chunk is assigned to one of the following chunk categories: a
sector contained within a partition, a sector contained within a partition boot track,
the unallocated sectors between two partitions, or unallocated sectors after the last
partition on the disk.

Record the location of each disk chunk in the log file.

Allow specification of corresponding disk chunks between the source hard drive and
the destination hard drive. (A disk chunk on the source drive is compared to the
corresponding disk chunk on the destination drive.)

Log the correspondence between source disk chunks and destination disk chunks, i.e.,
for each disk chunk on the source drive, log the disk chunk on the destination that the
source disk is to be compared to.

Log the comparison between each pair of corresponding disk chunks.

. For any destination disk chunks that have no corresponding source chunk categorize

the sectors of the disk chunk according to the following: zero fill (every byte is zero),
diskwipe style fill, and other contents. The diskwipe style fill is actually three
categories: source fill byte, destination fill byte and any other fill byte. For each
category, the first few (up to some arbitrary limit) sectors belonging to the category
are logged. A contiguous block of sectors is logged as a hyphen separated pair of
integers (start sector - last sector).

Log a summary as follows:

- Number of boot tracks, total number of sectors assigned to boot tracks, and
number of boot track sectors that do not compare equal.

Page 6 of 116

- Number of partitions, total number of sectors assigned to some partition, and
number of corresponding partition sectors that do not compare equal.

- Number of unallocated chunks with a corresponding unallocated chunk,
number of sectors in this category and number of corresponding sectors that
do not compare equal.

- Number of excess sectors in destination chunks that have a corresponding
source chunk, number of sectors that have every byte set to zero, and number
of remaining sectors.

- Number of sectors in destination chunks that do not have a corresponding
source chunk, number of sectors that have every byte set to zero, and number
of remaining sectors.

- Total number of source sectors and total number of destination sectors.

A3.2.11 sechash features

1. Compute a SHA-1 for a specified block of continuous sectors from the designated
hard drive.

2. Log the computed hash value.

3. Allow the specification of at least two log file names, one for reference before a tool
is run and one for comparison after a tool is run.

4. Log the specified hard drive.

5. Log the program execution

A3.2.12 diskhash features

1. Compute a SHA-1 for the designated hard drive.

2. Log the computed hash value.

3. Allow the specification of at least two log file names, one for reference before a tool
is run and one for comparison after a tool is run.

4. Log the specified hard drive.

5. Log the program execution

A4 Approach

Testing personnel will develop the test cases and procedures, based on the list of features
for which each tool will be tested, the applicable FS-TST documentation (FST-RDU-20),
and the manner in which the tool will be used. The tools will be tested to ensure that their
behavior corresponds to that outlined in the documentation. In the test cases developed,
the value logged will be compared with known values acquired by other methods.

A5 Pass/fail criteria

If a tool tested does not possess one or more of the features listed for that tool, then the
tool will fail the test. The tool will also fail the test if inaccuracies are found in the logs
produced by that tool. Otherwise, the tool will pass the test.

Page 7 of 116

A6 Test deliverables

Test documentation:

(1) FS-TST Test Plan

(2) FS-TST Test Design Specifications
(3) FS-TST Test Case Specifications
(4) FS-TST Test Summary Report

Test scripts:

(1) Scripts used to prepare the environment for and launch the test procedures.
(2) Scripts used to extract information selectively from the log files.

A7 Test tasks

Task

Predecessor Tasks

1. Prepare test plan

FS-TST design, requirements, functional
specifications

2. Prepare test design specifications Task 1
3. Prepare test case specifications Task 2
4. Prepare test procedure specifications Task 3
5. Obtain hardware and software required | Task 4
for testing the software item

6. Execute test procedure for the software | Task 5
item

7. Observe results of testing Task 6
8. Repeat tasks 5-7 until all items have | Task 7
been tested

9. Prepare test summary report Task 8

A8 Environmental needs
A8.1 Hardware

A8.1.1 Host Computers

The following computers were available for testing:

Name BIOS HDD Slots
McMillan Extended 3 IDE + 2 SCSI
Frank Extended 2 IDE + 2 SCSI + 2 SATA

Page 8 of 116

A8.1.2 Hard Disk Drives
The following hard disk drives were used for testing:

