NASCTN Project: "LTE Impacts on GPS" Final Briefing

William Young, Ph.D. *Testmaster*

Test Team

Dr. Sheryl Genco Project Manager

NASCTN/Test Coordination Office Communications Technology Lab NIST

Dr. William F. Young Testmaster

Shared Spectrum Metrology Group RF Technology Division Communications Technology Lab NIST

Dr. Daniel G. Kuester

Shared Spectrum Metrology Group RF Technology Division Communications Technology Lab NIST

Audrey K. Puls (Assoc.)

Shared Spectrum Metrology Group RF Technology Division Communications Technology Lab NIST

Dr. Wen-Bin Yang

Wireless Networks Division Communications Technology Lab NIST

Dr. Ari Feldman

High-Speed Measurements Group RF Technology Division Communications Technology Lab NIST

John Ladbury

RF Fields Group RF Technology Division Communications Technology Lab NIST

Andre Rosete (Assoc.)

Shared Spectrum Metrology Group RF Technology Division Communications Technology Lab NIST

Aziz Kord

Shared Spectrum Metrology Group RF Technology Division Communications Technology Lab NIST

Dr. Duncan A. McGillivray

Shared Spectrum Metrology Group RF Technology Division Communications Technology Lab NIST

Dr. Adam Wunderlich NASCTN/Test Coordination Office Communications Technology Lab NIST

Acknowledgments

U.S. Army Electronic Proving Ground (EPG), Fort Huachuca, Arizona Eric Fisher Carlos Ruiz Cody Angeline Joseph Rosas

National Technical Systems (NTS), Longmont, Colorado

Patrick Conway Marie Oster Kevin Johnson

Outline

- NASCTN who we are
- Statement of work
- Overview of testing methodology
- Key aspects of the test methodology
- Test setup
- Data parsing and analysis
- Results

NASCTN

National Advanced Spectrum and Communications Test Network

A neutral forum for addressing spectrum-sharing challenges in an effort to accelerate the deployment of wireless technologies among commercial and federal users. NASCTN was created in 2015.

NASCTN - Mission

Provide robust test processes and validate measurement data necessary to develop, evaluate and deploy spectrum sharing technologies that can increase access to the spectrum by both federal agencies and non-federal spectrum users.

- 1. What we do
 - a. Develop test plans with independent technical experts
 - b. Identify and facilitate access to appropriate test facilities
 - c. Execute, and validate rigorous test methodologies and results
 - d. Inform stakeholders and public
 - e. Protect proprietary, classified and sensitive information
- 2. What we don't do
 - a. Policy recommendations

"LTE Impacts on GPS" Timeline

LTE - Long Term Evolution GPS - Global Positioning System NBIT – National Broadband Interoperability Test Bed

Statement of Work

Objective: Develop a rigorous, focused testing methodology to measure the impact of LTE signals on a subset of GPS-based devices.

- 1. Foundations in scientific and engineering best practices
 - a. Reproducible
 - b. Calibrated measurements
 - c. Statistical analysis of the data
- 2. Portable and extendable to
 - a. Great variety of GPS device classes
 - b. Diverse set of end-use cases
 - c. LTE architectures
- 3. Focuses on changes in device reported Key-Performance-Indicators (KPI)
- 4. Presents data in a manner that supports discussion amongst stakeholders and is transparent to the public

Scope

- Ligado Networks proposed LTE bands
 - Downlink (DL): 1526 MHz 1536 MHz
 - Uplink 1 (UL1): 1627.5 MHz 1637.5 MHz
 - Uplink 2 (UL2): 1646.5 MHz 1656.5 MHz
 - Simultaneous Downlink + Uplink 1
- Terrestrial GPS 20 receiver configurations
 - General Location and Navigation (GLN)
 - High Precision Positioning Single Point Positioning mode (HPP)
 - High Precision Positioning Real Time Kinematic mode (RTK)
 - GPS Disciplined Oscillators (GPSDO)
- LTE in-band and out-of-band emissions, as filed to the Federal Communications Commission (FCC): "Comment Sought on Ligado's Modification Applications (Public Notice DA 16-442)," Federal Communications Commission, Washington, D.C., Apr. 2016, pp. 10–12 (cit. on pp. 25, 27, 61).

Test Summary Statistics

- 3 Month measurement campaign
- 1476 Test hours
- 38222 Raw data files
- 19220 Parsed data files
- Deliverable: 3859 data files (780 MB)

Encompassed:

- 968 LTE exposure tests
- 83 Timing tests
- 5155 Time-To-First-Fix tests
- 891 Time-To-First-Reacquisition tests

Overview of test methodology

• Device-Under-Test (DUT):

- Reflect recommendations from a variety of stakeholders
- Access to measurands is a key consideration in device selection
- 5 General Location and Navigation (GLN); 4 High Precision Positioning (HPP) with 2 in Real Time Kinematic (RTK) mode; 3 GPS Disciplined Oscillator (GPSDO); 2 Development Boards (DEV) with 1 in GPSDO mode

• Test Environments:

- Representative LTE waveforms and out-of-band (OOB) emission masks stepped through a range of power levels
- Calibrated, semi-anechoic and anechoic chambers
- Simulated satellite constellation, nominal and limited conditions

• Test Conditions:

- Stepped LTE Power level sweeps, Time-to-First-Fix, Time-to-First-Reacquisition, Timing tests
- DL, UL1, UL2, DL + UL1
- Measurands: (Quantities intended to be measured.)
 - Analyzed: C/N₀, position error, timing deviation
 - Provided: pseudorange information, and carrier phase information

• Output:

- Present data in manner that supports discussion amongst stakeholders
- Data sets of collected measurands versus LTE signal power levels
- Statistical analysis: compare distributions of measurands with and without LTE

Measurement Environments

Fig 3.6 b pg 43

Campaign made use: 10 m semi-anechoic chamber (NTS in Longmont, CO) 5 m anechoic chamber (NBIT at NIST – Boulder, CO)

Chambers are well characterized for:

- Noise isolation
- Multipath effects
- Environmental stability
- Minimize interference from instrumentation

GPS Simulator

nications Test Network

GPS Use Case: physically realizable, controlled, and metrologically quantizable.

💶 Vehicle Dynamics	Position Details
	Position Latitude N 31° 35.893636' Longitude W 110° 16.670841' Height 1352.30 m Bank 0° 0'
	Position (ECEF) Velocity (ECEF) x -1884901.47 m y -5 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -15 10 -10 10 -10 10 -15 10 -15 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10
Date/Time Dever Levels Graph	Received Signals
Start time (GPS) 04-Jul-2016 01:35:18 Image: Content time of t	Chan ID Type Echo PRN Elev Azim Tropo Lono Pseudorange A 1 2 WAAS L1 - 138 53.1 174.3 2.6 2.6 3688342.156 2 3 3688342.156 2 1 WAAS L1 - 135 45.7 141.3 2.9 2.9 37355093.361 3 3 2* 6P5 L1 - 2 18.7 70.0 6.3 44.2 23719287.155 3 4 12* 6P5 L1 - 12 20.8 -178.8 5.7 4.7 23646963.432 5 26* 6P5 L1 - 26 8.3 -39.3 13.5 5.8 25014777.437 6 29* 6P5 L1 - 20 79.9 -13.9 2.1 2.1 2014977.437 7 20 6P5 L1 - 18 22.9 -13.9 2.1 2.1 20049951.350 8 18
SVID W2 W1 2 12 26 29 20 18 13 15 25 5 2	
Ground Track	PlotX System MessagesX
Displayed satellite types Al	All satellite types, azimuth v elevation, no multipaths Minor Serial port COM2 successfully configured for Remote Co Debug: Sing en serial num 8539 has fiv version: 2.36 Debug: Sing en serial num 8539 has fiv version: 2.36 Debug: Intel processor fitted Debug: Intel processor fitted Debug: Sing en serial num 8539 has fiv version: 2.36 Debug: Sing en serial num 8539 has fiv version: 2.36 Debug: Intel processor fitted Debug: Sing en serial num 8539 has fiv version: 2.36 Do:00:00 Debug: Sing en serial num 8539 has fiv version: 2.36 D:00:00 Debug
Latitude N 31° 35.893636' Longitude W 110° 16.670841' Height 1352.30m	est set = 2, 12, 26, 29, GDOP = 2.241 (All = 1.58

GPS simulator best addresses rigorous testing requirements Precise control over:

- GPS signals
- Augmentation signals
- Signal power
- Atmospheric effects

Traceable satellite constellation

Position

Fig C.1 pg 277

Horizon transitions
 Reference truth for KPI

Automation & Time syncing

Satellite Constellation – Stepped Power Levels

- Nominal and Limited exposure settings
- Constellation features
 - GPS L1

munications Test Network

- WAAS (Wide Area Augmentation System - PRN 135 and PRN 138)
- Tropospheric and Ionospheric effects
- 5 deg. elevation mask
- <u>No satellite transition over horizon</u> <u>throughout run time</u>
- Satellite orbits modified to 24 hour period
 - Allows <u>identical constellation</u> for each power level step

Two Satellite Exposure Conditions:

Fig 2.2 a, b pg 21

LTE Waveforms

Actual LTE modulation waveforms, <u>verified</u> by error vector magnitude

- Downlink in-band waveform is emulated LTE with 10 MHz bandwidth and 100% loading.
- Uplink in-band LTE waveforms with 10 MHz band allocation and 70% loading, signal occupies the lower 7 MHz of the band.

