Computer Forensics Tool Testing at NIST

Jim Lyle
Information Technology Laboratory

Phone: (301) 975-3207

E-mail: JLYLE@NIST.GOV

WWW: http://www.cftt.nist.gov

United States Department of Commerce

National Institute of Standards and Technology

Computers & The Internet

- Marvelous tools
- Improve quality of life
- Enable global communication
- Improve productivity
- Makes many activities easer, faster, ...
- ... even criminal activity

A Shocking Revelation . . .

Computers can be involved in crime ...

- As a victim
- As a weapon
- As a witness
- As a record
- As contraband

Outline of an Investigation

- Get proper authorization
- Seize evidence (Hard drives, floppies ...)
- Create duplicates for analysis
- Analyze the duplicates
 - Exclude known benign files
 - Examine obvious files
 - Search for hidden evidence
- Report results

Investigators Need ...

Computer forensic investigators need tools that ...

- Work as they should
- Produce results admissible in court

Admissible Results

- Software tools must meet Daubert criteria
 - Tested: accurate, reliable & repeatable
 - Peer reviewed
 - Generally accepted methodology

Response to Problem

- Independent testing of forensic tools
- Public review of results
- Apply black box testing theory to tools

Goals of CF at NIST

- Establish methodology for testing computer forensic tools (CFTT)
- Provide international standard reference data that tool makers and investigators can use in an investigations (NSRL)

Why NIST/ITL is involved

- Mission: Assist federal, state & local agencies
- NIST is a neutral organization not law enforcement or vendor
- NIST provides an open, rigorous process

Project Sponsors

- NIST/OLES (Program management)
- NIJ (Major funding)
- FBI (Additional funding)
- DOD (Equipment and support)
- Homeland Security (Technical input)
- State & Local agencies (Technical input)

Project Tasks

- Identify forensics functions e.g.,
 - Disk imaging,
 - Hard drive write protect,
 - Deleted file recovery
 - String searching
- Develop specification for each function
- Peer review of specification
- Test methodology for each function
- Test Tools (by function) & Report results

Current Activities

- Hard drive imaging tools
- Software hard drive write protect
- Hardware hard drive write protect
- Deleted file recovery
- String Searching

Challenges

- No standards or specifications for tools
- Arcane knowledge domain (e.g. DOS, Windows drivers)
- Reliably faulty hardware
- Many versions of each tool

Overview of Methodology

- CFTT directed by Steering Committee
- Functionality driven
- Specifications developed for specific categories of activities, e.g., disk imaging, hard drive write protect, etc.
- Test methodology developed for each category

Developing a Specification

After tool function selected by SC...

- Focus group (law enforcement + NIST)
 develop tool function specification
- Spec posted to web for public comment
- Comments incorporated
- Develop test environment

Tool Test Process

After SC selects a tool ...

- Acquire tool & review documentation
- Select test cases
- Execute test cases
- Produce test report

Disk Imaging Test Parameters

Parameter	Value
Functions	Copy, Image, Verify
Source interface	BIOS to IDE, BIOS to SCSI, ATA,
Dst interface	ASPI, Legacy BIOS
Relative size	Src=Dst, Src <dst, src="">Dst</dst,>
Errors	None, Src Rd, Dst Wt, Img R/W/C
Object type	Disk, FAT12/16/32, NT, Ext2
Remote access	Yes, no

Capabilities to test disk imaging

- Accuracy of copy
 - Compare disks
 - Initialize disk sectors to unique content
- Verify source disk unchanged
- Corrupt an image file
- Error handling: reliably faulty disk

Test Case Structure: Setup

- 1. Record details of source disk setup.
- 2. Initialize the source disk to a known value.
- 3. Hash the source disk and save hash value.
- 4. Record details of test case setup.
- 5. Initialize a destination disk.
- 6. If the test requires a partition, create and format a partition on the destination disk.
- 7. If the test uses an image file, partition and format a disk for the image file.

Test Case Structure: Run Tool

- 8. If required, setup I/O error
- 9. If required, create image file
- 10. If required, corrupt image file
- 11. Create destination

Test Case Structure: Measure

- 12. Compare Source to Destination
- 13. Rehash the Source

Test Logging

- Log everything, automatically if practical
- Hardware, Software, Versions
- Time/date
- Operator

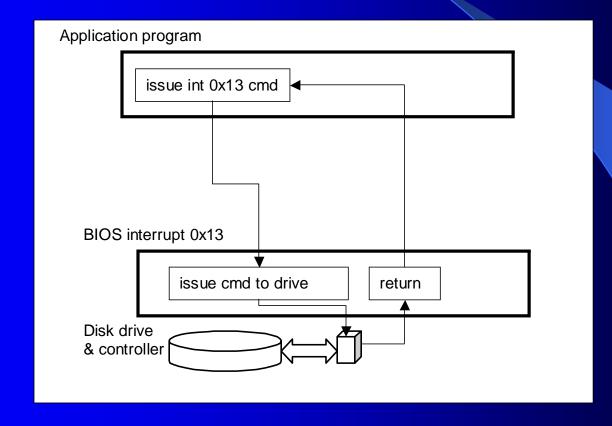
Legacy BIOS Quirks

- Some may under report drive size
- Example, Quantum SIROCCO1700A has 3335472 sectors 3309/16/63 spc 1008
- BIOS: 3,330,432 sectors with geometry 826/64/63 spc 4032
- BIOS under reports by 1.25 logical cyls and 5 physicals