Label | Model Interface Sectors GB

3B MAG3091L SUN9.0G SCSI 17,689,266 8
TF MAXTOR 6L040J2 IDE 78,177,792 40
80 WDC WD800BB-00CAA1 IDE 156,301,488 80
81 WDC WD800BB-00CAA1 IDE 156,301,488 80
82 WDC WD800BB-00CAA1 IDE 156,301,488 80
CC SEAGATE ST336705LC SCSI 71,687,370 34
10B WDC WD2500JD-22F SATA 488,397,168 250

A8.2 Software

Besides the software tools being tested, a variety of other software tools are needed in
order to prepare the test cases (e.g., to create partitions), or to provide a means of
evaluating the test results (e.g., an alternative way of computing a disk hash). The
following software was available as testing support:

Partition Magic ® Pro, Version 6.0, PowerQuest Corporation.

Disk Editor (diskedit), Version 8.0, Symantec Corporation.

Disk Editor (diskedit), Norton Utilities 2002, Symantec Corporation.

Red Hat Linux 8.2 Operating System.

Fedora Core 3 (Red Hat) Operating System.

NIST Forensics Software Testing Support Tools FS-TST 1.0 (for DOS)

NIST Computer Forensic Reference Data Sets (CFReDS) script cal-drive.csh (see
http://www.cfreds.nist.gov/) and two variants of this script, cal-drive-count.csh and cal-
drive-count-seek.csh.

Page 9 of 116

http://www.cfreds.nist.gov/

Section B: FS-TST Test Design Specification
B1 diskwipe Test Design Specification

B1.1 Features to be tested

1. Log the specified hard disk drive (see section A3.1.1).

2. Log the program execution (see section A3.1.2).

3. Allow specification of at least three log file names: one for a source disk, one for a
destination disk, and one for a media disk.

4. Write the specified content from Table 2 of document FST-RDU-20 to each disk
sector of the specified drive.

5. By default, use the number of heads obtained from the BIOS extension. Optionally
allow specification of the number of heads to override the value from BIOS.

B1.2 Approach refinements

Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

Several test cases will be created to test that diskwipe logs the program execution
correctly. The -comment option will be used with one-word or multi-word comments. It
will also be checked that when not used, the tool will ask the user to enter a comment to
be logged. A test case will verify that a log file is created when none is present, another
that log records are appended when a log file is already present, and another that the old
log file will be destroyed and a new file created when diskwipe is run with the -new_log
option. We will also test the creation of a log file with a given name. Some test cases will
be used to test that the -h option makes diskwipe print its usage mode on the stdout.

The approach to testing the third feature will be to use the three command line options
-src, -dst, and -media, and verify that each log file name is unique.

The fourth feature will be tested over a variety of hardware configurations. The disk
sector addressing method, BIOS type, and hard drive type will be varied. Several sectors
from the beginning and end of the first, last, and two arbitrary cylinders will be checked
for correct syntax and content using a commercial tool (e.g., diskedit).

The approach to testing feature 5 will be to run diskwipe using the -heads option with a
different number of heads than the one obtained from the BIOS.

Page 10 of 116

B1.3 Test Identification

Case Id

Description/Options used

eatures tested

dkw-01

-comment w

dkw-02

-new_log
-comment “w1 ...”
-noask

Featu
1,234
1,2,3,4

dkw-03

-noask
-dst
-heads n

1,2,3,4,5

dkw-04

-noask
-src

1,2,3,4

dkw-05

-noask
-media

1,2,3,4

dkw-06

-noask
-log_name x

1,2,3,4

dkw-07

-noask
-Src
-log_name x

1,2,3,4

dkw-08

-noask
-media
-new_log
-log_name x

1,2,3,4

dkw-09

-serial ATA disk
-new_log
-noask

1,2,3,4

dkw-10 No arguments, wrong arguments, -h | 2
(alone or with other options on the
command line)

Page 11 of 116

B2 partab Test Design Specification

B2.1 Features to be tested

Log the specified hard disk drive.

Log the program execution.

Log the partition table (see section A3.1.3).

Use a different log file name for each hard drive.

Log (optionally by command line control) a unique identification for each partition
that can be used by the partcmp tool to select partitions for comparison.

6. Log (optionally by command line control) empty partition table entries.

agrwdE

B2.2 Approach refinements

Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 2 will be to run partab using different combinations of
command line options and verifying that the proper information is logged in the log file.
For example, we will verify that the user is prompted for a descriptive comment when
running partab without the -comment option; also, we will verify that the comment is
logged correctly when running partab with the -comment option followed by a single-
word or multi-word comment. We will test whether partab correctly appends the log
records to an existing log file, or creates a new file if the option -new-log is used. We will
use the -h option to test whether partab displays a usage mode.