Out of Band Emissions Masks

- Shaped additive white Gaussian noise
- Defined by FCC filings

Proposed frequency bands and masks

- RNSS 1559 MHz 1610 MHz
 - Includes GPS L1
- Proposed LTE bands considered:
 - Downlink: 1526 MHz 1536 MHz
 - Uplink 1: 1627.5 MHz 1637.5 MHz
 - Uplink 2: 1646.5 MHz 1656.5 MHz

Not part of this test:

🕅 Downlink: 1670 MHz – 1680 MHz

- Mask Emulation developed from:
 - In-Band (IB)
 - Well filtered LTE emulation
 - Out-Of-Band emissions (OOB)
 - Shaped Gaussian white noise

LTE Power Steps – IB & OOB Mask

In-Band and out-of-band emissions mask are stepped in-sync throughout all of the measurements. Simultaneous output of downlink and uplink signals is possible.

Tested range of power levels

and Communications Test Network

18

LTE and GPS Signaling Chain

Design Priorities

- Operate within safe power handling limits of available parts.
- Isolate amplifiers and signal generators from signals that originate in other signal chains.
- Minimize passive intermodulation along signal paths that carry highpower LTE.
- Maximize test system power output.
- Facilitate automation.

Control the Effective Incident Isotropic Power (EIIP) at the DUT for both the LTE and GPS signals.

LTE Signaling Chain - Test Setup

Test configurations

- Stepped LTE Power level sweeps
 - General Navigation and Location
 - High Precision Positioning
 - Real-Time Kinematic
- Time-to-first-reacquisition tests
 - General Navigation and Location
- Time-to-first-fix
 - High Precision Positioning
 - Real-Time Kinematic
- Timing Tests
 - GPS-Disciplined Oscillators

Test Scenarios

Class Device		Antonno	Dhaca Tast Tuna		Satellite	LTE Waveform			
		Antenna	Phase	lest lype	Exposure	DL	UL1	UL2	DL+UL1
			Phase 1	LTE Power	Nominal				
GLN	DUT 1	N/A	Phase 2	TTFR	Nominal				
			Phase 3	LTE Power	Limited				
			Phase 1	LTE Power	Nominal				
GLN	DUT 2	N/A	Phase 2	TTFR	Nominal				
		Phase 3	LTE Power	Limited					
			Phase 1	LTE Power	Nominal				
GLN DUT 3	DUT 3	N/A	Phase 2	TTFR	Nominal				
			Phase 3	LTE Power	Limited				
			Phase 1	LTE Power	Nominal				
GLN	DUT 4	N/A	Phase 2	TTFR	Nominal				
			Phase 3	LTE Power	Limited		_		
			Phase 1	LTE Power	Nominal				
GLN	DUT 5	N/A	Phase 2	TTFR	Nominal				
			Phase 3	LTE Power	Limited				
			Phase 1	LTE Power	Nominal				
GLN	DUT 6	N/A	Phase 2	TTFR	Nominal				
			Phase 3	LTE Power	Limited				

Class	Device	Antenna	Phase	Test Type	Satellite	LTE Waveform			
					Exposure	DL	UL1	UL2	DL+UL1
GPSDO	DUT 13		Phase 1	Timing	Nominal				
GPSDO	DUT 14		Phase 1	Timing	Nominal				
GPSDO	DUT 15		Phase 1	Timing	Nominal				

Color Co	de	

Test Completed & Verified

Deferred\Retired

Not Part of Test

Class I	Dovice	Antonna	Dhasa 7	Tost Tuno	Satellite		LTE Waveform									
Class	Device	Antenna	Pliase	Test Type	Exposure	DL	UL1	UL2	DL+UL1							
			Phase 1	LTE Power	Nominal											
HPP	DUT 7		Phase 2	TTFF	Nominal											
			Phase 3	LTE Power	Limited											
			Phase 1	LTE Power	Nominal											
HPP	DUT 8		Phase 2	TTFF	Nominal											
			Phase 3	LTE Power	Limited											
			Phase 1	LTE Power	Nominal											
HPP	DUT 9	С	Phase 2	TTFF	Nominal											
			Phase 3	LTE Power	Limited											
			Phase 1	LTE Power	Nominal											
HPP	DUT 9	D	Phase 2	TTFF	Nominal											
			Phase 3	LTE Power	Limited											
			Phase 1	LTE Power	Nominal											
HPP	DUT 10		Phase 2	TTFF	Nominal											
			Phase 3	LTE Power	Limited											
			Phase 1	LTE Power	Nominal											
RTK	DUT 11	А	Phase 2	TTFF	Nominal											
			Phase 3	LTE Power	Limited											
			Phase 1	LTE Power	Nominal											
RTK	DUT 11	В	Phase 2	TTFF	Nominal											
			Phase 3	LTE Power	Limited											
			Phase 1	LTE Power	Nominal w/ L2											
RTK	DUT 12	С	Phase 2	TTFF	Nominal w/ L2											
										Phase 3	LTE Power	Limited w/ L2				
			Phase 1	LTE Power	Nominal w/ L2											
RTK	DUT 12	D	Phase 2	TTFF	Nominal w/ L2											
			Phase 3	LTE Power	Limited w/ L2											

DUT 4 was not sufficiently stable to accommodate test times greater than 3 hours.

DUT 5 did not provide sufficient measurands to present a complete dataset for the purpose of this study DUT 6 data reporting did not include sufficient number of key measurands of interest to this study, and its control capability presented challenges for third-party testbed automation

Key Performance Indicators

All available measurands were collected. The following are provided along with the final report:

- Fix quality
- Position
- C/N₀ per satellite
- # of satellites in view
- 1 pulse per second
- Pseudorange information
- Carrier phase information
- Time

Automation

Robust, repeated automated measurements.

- Portability and expandability of tests
 - Able to complete complex test-matrix
- High degree of repeatability of testing conditions
 - Re-testing of power levels or augmenting test sweeps
 - Repeated measurements agreed
 - Test facilities, testbed setups, & dates

• Consecutive running of test phases

- Substantial improvement in test efficiency (observed ~ 80%)
- DUT measurements as long as 3 days were achieved
- Minimal human intervention
- Rigorous uncertainty analysis
- Measurement data traceable to testbed states
 - No need to rely on DUT provided measurands to time-sync data