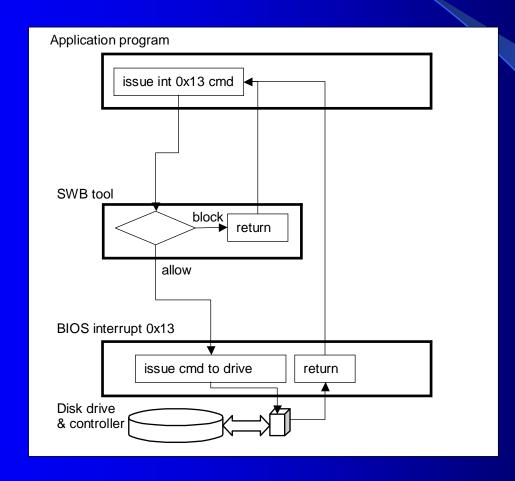
Evaluating Test Results

If a test exhibits an anomaly ...

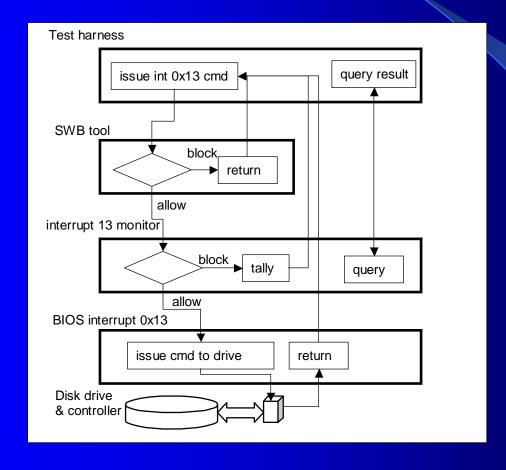
- 1. Look for hardware or procedural problem
- 2. Anomaly seen before
- 3. If unique, look at more cases
- 4. Examine similar anomalies

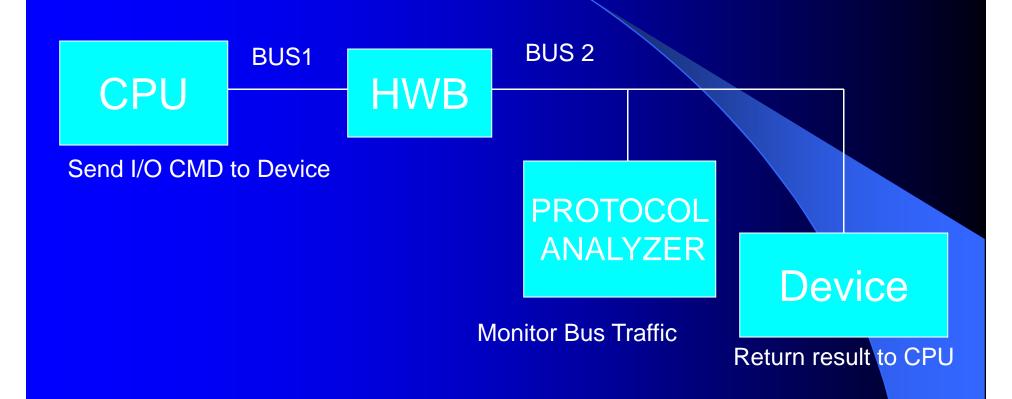

Refining the Test Procedure

- During dd testing some results seemed to indicate that the Linux environment was making a change to the source disk.
- After investigation we found that the problem was actually the test procedure.


Hard Drive Write Protect

- Can be done either in hardware or software
- Software write protection limited to specific environment: BIOS access or device driver
- Hardware write protection more general


Hard Drive BIOS Access


SWB Tool Operation

Test Harness Operation

HWB Testing

Impact

- Release 18 (Feb 2001) A US government organization was doing some testing and uncovered an issue under a specific set of circumstances.
- Linux doesn't use the last sector if odd
- Several vendors have made product or documentation changes
- CFTT cited in some high profile court cases

Available Specifications

- Hard Drive Imaging (e.g., Safeback, EnCase, Ilook, Mares imaging tool)
- Write Block Software Tools (e.g., RCMP HDL, Pdblock, ACES)
- Write Block Hardware Devices (A-Card, FastBlock, NoWrite) – not final

<u>5/8/2017</u>

Specifications Under Development

- String Searching
- Deleted File Recovery
- Revised Disk Imaging

Available Test Reports

- Sydex SafeBack 2.0
- NTI Safeback 2.18
- EnCase 3.20
- GNU dd 4.0.36 (RedHat 7.1)
- FreeBSD 4.4 dd
- RCMP HDL V0.8

Test Reports in Production

- RCMP HDL V0.4
- RCMP HDL V0.5
- RCMP HDL V0.7

Available Testing Software

- FS-TST tools to test disk imaging: drive wipe, drive compare, drive hash (SHA1), partition compare. (DCCI uses these tools)
- SWBT tools to test interrupt 13 software write blockers

Benefits of CFTT

Benefits of a forensic tool testing program

- Users can make informed choices
- Neutral test program (not law enforcement)
- Reduce challenges to admissibility of digital evidence
- Tool creators make better tools

Contacts

Jim Lyle
www.cftt.nist.gov
cftt@nist.gov

Doug White www.nsrl.nist.gov nsrl@nist.gov

Mark Skall

Chief, Software Diagnostics & Conformance Testing Div. www.itl.nist.gov/div897 skall@nist.gov

Sue Ballou, Office of Law Enforcement Standards
Steering Committee Rep. For State/Local Law Enforcement
susan.ballou@nist.gov