The approach to testing feature 3 will be to use the diskchg tool or another disk editor
like PartitionMagic to collect the relevant partition information from the partition table(s)
of the hard drive. The output of partab can then be compared with the information
collected by the other tools. Testing will consist of running partab on hard disks with a
variety of partition types and number of partitions. We will use partition types supported
(FAT16, FAT32, extended, NTFS, Linux ext2, and Linux swap) as well as not supported
by partab (e.g., HPFS). The tester will visually inspect the information logged by partab.

To test for uniqueness in log file names (feature 4), we will run partab on hard drives
with different interfaces mounted as devices with different names (e.g., /dev/hdb,
/dev/sda) and we will inspect the names of the log file created for each hard drive for
uniqueness.

The approach to testing for uniqueness of partition identifiers (feature 5) will be to run
partab on hard disk drives with multiple primary and/or logical partitions. The tester will
visually check that the log file created contains entries for each of the partitions and that
for each partition there is assigned a unique identifier. This test will be performed with
and without the -all option to determine that unique identifiers are assigned when
extended partition entries are logged as well as when they are not.

Page 12 of 116

The approach to testing logging of empty partition table entries will be to run partab on
hard drives with various numbers of primary and logical partitions that have or do not
have empty entries, and ensure that partab correctly logs them.

B2.3 Test Identification

Case Id Partitions Description/Options Features
ptb-01 None -all 1,2
-comment w
ptb-02 -primary FAT -all 1,2,3,4,56
-comment “wl...”
-new_log
ptb-03 -primary FAT32 | -all 1,2,3,456
-interactive comment
-append log
ptb-04 -primary NTFS | -all 1,2,3,4,5,6
-log_name x
-interactive comment
ptb-05 -primary FAT32 | -all 1,2,3,4,5,6
huge -log_name x
-primary Linux
ext2
-primary Linux
swap
ptb-06 -primary FAT -all 1,2,3,4,5,6
-primary FAT32 | -new_log
hidden -log_name x
-primary HPFS
ptb-07 -multiple -all 1,2,3,4,5,6
extended and | -new_log
logical partitions
ptb-08 -no arguments 2
-0r incorrect syntax
-or -h alone
-or -h with other options

Page 13 of 116

B3 diskchg Test Design Specification

B3.1 Features to be tested

Log the specified hard disk drive.

Log the program execution.

Allow specification of disk sector addresses in either CHS or LBA format.

Set every byte of a specified sector to zero.

For a specified sector s, a specified address a (possibly not the same as the specified

sector), a specified disk geometry, and a specified fill value, fill sector s with the

contents of a diskwipe style fill using a as the address value for the fill. In other

words, set sector s to the contents that diskwipe would use for the sector at location a

on a disk with the specified geometry using the specified fill value.

6. For a specified sector, a specified offset within the sector, and a specified value, set
the byte at the offset within the sector to the specified value.

7. For a specified hard drive, a specified sector, a specified offset within the sector, and
a specified count count, log the contents of count bytes from the specified sector
starting at the specified offset.

8. Allow interactive examination of sector contents.

9. Use a different log file name for each function.

agrwdE

B3.2 Approach refinements

Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 2 will be to run diskchg using most combinations of
command line options and verifying that the proper information is logged in the log file.

The approach to testing feature 3 will be to run diskchg using both CHS and LBA sector
addresses for each function, and observing whether the results are identical.

The approach to testing feature 4 will be to run diskchg using the -zero option, then using
diskedit and/or diskchg itself to examine the bytes of the specified sector.

The approach to testing feature 5 will be to run diskchg using the -fill option, and
specifying different combinations of sector addresses, fill addresses, disk geometries
(zero and non-zero number of heads), and fill values. The resulting sector contents will be
compared with the contents of the sector at the fill address as written by diskwipe, using
diskedit and/or diskchg itself to display those contents.

The approach to testing feature 6 will be to run diskchg using the -write option for

different sector addresses, offsets, and values, then examining the byte at that offset
within the specified sector by using diskedit and/or diskchg itself.

Page 14 of 116

The approach to testing feature 7 will be to run diskchg using the -read option for
different sector addresses, offsets, and counts, then comparing the logged results with the
values displayed by diskedit.