Fig 4.5 pg 68

C Home X C	GPS Logger X 📿 Ir	nterference Test 🗙	Untitled	× Untitled	× C Interference Test	
$ \rightarrow$ C (i) localhost:88	388/notebooks/Interference	%20Test%20Co	ntroller.ipynb#			☆ 🗉
File Edit View	Insert Cell Kernel	Widgets H	elp			Python [Root] C
In [1]: [%] run gp [%] run gp ×	slte/ui/notebook_wides slte/ui/interference_t GPS Attenuato GPS Simulator LTE IB DL Atte LTE IB DL Atte LTE IB DL Atte LTE IB Monitor LTE IB Monitor LTE IB Monitor LTE IB Monitor LTE IB Monitor LTE IB Monitor LTE IB UL Syn LTE IB UL Syn LTE OOB DL S LTE OOB DL S	screen.py test_control 1 or or Remote	gain gain utc time rf output enable gain rf output enable dl power ul oob power ul oob power amplitude offset gain rf output enable gain rf output enable	2016-07-04 01:35:1 2016-07-04 01:35:1 35.0295944214 -35.4165267944 -56.3537368774 35.35	-110.00 01 -110.00 01 -110.00 -110.00 -110.00 -110.00	
	PC	synthesizer	local time	2016-10-28 14-32-	16	
Resourc	e	USB S	erial Port (COM4)	2010 10 20 14.02.	•	
DU'	г	Dumm	yMcFakeDUTPri		•	
			Discon	nected		1
Data	a Collect Stop C:\	Ligado\Data		C:\Ligado\Data\li	gado.db	

Testbed Automation & DAQ

Fig 4.1 pg 64

USB - universal serial bus TCP - transmission control protocol PC - personal computer IP - internet protocol

Test Setup

National Advanced Spectrum and Communications Test Network

- Testing of a <u>single</u> device at a time
- Each DUT is fixed in the same position with respect to the source
- Devices with integrated antennas are placed into the chamber
- Devices with external antennas, only the antenna is in the chamber
- Auxiliary power supply, data cables, etc. were shielded or placed outside of the chamber
 NASCTN

Fig 3.1 pg 39

Device under test placement

Single Source Antenna

Single Right-Hand-Circularly-Polarized (RHCP) antenna setup reduces measurement uncertainties in:

- Signal-to-Interference ratio
- Source GPS antenna to source LTE antenna coupling
- Source LTE antenna to DUT antenna polarization mismatch
- Geometrical alignment

Calibration

Calibration product is a standard uncertainty in measurement conditions. This uncertainty informs presented data.

Calibrations take into account:

- Signal paths, antenna, DUT location, & multipath effects
- Account for 3 dB offset between linearly-polarized LTE waveform and circularly-polarized GPS waveform
- Combine GPS and LTE signals before radiation
- Lower uncertainty in the power ratio of the LTE and GPS received by the DUT

Verification Measurements

- High rejection filters
- Programmable attenuators
- Noise floor
- LTE modulation
- Testbed isolation
- Passive intermodulation
- Antenna performance
- Free space pathloss
- Signal long term stability
- Amplifier drift
- etc.

and Communications Test Network

Filter cutoff <u>well below</u> -80 dB_at the beginning of the RNSS band

Example Uncertainty Budget

Table C.19: Uncertainty Budget of the LTE IB UL EIIP.

Table C.19 pg 303

Uncer	rtainty	Probability	Evaluation	Designator	Uncertainty	ertainty Correction for		
Classification	Factor	Distribution	Туре			Distribution	Uncertainty	
	Non-ideal antennas	Normal	В	U1	0.5 dB	1	0.5 dB	
	Spatial variations	Normal	А	U2	0.5 dB	1	0.5 dB	
Antenna Calibration	Network analyzer calibration	Normal	В	U3	0.1 dB	1	0.1 dB	
	Frequency flatness	Normal	А	U4	0.2 dB	1	0.2 dB	
	Non-circularity of polarization	Normal	В	U5	0.5 dB	1	0.5 dB	
	Separation distance	Normal	В	U6	0.2 dB	1	0.2 dB	
	Spectrum Analyzer	Normal	В	U7	0.5 dB	1	0.5 dB	
Instrumentation	Long-term stability	Normal	В	U8	0.1 dB	1	0.1 dB	
	Calibration	Normal	В	U9	0.14 dB	1	0.14 dB	
	Amplifier drift	Normal	А	U10	0.1 dB	1	0.1 dB	
Teathad	Antenna mismatch	U-shaped	В	U11	0.1 dB	0.5	0.05 dB	
Testbed	Antenna connection repeatability	Normal	А	U12	0.1 dB	1	0.1 dB	
	Separation distance	Normal	А	U10	0.2 dB	1	0.2 dB	
	Chamber uniformity	Normal	А	U10	0.5 dB	1	0.5 dB	
				C	Combined standard uncertainty: Expanded uncertainty (k=2):			

Stepped LTE Power Tests

An LTE sweep takes numerous power level steps.

Typical sweep runtime of 8 hrs per LTE link

Each LTE power step takes 35 mins.

- Initialize: "cold start" if available
- Warm up: <u>15 mins</u> without LTE

(DUT almanac download ~ 12.5 mins)

- LTE on: <u>20 mins</u> (ensures adequate <u>DUT settling and warm-up</u>)
- GPS scenarios are advanced by a modified 24 hrs.
 - Identical satellite trajectories for each power level

Fig. 2.5 pg 28

Precision Location Setup

Fig. 3.2 pg 37

Real Time Kinematic Setup

Zero – Baseline Solution

- **Base** and **Rover** are subjected to the same GPS scenario.
- **Base** receives a conducted signal from the GPS simulator.
- **Base** receives an uncompromised GPS signal.
- **Rover** receives radiated GPS signal and LTE signal.

Fig. 3.3 pg 38

Additional Tests

Time-to-first-fix (TTFF)

- Types: DUT cold-start
- Collect 100 repeated measurements at each LTE power level for 2 mins (stand-alone devices) or 5 mins (RTK devices)
- If fix is not acquired, then TTFF for observation is greater than dwell-time

Time-to-first-reacquisition (TTFR)

- Types: Tunnel scenario (DUT travels between 2 points and experiences GPS dropouts)
- Collect 100 repeated measurements at each LTE power level for 2 mins (stand-alone devices)
- If fix is not acquired, then TTFR for observation is greater than dwell-time

Timing for GPSDO Receivers

- At each LTE power level, collect measurands every second for 2.5 hours
- Measurands include satellite information, C/N₀, & 1PPS

TTFF and TTFR tests

TTFF and TTFR tests stress the DUT by acquiring fix in the presence of LTE

- TTFF is measured as the time it takes to acquire a fix after a cold-start is initiated.
- The GPS simulation is reset with each coldstart/initialization command

- Tunnel scenario provides for LTE power drop-outs simultaneously with a translation in position.
- TTFR is measured as the time it takes to reacquire a fix after the translation from the primary to the secondary location.
- The GPS simulation runs continuously.

Fig. 2.7b pg 28

Timing Tests

- Timing tests are performed in the presence of LTE .
- Reference clock trains the time base of the GPS Simulator and time interval counter (TIC).
- The 1PPS timing response of the DUT is compared against the reference.
- From the time deviation measurements, the Allan time deviation (TDEV) is calculated.

Timing Setup

NASCTN National Advanced Spectrum and Communications Test Network

Data Captures

- Diverse set of DUT data captures
- Implemented a parsing algorithm to standardize format
- Formatted data sets available to • stakeholders, public, and regulators

NMEA

\$GPGGA,015647.00,3135.89363545,N,11016.67084153,W,4,11,0.8,1381.903,M,-28.395,M,1.0,0002*4
\$PTNL,GGK,015647.00,070416,3135.89363545,N,11016.67084153,W,3,11,1.4,EHT1353.508,M*5E
\$GPVTG,292.70,T,283.07,M,0.01,N,0.03,K,D*24
\$GPGST,015647.00,0.000,0.003,0.003,162.7,0.003,0.003,0.006*52
\$PTNL,PJK,015647.00,070416,,,,,3,11,1.4,,M*29
\$PTNL,PJT,WGS84,NONE*21
\$PTNL,VGK,015647.00,070416,-0000.001,-0000.001,-0000.001,3,11,1.4,M*10
\$PTNL,VHD,015647.00,070416,227.134,82.636,-25.233,-65.930,0.001,-0.002,3,11,1.4,M*14
\$GPGSV,4,1,13,13,30,099,45,20,86,318,44,15,35,141,44,18,32,227,44*71
\$GPGSV,4,2,13,5,38,043,45,21,37,296,44,2,13,078,45,29,81,037,44*77
\$GPGSV,4,3,13,12,12,179,45,25,33,209,44,26,14,314,44*49
\$GPGSV,4,4,13,51,53,174,45,48,46,219,44*7E
\$PTNL,AVR,015647.00,+0.0000,Yaw,+0.0000,Tilt,,,0.001,3,1.4,11*31
\$GPZDA,015647.01,04,07,2016,00,00*60
\$GPGSA,A,3,18,5,21,2,29,12,25,13,20,26,15,,1.4,0.8,1.2*3E
\$GPRMC,015647.00,A,3135.89363545,N,11016.67084153,W,0.014,292.700,040716,9.6278,E,D*14
\$PTNL,BPQ,015633.02,070416,3135.89363590,N,11016.67084096,W,EHT1353.508,M,4*7B
\$GPGLL,3135.89363545,N,11016.67084153,W,015647.00,A,D*75
\$GPGRS,015647.00,1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
\$PFUGDP,GP,015647.00,3135.89364,N,11016.67084,W,11,9,FN,0.1,0.1,163,0.1*09
\$GPGNS,015647.00,3135.89364,N,11016.67084,W,RNNNN,11,0.8,1381.9,-28.4,1.0,2*0D

Advanced Spectrum and Communications Test Network

SCII	
][m][mshow gnss	status
Gnss Status	
Latitude Longitude HGT Val Ellipsoid HDOP PDOP Fix Quality Used Satellites Receiver Status Operation Mode Antenna Status	: 31 35 53.615 N : 110 16 40.250 W : 1350.4 m : 0.770000 : 1.430000 : 2 : 11 : Tracking : Survey : OK

Current GNSS Satellite View:

Index	GnssID	SatID	SNR	Azimuth	Elev	PrRes
1	GPS	2	42	75	15	0
2	 GPS	 5	42	 43	 42	 0
3	GPS	 12	42	 180	 15	-3
4	GPS	13	42	103	28	2
5	GPS	15	42	144	32	-1
6	GPS	18	42	224	28	-8
7	GPS	20	42	255	86	 7
8	GPS	21	42	292	35	-4
9	GPS	25	42	212	36	-5
10	GPS	26	42	317	12	-6
11	GPS	29	42	18	78	5

RINEX

Fig. 4.13 - 4.19 pg 88 - 91

16 7 12 1 57	15.0000000 0 11G	20G13G15G18G05G21G02G29G12G25G26	
104952190.300 7	81780961.00844	19971738.227	19971745.9804
43.800	25.6004		
119984455.818 7	93494422.13544	22832282.391	22832291.0474
43.200	26.2004	22211 11 1 250	22211 122 0501
11/24/236.261 /	91361553.13144	22311414.359	22311422.9694
44.500	20.0004	22582056 508	22502065 2074
1180/4//2.413 /	924/3888.21044	22583050.508	22383005.38/4
44.000	20.6004	22127677 100	22127605 5004
1162816/0.84/ /	90609180.03044	2212/6/7.180	2212/685.5984
44.000	20.2004	22054259 291	22054266 0554
1206259/0.135 /	93994302.81444	22954358.281	22954300.8554
44.100	25.0004	24215266 926	24215276 2114
12/25200/.801 /	9915/915.00244	24213300.830	242133/0.2114
43.900	25.9004	20071011 801	20071020 0214
1054/8502.485 /	82191139.20344	200/1911.891	200/1920.0314
45.700	100542055 52844	24552607 227	24552617 5964
129030062.009 /	100342933.33644	24555007.227	24333017.3804
45.900	02054756 02444	22724012 504	22724021 6004
119420190.5/9 /	95054/50.02444	22/24912.394	22/24921.0994
120510020 257 7	100145202 22844	24456516 600	24456526 4224
120319020.33/ /	26 1004	24430310.009	24430320.4224
43.700	26.1004		

0,1B

ASCII + NMEA 186:01:39:03 \$GPGLL,3135.8930,N,11016.6706,W,013903.340,A*38V=10 S=18 T=10 P=OFF E=00 L U=00 S=0FF S2 P3 F00002 #00001 T2016:186:01:37:54 W110:16:40.238 N31:35:53.581 H+01363.75 I=03:00 X=ff:ff

	16-07-04 02:32:51	ASC
М	101 COMPLD	/
	"GPS:LAT=31 35.893N,LONG=110 16.670W,ALT=1380.50,UTC=2	2-32-51,
	MODE=AUTO, MERIT=1024NS, SUCCESS=32%	
	SAT-29, USE=Y, CNO=47, ELEV=74, AZ=130, LOCK=1677,	
	SAT-20, USE=Y, CNO=47, ELEV=71, AZ=21, LOCK=459,	
	SAT-15, USE=N, CNO=46, ELEV=47, AZ=124, LOCK=0,	
	SAT-21, USE=Y, CNO=46, ELEV=46, AZ=312, LOCK=131,	
	SAT-18, USE=Y, CNO=46, ELEV=45, AZ=239, LOCK=20,	
	SAT-13, USE=Y, CNO=46, ELEV=34, AZ=80, LOCK=138,	
	SAT-5, USE=Y, CNO=46, ELEV=24, AZ=45, LOCK=560,	
	SAT-25, USE=Y, CNO=46, ELEV=19, AZ=200, LOCK=205,	
	SAT-26, USE=Y, CNO=47, ELEV=19, AZ=300, LOCK=20,	
	SAT-10, USE=N, CNO=46, ELEV=10, AZ=231, LOCK=0,	
	/* LINK: 3, CMD: RTRV-GPS-STAT::GPS:101 */	
:R	RTRV-GPS-STAT::GPS:101:	

NASCTN
 National Advanced Spectrum
 and Communications Test Network

41

Example Parsed Data Output

• Testbed State File:

Test Run	GPS Attenuator Gain	GPS Simulator UTC Time	LTE IB DL Amplifier rf output enable	LTE IB DL Attenuator gain	LTE IB DL Synthesizer rf output enable	LTE IB UL Attenuator gain	LTE_IB_UL Synthesizer rf output enable	LTE OOB DL Attenuator gain	LTE OOB DL Synthesizer rf output enable	LTE OOB UL Attenuator gain	LTE OOB UL Synthesizer rf output enable	PC local time
	3 -33.75	7/7/2016 1:50:22	TRUE	-55	TRUE	-110	TRUE	-55	TRUE	-110	TRUE	8/3/2016 20:27:54

• Raw Data Sentence:

\$GPGGA,015022.00,3135.8936,N,11016.6708,W,1,11,0.8,1380.50,M,-28.50,M,,*61

• Final Data Output:

Date Time	LTE power dBm	Stdev LTE power dB	Fix	Sats In View	Longitude deg	Longitude truth deg	Latitude deg	Latitude truth deg	Altitude meters	Altitude truth meters	
7/7/2016 1:50:22	-67.1	1.2	1	11	31.598227	31.598227	-110.27785	-110.27785	1351.8964	1352.3	

ECEFx meters	ECEFx truth meters	ECEFy meters	ECEFy truth meters	ECEFz meters	ECEFz truth meters	positionError3D meters
-1884901	-1884901	-5101612	-5101612	3323277	3323277	0.405502

Data Publication

- 3859 CSV files (780 MB)
 - Request data DVD via form submission

https://www.nist.gov/programsprojects/impact-Ite-signals-gpsreceivers

- Readme files with detailed descriptions of file contents
- Anonymized data sets
 - GPS simulator truth files
 - Baseline data
 - Stepped LTE power sweeps
 - TTFF & TTFR tests
 - Timing tests

Readme

This directory contains files consisting of processed test data from the NASCTN "LTE Impacts on GPS" project. A summary of file contents can be found in Section 5.6 of the Final Test Report and also in CSV_header_information.xlsx that accompanies this data. The data provided here was processed from raw form with the parsing and data wrangling steps described in Chapter 5 of the Final Test Report. For details on the types of tests performed, see the Final Test Report.

Important Acronyms

GLN – General Navigation and Location devices

- HPP High Precision Positioning devices
- RTK Real Time Kinematic devices
- GPSDO GPS Disciplined Oscillator devices also referred to as the timing devices
- EIIP Equivalent Isotropic Incident Power
- IB In Band, refers to the in-band spectral component of the proposed emissions mask
- OOB Out Of Band, refers to the out of band emissions of the proposed emissions mask
- DL Downlink (1526 1536 MHz)
- UL1 Uplink 1 (1627.5 1637.5 MHz)
- UL2 Uplink 2 (1646.5 1656.5 MHz)

Combo – combination of Downlink signal (held constant at -50dBm, or where otherwise indicated in the plane of the receiver) and Uplink 1 signal (power is varied). The LTE power level given in the "*.csv" files is the aggregate signal power in the plane of the DUT.