The approach to testing feature 8 will be to run diskchg using the -exam option, entering
different sector addresses when prompted, and comparing the logged results with those
displayed by diskedit and/or those displayed by the function /read of diskchg itself.

The approach to testing feature 9 will be to check whether the name of the log file

produced by diskchg for each of the functions -read, -exam, -fill, -write, -zero, is unique
for that function.

B3.3 Test Identification

Case Id Description/Options Features
dch-01 -delete all log files 1,2,3,8,9
-comment w

-exam using LBA addresses of arbitrary sectors
including the first and last
-exam using CHS addresses of same sectors

dch-02 -append log records to log file created in previous | 1,2, 3,8, 9
case by not using -new_log
-comment “wl ...”
-exam using LBA/CHS addresses of arbitrary sectors

dch-03 -new_log 1,2,3,8,9

-use interactive comment
-exam using LBA/CHS address of sectors outside
the target disk range

dch-04 -read using LBA address of an arbitrary sector 1,2,3,7,9

dch-05 -new_log 1,2,3,7,9
-read using CHS address of same sector with offset
too large

dch-06 -new_log 1,2,3,7,9
-read using LBA/CHS with length too large

dch-07 -new_log 1,2,3,7,9
-read using LBA/CHS with offset+length too large

dch-08 -new_log 1,2,3,79
-read using LBA/CHS outside disk range

dch-09 -new_log 1,2,3,59

-fill using CHS and detected geometry (heads 0)
-read same sector

dch-10 -new_log 1,2,359
-fill using LBA of same sector and detected
geometry (heads = detected number of heads/sector)

Page 15 of 116

dch-11

-new_log

-fill using LBA of same sector, a new geometry, and
another value

-read or -exam same sector

1,2,3,59

dch-12

-new_log
-write using LBA
-read or -exam same sector

1,2,3,6,9

dch-13

-new_log
-write using CHS of same sector
-read or -exam sector

1,2,3,6,9

dch-14

-new_log
-write using LBA or CHS, offset too large

1,2,3,6,9

dch-15

-new_log
-write using LBA or CHS of sector outside disk
range

1,2,3,6,9

dch-16

-zero using LBA of first sector
-read or -exam sector

1,2,3,4,9

dch-17

-log_name
-zero using CHS of last sector
-read or -exam sector

1,2,3,4,9

dch-18

-log_name with same name as before
-zero using LBA of arbitrary sector
-read or -exam sector

1,2,3,4,9

dch-19

-log_name with same name as before
-new_log
-zero using LBA or CHS of sector outside disk range

1,2,3,4,9

dch-20

-h

Page 16 of 116

B4 seccmp Test Design Specification

B4.1 Features to be tested

1. Log the specified source drive.

2. Log the specified destination drive

3. Log the program execution.

4. If the sectors to compare are not diskwipe-style filled or zero filled, log any
differences between the source sector and the destination sector.

5. diskwipe-style filled sectors or zero filled sectors are logged with no need for
comparison.

6. Allow specification of an alternate log file name.

B4.2 Approach refinements
Features 1 and 2 will pass the test if and only if for each of the above test cases the C/H/S

values recorded in the log file are reasonable. Note that verifying the correctness of the
disk geometry is not straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 3 will be to run seccmp using different combinations of
command line options and verifying that the proper information is logged in the log file.

The approach to testing feature 4 will be to run seccmp using source and destination
sectors that are not both diskwipe-style filled or both zero, and checking whether the
differences are logged.

The approach to testing feature 5 will be to run seccmp using source and destination
sectors that are both diskwipe style filled or zero filled, and check whether they are
logged without comparison.

The approach to testing feature 6 will be to run seccmp using the -log_name option
followed by an alternate log file name.

B4.3 Test ldentification

Case Id Description/Options Features

scm-01 -comment w 1,2,3,4
-compare first disk sectors, not diskwipe- or zero-
filled

scm-02 -append log records 1,2,3,5
-comment “wl ...”
-compare last disk sectors, diskwipe-filled

scm-03 -new_log 1,2,3
-try comparing sectors outside range

scm-04 -new_log 1,2,3,4,5
-same source fill value and destination fill value
-interactively enter sector addresses

Page 17 of 116

-sectors diskwipe-filled, all combinations of real fill
values
-when real source fill value equals real destination
fill value, consider sectors with same or different
headers

scm-05 -new_log 1,2,3,4,5
-different source fill value and destination fill value
-interactively enter sector addresses
-sectors diskwipe-filled, all combinations of real fill
values
-when real source fill value equals real destination
fill value, consider sectors with same or different
headers
scm-06 -log_name 1,2,3,4,5,6
-interactively enter sector addresses
-combinations of diskwipe/zero, diskwipe/not
diskwipe and not zero, zero/zero, zero/not diskwipe
and not zero, for source/destination sectors
scm-07 -h 3

Page 18 of 116

B5 partcmp Test Design Specification

B5.1 Features to be tested

1. Log the specified source drive.

2. Log the specified destination drive.
3. Log the program execution.

4. Log the comparison between the source partition and the destination partition.

B5.2 Approach refinements

Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 3 will be to run partcmp using different combinations of
command line options and verifying that the proper information is logged in the log file.

The approach to testing feature 4 will be to run partcmp using various source and
destination partitions, with different or equal sizes and the same or different contents, on
hard drives with various interfaces, and checking the reported differences against the
known ones. In general, in the setup of each test case, we will copy the smaller partition

onto the larger one and modify a few predetermined sectors of the copy.

B5.3 Test Identification

Case Id

Description/Options

pcm-01

-compare big primary FAT32 partitions
-src is smaller than dst

-same contents on the smaller length
-comment w

-interactive partition selection.

pcm-02

-compare big primary FAT32

-src is bigger than dst

-src, dst have almost same contents on the smaller
length

-new_log

-comment “wl ...”

-select

-boot

1,2,3,4

pcm-03

-compare primary Linux Ext2 partitions
-src is bigger than dst

-same contents on the smaller length
-comment “wl ...”

-interactive partition selection

-append the log records

-interactive comment

1,2,3,4

Page 19 of 116

-boot

pcm-04 -compare logical FAT32 partitions 1,2,3,4
-src, dst have same size and contents
-use alternate log file name (-log_name)
-interactive selection
-interactive comment
-boot
pcm-05 -compare logical FAT32 partitions 1,2,3,4
-src, dst have the same size
-src, dst have almost same contents
-append log records to log file with alternate name
-interactive selection
-interactive comment
-boot
pcm-06 -compare logical FAT16 partitions 1,2,3,4
-src is smaller than dst
-same contents on the smaller length
-new log file with alternate name is created when -
log_name and -new_log are both used
-interactive selection
-interactive comment
-boot
pcm-07 -select with partition index pointing to empty entries | 1,2, 3,4
pcm-08 -select with invalid partition indexes 1,2,3,4
pcm-09 -h option in various ways. 1,234

Page 20 of 116

B6 diskcmp Test Design Specification

B6.1 Features to be tested

Log the specified source drive.

Log the specified destination drive.

Log the program execution.

Log the comparison between the source drive and the destination drive.

If there is a read error the comparison results are undefined.

If there are any read errors, then continue scanning the disk and log a count of the
number of tracks with read errors on each disk.

Sk wdPE

B6.2 Approach refinements

Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable.

The approach to testing feature 3 will be to run diskecmp using different combinations of
command line options and verifying that the proper information is logged in the log file.

The approach to testing feature 4 will be to run diskcmp using various models and sizes
of source and destination hard disk drives, whose contents before comparison is known,
and checking the reported differences against the known ones. In general, the drives will
be prepared for comparison by copying the smaller one onto the bigger one, and
modifying sectors at predetermined addresses.

B6.3 Test Identification

Case Id Description/Options Features

dcm-01 -source disk size > destination disk size 1,2,3,4
-same contents on the smaller size
-comment w

-no log file present.

dcm-02 -source disk size < destination disk size 1,234
-almost same contents on the smaller size
-comment “wl ...”

-append the log records

dcm-03 -same size source and destination disks 1,234
-diskwipe-style filled with same value, same geometry
-a few different sectors

-new_log

-interactive comment.

dcm-04 -same size source and destination disks 1,2,3,4
-diskwipe-style filled with different values
-a few equal sectors

-alternate log file name using -log_name

dcm-05 -h 1,2,3,45,6

Page 21 of 116

B7 corrupt Test Design Specification

B7.1 Features to be tested

1. Log the program execution.

2. Change a specified byte at a specified location in a specified file to a specified value.
3. Log the original value at the specified location.