TTFF – Time To First Fix (implies a cold-start reset at the beginning of the acquisition). If time is greater than allotted time a NAN is printed in the TTFF column. This test was conducted for HPP, RTK, and DEV units.

TTFR – Time to First Reacquisition (the DUT experiences a Loss of Lock for 3 minutes and then the GPS signal is reintroduced, the TTFR is the time it takes for the DUT to reacquire lock). If time is greater than allotted time a NAN is printed in the TTFR column. -This test applied to GLN units only.

Timing – GPS Disciplined Oscillator (Timing receiver tests), note that timing tests did not have a no-LTE soak period built in and the DUT had to acquire lock in the presence of the LTE signal.

Notes

The files are organized in a nested directory structure, where the directory levels correspond to test type, device class & LTE type, and DUT number, respectively. For the LTE power sweep tests, one data file is provided for each LTE power level. By contrast, for TTFF and TTFR tests, the data for all tests of a given DUT are listed in a single file.

For example, data for DUT 8 from an UL1 LTE power sweep test under the nominal GPS scenario is found with the following folder hierarchy:

 $LTE power_sweeps-nominal \rightarrow HPP-UL1 \rightarrow DUT8 \rightarrow level_\#_``measurand".csv.$

Date_Lim(L	TEpower	Stdev_LTE	PRN2_CN0	PRN5_CN(P	RN12_CNP	RN13_CNP	RN15_CN P	RN18_CNPF	RN20_CNP	RN21_CNP	RN25_CNPF	RN26_CN P	RN29
	-43.8	1.2	39.3	39.4	39.4	39.3	39.4	39.5	39.2	39.1	39.2	39.4	3
	-43.8	1.2	39.3	39.2	39.3	39.4	39.4	39.3	39.3	39.4	39.4	39.4	3
	-43.8	1.2	39.3	39	39.3	39.3	39.4	39.2	39.3	39.3	39.5	39.3	3
	-43.8	1.2	39.3	39.3	39.2	39.2	39.3	39.3	39.4	39.6	39.4	39.3	3
	-43.8	1.2	39.4	39.2	39.1	39.3	39.2	39.1	39.2	39	39.1	39.3	-
	-43.8	1.2	30	30.2	30	30.2	30	30.1	30	30.1	30	30	
	43.0	1.2	20	20.1	20.2	20.1	28.0	20.2	20.1	20.2	20	20.1	
	43.0	1.2	20	20.2	20.2	20	20.1	35.2	20.2	20.1	20	20.2	
*******	-43.8	1.2	39	39.2	39.2	39	39.1	39	39.2	39.1	39	39.3	
*******	-43.8	1.2	39.1	39.3	39.2	39.1	39.1	39.1	39.1	39.2	39	39	
*****	-43.8	1.2	39	39.2	39.1	39.1	39.2	39.3	39	39.3	39.3	39	
	-43.8	1.2	39	39	39	39.2	39.1	39.2	39.1	39.3	39.2	39.2	
*****	-43.8	1.2	39.1	39	39.2	39.2	39.1	39	39	39.2	39.2	39	
	-43.8	1.2	39.1	39.2	39.1	39.1	39.1	39.1	39.1	39.1	39.3	39.2	
	-43.8	1.2	39.2	39.3	39.1	39.1	39.2	39.2	39.2	39.2	39.3	39.2	
	-43.8	1.2	39.1	39.1	39	39.1	39.2	39.3	39.1	39.1	39.3	39	
	-43.8	1.2	39.3	39.1	39.2	39.3	39.2	39.3	39.3	39.2	39.3	39.3	
	-43.8	1.2	39.1	39.3	39.1	39.1	39	39.2	39.1	39.2	39.3	39.1	
	-43.8	1.2	39.3	39.2	39.3	39.3	39.2	39.3	39.2	39.2	39.1	39.4	
	-43.8	1.2	39.3	39.2	39.1	39.3	39.3	39.3	39.3	39.4	39.2	39.4	
	-43.8	1.2	39.3	39.2	39.3	39.3	39.3	39.3	39.2	39.4	39.4	39.3	
	-43.8	1.2	39.3	39.3	39.3	39.4	39.4	39.2	39.1	39.4	39.2	39.3	
	-43.8	1.2	39.4	39.4	39.4	39.4	39.3	39.4	39.3	39.3	39.4	39.4	
	-43,8	1.2	39.4	39.3	39.2	39.4	39.4	39.2	39	39.2	39.2	39.3	
	-43.8	1.2	39.7	39.1	39.4	39.3	39.4	39.3	39.1	39.2	39.2	39.2	
	-43.8	1.2	39.2	39.3	39.3	39.2	39.1	39.2	39.1	39.3	39.2	39.2	
	-43.8	1.2	30.2	30	30.2	30.2	30.4	30.3	30.1	30.5	30.2	30.1	
	43.0	1.2	20	20.1	20.2	20.2	20.2	20	20.1	20.1	20.2	20.1	
	-43.0	1.2		39.1	35.2	35.5	35.3	20.2	20.2	20.1	20.2	20.2	
	-43.8	1.2	39	39.3	39.1	39.2	39	39.2	39.2	39.1	39.2	39.3	
******	-43.8	1.2	39.2	39.4	39.1	39.2	39.4	39.2	39.3	39.2	39.5	39.3	
ппппппп	-43.8	1.2	39.1	39.2	39.2	39.1	39.2	39.3	39.2	39.1	39.2	39	
	-43.8	1.2	39.2	39.2	39.1	39.3	39.1	38.9	39	39.1	39.1	39.1	
	-43.8	1.2	39.2	39.3	39.1	39.2	39.3	39.1	39.4	39.1	39.2	39.2	
	-43.8	1.2	39.2	39.4	39.1	39.1	39.2	39.2	39	39.1	39	39.3	
	-43.8	1.2	39.2	39.1	39.2	39.1	39.2	39.4	39.2	39.2	39.4	39.1	
	-43.8	1.2	39.1	39.2	39	39.1	39.3	39.3	39.2	39.2	39.2	39.1	
	-43.8	1.2	39.2	39.2	39.1	39	39.2	39.3	39.1	39.2	39.1	39	
	-43.8	1.2	39.3	39.2	39.1	39.2	39.2	39.4	39.2	39.3	39.2	39.2	
	-43.8	1.2	39.1	39.2	39.4	39.4	39.3	39.3	39.2	39.3	39.2	39.1	
	-43.8	1.2	39.3	39.2	39.1	39.2	39.4	39.3	39.3	39.4	39.3	39.3	
	-43.8	1.2	39.3	39.2	39.3	39.3	39.3	39.2	39.2	39.3	39.3	39.4	
	-43.8	1.2	39.3	39.4	39.3	39.3	39.3	39.2	39.2	39.4	39.2	39.4	
	-43.8	1.2	39.2	39.3	39.3	39.3	39.2	39.3	39.3	39.3	39.5	39.2	
	-43.8	1.2	39.2	39.4	39.4	39.3	39.3	39.3	39.3	39.5	39.3	39.3	
	-43.8	1.2	39.4	39.3	39.3	39.2	39.3	39.4	39.4	39.3	39.2	39.1	
	-43.9	1.2	30.2	39.5	30	39.2	39.3	39.2	39.7	39.1	39.2	39.2	
	-43.0	1.2	30.1	30.2	30.5	30.3	30.3	30.2	30.3	30.1	30.5	30.2	
	-43.8	1.2	20.1	20.1	20.2	35.2	20.2	20.1	20.2	20.1	20.1	20.2	
*******	-43.8	1.2	39.1	39.1	39.2	20.2	39.2	39.1	39.2	20.2	39.1	39.3	
*******	-43.8	1.2		39.2	39	39.2	39.1	39.1	39.2	39.2	39.2	39.1	
****	-43.8	1.2	39	39.3	39.1	38.9	39.3	39	39.1	39.1	39.3	39.1	
########	-43.8	1.2	39.2	39.2	39.1	39.2	39	39	39.2	39.1	39.3	39.2	
#######	-43.8	1.2	39.1	39.3	39.2	39.1	39	39	39.2	39.1	39.2	39	
#######	-43.8	1.2	39.3	39.2	39.2	39.1	39.4	39.3	39.1	39.2	39	39.2	
#######	-43.8	1.2	39.3	39.2	39.1	39.3	39.4	39.2	39.2	39	39.1	39.1	
#######	-43.8	1.2	39.2	39.1	39.3	39.3	39.3	39.2	39.2	39.3	39.2	39.2	
########	-43.8	1.2	39.3	39.3	39.3	39.2	39.2	39.2	39.2	39.3	39.3	39.3	
*****	-43.8	1.2	39.3	39.2	39.3	39.2	39.2	39.1	39.3	39.2	39.1	39.1	
########	-43.8	1.2	39.2	39.3	39.2	39.3	39.2	39.3	39.3	39.3	39.2	39.3	
	-43.8	1.2	39.3	39.1	39.3	39.1	39.3	39.1	39.2	39.3	39.3	39.2	
	-43.8	1.2	39.3	39.3	39.3	39.2	39.1	39.3	39.3	39.4	39.2	39.5	
	-43,8	1.2	39.4	39.3	39.3	39.3	39.4	39.4	39.3	39.5	39.3	39.3	
	-43.8	1.2	39.4	39.5	39.3	39.4	39.3	39.3	39.4	39.2	39.5	39.3	
	-43.9	1.2	30.4	39.5	39.5	39.3	39.0	39.3	39.4	39.4	39.3	39.4	
	-42.0	1.2			33.3				JJ.+	22.7	0.00	22.4	
	-43 0	1 7	30.5	30.4	30.2	30.2	30 5	30.3	30.2	30.3	30.4	30.2	