4. Log the new value at the specified location.

B7.2 Approach refinements

The approach to testing feature 1 will be to run corrupt using different combinations of
command line options and verifying that the proper information is logged in the log file.
We will launch corrupt with and without the -comment option, to verify that it accepts
and logs one-word comments, multi-word comments, and interactively entered
comments. We will launch corrupt with and without the -new_log option, to verify that
the tool creates a new, default log file, or appends the log records to an existing one.
Also, we will test whether corrupt displays its usage mode when prompted by the -h
option.

Regarding features 2, 3, and 4, we will specify valid offsets in the image file, and observe
whether corrupt alters the byte at the specified offset and logs the original and new value.
To test that the tool only alters the desired byte, we will make a reference copy of the
image file, then run corrupt, and then compare the modified image file to the reference
copy. We will use the Linux command cmp to perform the comparison. We will also
specify invalid offsets and observe whether corrupt detects the invalid offset.

B7.3 Test Identification

Case Id Description Features

cor-01 -alter first byte of an image file 1,2,3,4
-comment -w

cor-02 -alter the last byte of an image file 1,2,3,4
-comment “wl...”
-append the log to the existing.

cor-03 -alter a byte of an image file 1,2,3,4
-new_log.

cor-04 -alter a byte of an image file 1,2,3,4
-log_name.

cor-05 -specify an offset outside the image file range. 1,2
-new_log.

cor-06 -h 1,2,3,4

Page 22 of 116

B8 logsetup Test Design Specification

B8.1 Features to be tested

1. Record the following: disk label, host computer, operator, operating system loaded,
date and time.

B8.2 Approach refinements

The approach to testing feature 1 will be to run logsetup using arguments as specified in
the FS-TST Version 2.0 documentation and observe whether the information provided
through the command line arguments plus the current date and time extracted from the
OS are correctly logged.

B8.3 Test Identification

Case Id BIOS Disk Description Features
type
lgs-01 N/A N/A Run logsetup with 4 string | 1

arguments: the hard disk
drive, the host computer,
operator, OS.

Page 23 of 116

B9 logcase Test Design Specification

B9.1 Features to be tested

1. Record the following: Test case ID, host computer, operator, source disk drive,
destination disk drive, other disk drive, date and time.

B9.2 Approach refinements

The approach to testing feature 1 will be to run logcase using arguments as specified in
the FS-TST Version 2.0 documentation and observe whether the information provided
through the command line arguments plus the current date and time extracted from the
OS are correctly logged.

B9.3 Test Identification

Case Id BIOS Disk Description Features
type
Lgc-01 N/A N/A Run logcase with 6 string | 1

arguments: test case ID, the
host computer, operator,
source disk, destination disk,
media disk.

Page 24 of 116

B10 adjcmp Test Design Specification

B10.1 Features to be tested

agrwdE

IS

11.

Log the specified source drive.

Log the specified destination drive.

Log the program execution.

Log the partition table for the specified hard drive.

For each disk, assign each sector to a contiguous block of sectors, called a disk chunk,
such that each disk chunk is assigned to one of the following chunk categories: a
sector contained within a partition, a sector contained within a partition boot track,
the unallocated sectors between two partitions, or unallocated sectors after the last
partition on the disk.

Record the location of each disk chunk in the log file.

Allow specification of corresponding disk chunks between the source hard drive and
the destination hard drive. (A disk chunk on the source drive is compared to the
corresponding disk chunk on the destination drive.)

Log the correspondence between source disk chunks and destination disk chunks, i.e.,
for each disk chunk on the source drive, log the disk chunk on the destination that the
source disk is to be compared to.

Log the comparison between each pair of corresponding disk chunks.

. For any destination disk chunks that have no corresponding source chunk categorize

the sectors of the disk chunk according to the following: zero fill (every byte is zero),
diskwipe style fill, and other contents. The diskwipe style fill is actually three
categories: source fill byte, destination fill byte and any other fill byte. For each
category, the first few (up to some arbitrary limit) sectors belonging to the category
are logged. A contiguous block of sectors is logged as a hyphen separated pair of
integers (start sector - last sector).

Log a summary as follows:

- Number of boot tracks, total number of sectors assigned to boot tracks, and
number of boot track sectors that do not compare equal.

- Number of partitions, total number of sectors assigned to some partition, and
number of corresponding partition sectors that do not compare equal.

- Number of unallocated chunks with a corresponding unallocated chunk,
number of sectors in this category and number of corresponding sectors that
do not compare equal.

- Number of excess sectors in destination chunks that have a corresponding
source chunk, number of sectors that have every byte set to zero, and number
of remaining sectors.

- Number of sectors in destination chunks that do not have a corresponding
source chunk, number of sectors that have every byte set to zero, and number
of remaining sectors.

- Total number of source sectors and total number of destination sectors.

Page 25 of 116

B10.2 Approach refinements

Features 1 and 2 will pass the test if and only if for each of the above test cases the C/H/S
values recorded in the log file are reasonable. Note that verifying the correctness of the
disk geometry is not straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 3 will be to run adjcmp using different combinations of
command line options and different layouts of the source and destination disks and
verifying that the proper information is logged in the log file.

The approach to testing feature 4 will be to run adjcmp using different layouts of the
source and destination disks and verifying that the partition map logged by adjcmp is
identical to the one indicated by a tool like PartitionMagic.

The approach to testing features 5 and 6 will be to run adjcmp using different disk
layouts, and verifying that adjcmp correctly distinguishes and categorizes the disk chunks
according to the definition of a disk chunk in feature 5. Also, that adjcmp logs correctly
the location of each chunk. We will use a tool like PartitionMagic to identify the chunks
independently.

The approach to testing feature 7 is to run adjcmp using the -assign option on the
command line and to observe whether adjcmp allows the user to interactively assign
source chunks to destination chunks.

The approach to testing feature 8 is to run adjcmp using automatic or interactive chunk
assignment on different disk layouts and observing whether the chunk assignment is
correctly reported.

The approach to testing feature 9 is to run adjcmp using corresponding source and
destination chunks whose characteristics are known (for example, with the sector
contents known, being set up a priori by using a tool like diskchg or a commercial disk
editor), then comparing the report to known statistics about the chunks.

The approach to testing feature 10 is to set up the disk layouts such that the destination
disk has chunks that do not correspond to any source chunk, then set up the sector
contents of such a chunk using diskwipe or diskchg or a commercial disk editor. Then run
adjcmp and compare the report about that destination chunks with what we already know
about them.

The approach to testing feature 11 is to examine the adjcmp report and to compare the

summary to data about the disks and disk chunks extracted from other information
sources, such as PartitionMagic, disk editors, diskchg, or diskwipe.

Page 26 of 116

B10.3 Test Identification

Case Id

Description

Features

acm-01

-create multiple primary and logical partitions on each
disk

-delete all previous log files

-use -comment with one-word comment

-use the -layout option.

1-6

acm-02

-use -new_log to test creation of a new log file.
-use -comment with a multi-word comment
-use automatic assignment of disk chunks
-equal partitions

-in-excess destination chunks.

1-11

acm-03

-append the log records to existing log file
-enter comment interactively
-use -assign for manual assignment of disk chunks.

1-11

acm-04

-use -log_name to create a log file with alternate name
-in-excess source chunks
-partitions have well-determined different sectors..

1-11

acm-05

-use large primary/logical partitions on source and
destination disks

-use -new_log

-use manual assignment (-assign) of source U chunks to
a “don’t care” destination chunk

-use source and destination chunks with src > dst and src
< dst.

1-11

acm-06

-use -h option to display the usage mode.

Page 27 of 116

B11 sechash Test Design Specification

B11.1 Features to be tested

1. Compute a SHA-1 for a specified block of continuous sectors from the designated
hard drive.

2. Log the computed hash value.

3. Allow the specification of at least two log file names, one for reference before a tool
is run and one for comparison after a tool is run.

4. Log the specified hard drive.

5. Log the program execution.

B11.2 Approach refinements

The approach to testing feature 1 and 2 is to use another application to compute the SHA-
1 hash of the specified sector block and to verify that sechash writes the correct hash
valued in the log file.

The approach to testing feature 3 is to run sechash with the options -before, -after, and
-log_name, and to check whether it creates log files with different names for each option.

Feature 4 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 5 will be to run sechash using different combinations of
command line options, including various start and end sector addresses, and verifying
that the proper information is logged in the log file.

B11.3 Test Identification
In this table, N is the last sector of the disk.

Case Id Description/Options Features

shs-01 -comment w 1,2,3,4,5
-before

shs-02 -comment “wl ...” 1,2,3,4,5
-before
-first 0
-last N
-hash md5sum

shs-03 -new_log 1,2,3,4,5
-after

-first 0

-last N

-hash shalsum

shs-04 -after 1,2,3,