Simulation Study of C/N₀ Estimators

- Variability in C/N₀ reported by DUTs includes
 - Intra-DUT variations due to intrinsic DUT performance and changing conditions
 - Enables inferences about individual DUT performance
 - Evaluated by our data analysis
 - Inter-DUT variations due to choice of C/N₀ estimation method implemented by DUT
 - Because each DUT is a "black box", the estimation algorithm is unknown
 - Enables inferences about a population of DUTs
 - Not included in our data analysis
- We carried out a limited simulation study to shed light on the second component
 - Appendix B in Final Report

Bias in C/N₀ estimation algorithms

Reproduction of Figure 3 in Falletti et. al., IEEE Trans. Aerosp. Electron. Syst., vol 47, no 1, Jan 2011

Estimators:

- Beaulieu's method
- Signal-to-Noise Variance (SNV)
- Moments method (MM)
- Real Signal-Complex Noise (RSCN)
- Narrowband-Wideband
 Power Ratio Method (NWPR)

Simulation Study Summary

- Compared five estimators studied in (Falletti et al., 2011):
 - Beaulieu's method
 - Signal-to-noise variance (SNV)
 - Moments method (MM)
 - Real signal-complex noise (RSCN)
 - Narrowband-wideband power ratio (NWPR) method
- Building on (Falletti et al., 2011) signal model,
 - Modeled adjacent-band LTE UL1 and associated OOBE as in physical testing
 - Used a Rician fading model for the GPS channel
 - Simulated 2000 Monte Carlo trials for each set of parameters
 - Inter-algorithm variability evaluated by comparing histograms

Example Results

and Communications Test Network

True C/N₀ = 40 dB-Hz & LTE UL1 EIIP = -40 dBm

Fig. B.2 – pg. 275

Fig. B.1 – pg. 274

Break

Data Analysis for LTE Power Sweep Tests

- Scatterplots for 3D position error, C/N₀, and number of satellites in view
- Plots of median steady-state 3D position error & C/N₀
 - Each time-series assumed to reach a steady-state condition

Pre-Analysis Processing:

- Obtain 3D position error time-series
 - Convert latitude, longitude & altitude to Cartesian ECEF (earthcentered, earth-fixed) coordinates
 - Calculate Euclidean distance between true and reported position
- Reduce C/N₀ to scalar time-series
 - For each time point, find median C/N₀ across reported GPS satellites
 - Median is robust to outliers

Baseline

- Baseline (BL) tests show steady-state behavior of devices without LTE transmissions.
- Statistical comparisons are made against the baseline.

Raw Data - Scatter Plots

- "BL" indicates baseline
- Horizontal coordinate randomly generated from the estimated distribution for LTE EIIP
 - Communicates uncertainty in LTE power
 - Aids visualization (Point Clouds)
- Time-dependent nature of data is not conveyed

Examples of Steady-State Median Plots

Limited Scenario: C/N₀ plots

-128.5 dBm C Baseline (BL) – No LTE Power	-138.5 dBm Baseline (BL) – No LTE Power
-133.5 dBm C Baseline (BL) – No LTE Power	-143.5 dBm C Baseline (BL) – No LTE Power

Data Analysis for TTFF & TTFR tests Scatterplots

- Raw TTFF data
- Horizontal coordinate randomly distributed based on the estimated uncertainty for LTE EIIP

TTFF & TTFR tests

Empirical cumulative distribution function (CDF) plots

- Kaplan-Meier estimate for empirical CDF (solid lines)
- Pointwise 95% confidence bands (dashed lines)
- Colorbar used to convey LTE power level, (BL) indicates baseline

Data Analysis for Timing Tests

- To allow for DUT conditioning, data from first 75 min not used for analysis.
- Remaining 75 min capture adjusted by subtracting its mean.
- Resulting warmed-up TIC output was plotted and analyzed.

Time interval counter (TIC) measures the time interval between the reference cesium (Cs) Clock and the DUT.

Allan Time Deviation plots

Full-scale and zoom plots with pointwise 95% confidence band

DUT Antenna Response

- External DUT antennas were measured
- Active antenna response is normalized

DUT Antenna Response

- External DUT antennas were measured
- Active antenna response is normalized

Errata for "LTE Impacts on GPS: Final Test Report"

Location	Corrected text
Page xxxviii, C.15	Missing space between " <u>Underline</u> " and "Indicates"
Page xxix, F.5	"97.55%" should be "97.5%"
Page 18, Fig 2.1 vs page	Quoted RF power values found in table 3.6 supersede values reported in figure 2.1. Discrepancy is due to refined calibration
54 Table 3.6	corrections.
Page 98, Table 5.3	"GPGGA" incorrectly listed in both columns (should only be in "Analyzed" column).
	"BESTPOSA" is repeated in the "Analyzed" column.
Page 223, caption to	"CDF plots of TTFF from lock acquisition reported by HPP receivers at different LTE power levels.
Figure 6.99	The GPS scenario is TTFF, and the type of incident LTE is DL."
Page 224, caption to	"Scatterplots of TTFF from lock acquisition reported by HPP receivers at different LTE power levels.
Figure 6.100	The GPS scenario is TTFF, and the type of incident LTE is DL."
Page 225, caption to	"CDF plots of TTFF from lock acquisition reported by RTK receivers at different LTE power levels.
Figure 6.101	The GPS scenario is TTFF, and the type of incident LTE is UL1."
Page 226, caption to	"Scatterplots of TTFF from lock acquisition reported by RTK receivers at different LTE power levels.
Figure 6.102	The GPS scenario is TTFF, and the type of incident LTE is UL1."
Page 227, caption to	"CDF plots of TTFR from lock acquisition reported by GLN receivers at different LTE power levels. The GPS scenario is
Figure 6.103	TTFF, and the type of incident LTE is UL1."
Page 228, caption to	"Scatterplots of TTFR from lock acquisition reported by GLN receivers at different LTE power levels. The GPS scenario
Figure 6.104	is TTFF, and the type of incident LTE is UL1."
Page 229, caption to	"CDF plots of TTFF from lock acquisition reported by HPP receivers at different LTE power levels.
Figure 6.105	The GPS scenario is TTFF, and the type of incident LTE is UL1.
Page 230, caption to	"Scatterplots of TTFF from lock acquisition reported by HPP receivers at different LTE power levels.
Figure 6.106	The GPS scenario is TTFF, and the type of incident LTE is UL1."
Page 231, caption to	"CDF plots of TTFF from lock acquisition reported by RTK receivers at different LTE power levels.
Figure 6.107	The GPS scenario is TTFF, and the type of incident LTE is DL."
Page 232, caption to	"Scatterplots of TTFF from lock acquisition reported by RTK receivers at different LTE power levels.
Figure 6.108	The GPS scenario is TTFF, and the type of incident LTE is DL."

Presentation of Results

Nominal Satellite Conditions Limited Satellite Conditions TTFF & TTFR Timing Tests

General Location and Navigation

Nominal Satellite Constellation

GLN Setup

General Location and Navigation

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - Uplink 2
 - Combo DL + UL1

- C/NO scatter plots
- Downlink
- Nominal satellite condition
- 600 points per LTE power level per satellite

- 3D position error scatter plots
- Downlink
- Nominal satellite condition

- 95% confidence regions for median C/N₀
- Downlink
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. 6.5 – pg. 126

- 95% confidence regions for median 3D position error
- Downlink

 Nominal satellite condition

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Downlink
- Nominal satellite condition

General Location and Navigation

- Nominal Satellite Condition
 - Downlink
 - <u>Uplink 1</u>
 - Uplink 2
 - Combo DL + UL1

- C/N0 scatter plots
- Uplink 1
- Nominal satellite condition
- 600 points per LTE power level per satellite

- 3D position error scatter plots
- Uplink 1
- Nominal satellite condition

Fig. 6.11 – pg. 132
- 95% confidence regions for median C/N₀
- Uplink 1
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. 6.10 – pg. 131

- 95% confidence regions for median 3D position error
- Uplink 1
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. 6.12 – pg. 133

- Number of reported satellites in view scatter plot
- Uplink 1
- Nominal satellite condition

Fig. 6.13 – pg. 134

General Location and Navigation

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - <u>Uplink 2</u>
 - Combo DL + UL1

- C/N0 scatter plots
- Uplink 2
- Nominal satellite condition
- 600 points per LTE power level per satellite

77

- 3D position error scatter plots
- Uplink 2
- Nominal satellite condition

- 95% confidence regions for median C/N₀
- Uplink 2
- Nominal satellite condition

Baseline (BL) – No LTE Power

- 95% confidence regions for median 3D position error
- Uplink 2
- Nominal satellite condition

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Uplink 2
- Nominal satellite condition

81

General Location and Navigation

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - Uplink 2
 - <u>Combo DL + UL1</u>

- C/N0 scatter plots
- Combo DL + UL1
- Nominal satellite condition
- 600 points per LTE power level per satellite
- DL fixed: -50 dBm

- 3D position error scatter plots
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm

84

- 95% confidence regions for median C/N₀
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm

- 95% confidence regions for median 3D position error
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm

Precision Location and Real Time Kinematic

Nominal Satellite Constellation

Precision Location Setup

Real Time Kinematic Setup

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - Uplink 2
 - Combo DL + UL1

- C/N0 scatter plots
- Downlink
- Nominal satellite condition
- 1200 points per LTE power level per satellite

Fig. 6.24 – pg. 145

- 3D position error scatter plots
- Downlink
- Nominal satellite condition

Fig. 6.26 – pg. 147

- 95% confidence regions for median C/N₀
- Downlink
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. 6.25 – pg. 146

- 95% confidence regions for median 3D position error
- Downlink
- Nominal satellite condition

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Downlink
- Nominal satellite condition

- Nominal Satellite Condition
 - Downlink
 - <u>Uplink 1</u>
 - Uplink 2
 - Combo DL + UL1

- C/N0 scatter plots
- Uplink 1
- Nominal satellite condition
- 1200 points per LTE power level per satellite

- 3D position error scatter plots
- Uplink 1
- Nominal satellite condition

- 95% confidence regions for median C/N₀
- Uplink 1
- Nominal satellite condition

Baseline (BL) – No LTE Power

- 95% confidence regions for median 3D position error
- Uplink 1
- Nominal satellite condition

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Uplink 1
- Nominal satellite condition

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - <u>Uplink 2</u>
 - Combo DL + UL1

- C/N0 scatter plots
- Uplink 2
- Nominal satellite condition
- 1200 points per LTE power level per satellite

Fig. 6.34 – pg. 155

- 3D position error scatter plots
- Uplink 2
- Nominal satellite condition

- 95% confidence regions for median C/N₀
- Uplink 2
- Nominal satellite condition

Baseline (BL) – No LTE Power

- 95% confidence regions for median 3D position error
- Uplink 2
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. 6.37 – pg. 158

- Number of reported satellites in view scatter plot
- Uplink 2
- Nominal satellite condition

Fig. 6.38 – pg. 159
- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - Uplink 2
 - <u>Combo DL + UL1</u>

- C/N0 scatter plots
- Combo DL + UL1
- Nominal satellite condition
- 1200 points per LTE power level per satellite
- DL fixed: -50 dBm
- Low-Level DL: -65 dBm

Fig. 6.39 – pg. 160

- 3D position error scatter plots
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm
- Low-Level DL: -65 dBm

Fig. 6.41 – pg. 162

- 95% confidence regions for median C/N₀
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm
- Low-Level DL: -65 dBm

Baseline (BL) – No LTE Power

Fig. 6.40 – pg. 161

- 95% confidence regions for median 3D position error
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm
- Low-Level DL: -65 dBm

Baseline (BL) – No LTE Power

Fig. 6.42 – pg. 163

- Number of reported satellites in view scatter plot
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm
- Low-Level DL: -65 dBm

Fig. 6.43 – pg. 164

DUT 7 Repeats

- Measurements <u>a week</u> <u>apart</u> (other DUT tests during that week)
- C/NO scatter plots (top)
- 95% confidence regions for median C/N₀ (bottom)
- Combo DL + UL1
- DL fixed: -50 dBm
- Nominal satellite condition

DUT 7 Repeats

- DUT measurement repeated
- 3D position error scatter plots (top)
- 95% confidence regions for median 3D position error (bottom)
- Combo DL + UL1
- Nominal satellite condition

Fig. 6.46 – pg. 167

Precision Location DUT 7 Repeats

- DUT measurement repeated
- Number of reported satellites in view scatter plot
- Combo DL + UL1
- Nominal satellite condition

119

Precision Location DUT 7 Repeats

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - Uplink 2
 - Combo DL + UL1

- C/N0 scatter plots
- Downlink
- Nominal satellite condition
- 1200 points per LTE power level per satellite

- 3D position error scatter plots
- Downlink
- Nominal satellite condition

- 95% confidence regions for median C/N₀
- Downlink
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. 6.50 – pg. 171

- 95% confidence regions for median 3D position error
- Downlink
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. 6.52 – pg. 173

- Number of reported satellites in view scatter plot
- Downlink
- Nominal satellite condition

- Nominal Satellite Condition
 - Downlink
 - <u>Uplink 1</u>
 - Uplink 2
 - Combo DL + UL1

- C/N0 scatter plots
- Uplink 1
- Nominal satellite condition
- 1200 points per LTE power level per satellite

Fig. 6.54 – pg. 175

- 3D position error scatter plots
- Uplink 1
- Nominal satellite condition

- 95% confidence regions for median C/N₀
- Uplink 1
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. 6.55 – pg. 176

- 95% confidence regions for median 3D position error
- Uplink 1
- Nominal satellite condition

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Uplink 1
- Nominal satellite condition

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - <u>Uplink 2</u>
 - Combo DL + UL1

- C/N0 scatter plots
- Uplink 2
- Nominal satellite condition
- 1200 points per LTE power level per satellite

Fig. 6.59 – pg. 180

- 3D position error scatter plots
- Uplink 2
- Nominal satellite condition

- 95% confidence regions for median C/N₀
- Uplink 2
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. 6.60 – pg. 181

- 95% confidence regions for median 3D position error
- Uplink 2
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. 6.62 – pg. 183

- Number of reported satellites in view scatter plot
- Uplink 2
- Nominal satellite condition

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - Uplink 2
 - <u>Combo DL + UL1</u>

- C/N0 scatter plots
- Combo DL + UL1
- Nominal satellite condition
- 1200 points per LTE power level per satellite
- DL fixed: -50 dBm
- Low-Level DL: -65 dBm

- 3D position error scatter plots
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm
- Low-Level DL: -65 dBm

- 95% confidence regions for median C/N₀
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm
- Low-Level DL: -65 dBm

Baseline (BL) – No LTE Power

Fig. 6.65 – pg. 186

- 95% confidence regions for median 3D position error
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm
- Low-Level DL: -65 dBm

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Combo DL + UL1
- Nominal satellite condition

General Location and Navigation

Limited Satellite Constellation

General Location and Navigation

- Limited Satellite Condition
 - Downlink

• Uplink 1

- C/N0 scatter plots
- Downlink
- Limited satellite condition
- 600 points per LTE power level per satellite

- 3D position error scatter plots
- Downlink
- Limited satellite condition

- 95% confidence regions for median C/N_0
- Downlink
- Limited satellite condition

-128.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-133.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-138.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-143.5 dBm	\bigcirc	Baseline (BL) – No LTE Power

-20

-10

10

0

- 95% confidence regions for median 3D position error
- Downlink
- Limited satellite condition

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Downlink
- Limited satellite condition

Several NMEA sentences report 12 satellites with 3 satellites reporting C/N₀ of -1.

Fig. 6.113 – pg. 238

General Location and Navigation

- Limited Satellite Condition
 - Downlink

<u>Uplink 1</u>

- C/N0 scatter plots
- Uplink 1
- Limited satellite condition
- 600 points per LTE power level per satellite

- 3D position error scatter plots
- Uplink 1
- Limited satellite condition

- 95% confidence regions for median C/N₀
- Uplink 1
- Limited satellite condition

-128.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-133.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-138.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-143.5 dBm	\bigcirc	Baseline (BL) – No LTE Power

- 95% confidence regions for median 3D position error
- Uplink 1
- Limited satellite condition

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Uplink 1
- Limited satellite condition

Precision Location and Real Time Kinematic

Limited Satellite Constellation

- Limited Satellite Condition
 - Downlink

• Uplink 1

- C/N0 scatter plots
- Downlink
- Limited satellite condition
- 1200 points per LTE power level per satellite

- 3D position error scatter plots
- Downlink
- Limited satellite condition

Fig. 6.121 – pg. 246

- 95% confidence regions for median C/N₀
- Downlink
- Limited satellite condition

-128.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-133.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-138.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-143.5 dBm	\bigcirc	Baseline (BL) – No LTE Power

Fig. 6.120 – pg. 245

- 95% confidence regions for median 3D position error
- Downlink
- Limited satellite condition

Baseline (BL) – No LTE Power

Fig. 6.122 – pg. 247

- Number of reported satellites in view scatter plot
- Downlink
- Limited satellite condition

- Limited Satellite Condition
 - Downlink

<u>Uplink 1</u>

- C/N0 scatter plots
- Uplink 1
- Limited satellite condition
- 1200 points per LTE power level per satellite

Fig. 6.124 – pg. 249

- 3D position error scatter plots
- Uplink 1
- Limited satellite condition

- 95% confidence regions for median C/N₀
- Uplink 1
- Limited satellite condition

-128.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-133.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-138.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-143.5 dBm	\bigcirc	Baseline (BL) – No LTE Power

- 95% confidence regions for median 3D position error
- Uplink 1
- Limited satellite condition

Baseline (BL) – No LTE Power

Fig. 6.127 – pg. 252

- Number of reported satellites in view scatter plot
- Uplink 1
- Limited satellite condition

- Limited Satellite Condition
 - Downlink

• Uplink 1

- C/NO scatter plots
- Downlink
- Limited satellite condition
- 1200 points per LTE power level per satellite

LTE Equivalent Isotropic Incident Power at the DUT (dBm)

Fig. 6.129 – pg. 254

- 3D position error scatter plots
- Downlink
- Limited satellite condition

LTE Equivalent Isotropic Incident Power at the DUT (dBm)

Fig. 6.131 – pg. 256

- 95% confidence regions for median C/N₀
- Downlink
- Limited satellite condition

-128.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-133.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-138.5 dBm	\bigcirc	Baseline (BL) – No LTE Power
-143.5 dBm	\bigcirc	Baseline (BL) – No LTE Power

LTE Equivalent Isotropic Incident Power at the DUT (dBm)

Fig. 6.130 – pg. 255

- 95% confidence regions for median 3D position error
- Downlink
- Limited satellite condition

Baseline (BL) – No LTE Power

LTE Equivalent Isotropic Incident Power at the DUT (dBm)

Fig. 6.132 – pg. 257

- Number of reported satellites in view scatter plot
- Downlink
- Limited satellite condition

LTE Equivalent Isotropic Incident Power at the DUT (dBm)

- Limited Satellite Condition
 - Downlink

Uplink 1

177

- C/NO scatter plots
- Uplink 1
- Limited satellite condition
- 1200 points per LTE power level per satellite

LTE Equivalent Isotropic Incident Power at the DUT (dBm)

Fig. 6.134 – pg. 259

- 3D position error scatter plots
- Uplink 1
- Limited satellite condition

LTE Equivalent Isotropic Incident Power at the DUT (dBm)

179

- 95% confidence regions for median C/N₀
- Uplink 1
- Limited satellite condition

-128.5 dBm	Baseline (BL) – No LTE Pow	ver
-133.5 dBm	Baseline (BL) – No LTE Pow	ver
-138.5 dBm	Baseline (BL) – No LTE Pow	ver
-143.5 dBm	Baseline (BL) – No LTE Pow	ver

LTE Equivalent Isotropic Incident Power at the DUT (dBm)

Fig. 6.135 – pg. 260
- 95% confidence regions for median 3D position error
- Uplink 1
- Limited satellite condition

Baseline (BL) – No LTE Power

LTE Equivalent Isotropic Incident Power at the DUT (dBm)

Fig. 6.137 – pg. 262

- Number of reported satellites in view scatter plot
- Uplink 1
- Limited satellite condition

LTE Equivalent Isotropic Incident Power at the DUT (dBm)

Time To First Fix

General Navigation and Location Precision Location Real Time Kinematic

General Location and Navigation

- Nominal Satellite Condition
- TTFF
 - Downlink
 - Uplink 1

General Location

- TTFR (tunnel scenario)
- TTFR scatter plots
- Downlink
- Nominal satellite condition
- 100 trials

General Location

- TTFR (tunnel scenario)
- Empirical estimates of the CDF
- Downlink
- Nominal satellite condition

General Location and Navigation

- Nominal Satellite Condition
- TTFF
 - Downlink
 - <u>Uplink 1</u>

General Location

- TTFR (tunnel scenario)
- TTFR scatter plots
- Uplink 1
- Nominal satellite condition
- 100 trials

General Location

- TTFR (tunnel scenario)
- Empirical estimates of the CDF
- Uplink 1
- Nominal satellite condition

Fig. 6.103 – pg. 227

- Nominal Satellite Condition
- TTFF
 - Downlink
 - Uplink 1

- TTFF (Cold-Start)
- TTFF scatter plots
- Downlink
- Nominal satellite condition
- 100 trials

- TTFF (Cold-Start)
- Empirical estimates of the CDF
- Downlink
- Nominal satellite condition

- Nominal Satellite Condition
- TTFF
 - Downlink
 - <u>Uplink 1</u>

- TTFF (Cold-Start)
- TTFF scatter plots
- Uplink 1
- Nominal satellite condition

Fig. 6.106 – pg. 230

• 100 trials

- TTFF (Cold-Start)
- Empirical estimates of the CDF
- Uplink 1
- Nominal satellite condition

- Nominal Satellite Condition
- TTFF
 - Downlink
 - Uplink 1

- TTFF (Cold-Start)
- TTFF scatter plots
- Downlink
- Nominal satellite condition
- 100 trials

- TTFF (Cold-Start)
- Empirical estimates of the CDF
- Downlink
- Nominal satellite condition

- Nominal Satellite Condition
- TTFF
 - Downlink
 - <u>Uplink 1</u>

- TTFF (Cold-Start)
- TTFF scatter plots
- Uplink 1
- Nominal satellite condition
- 100 trials

- TTFF (Cold-Start)
- Empirical estimates of the CDF

Fig. 6.101 – pg. 225

- Uplink 1
- Nominal satellite condition

Timing Setup

- Nominal Satellite Condition
- Timing
 - Downlink
 - Uplink 1
 - Uplink 2
 - Combo DL + UL1

- C/N0 scatter plots (top)
- 95% confidence regions for median C/N₀ (bottom)
- Downlink
- Nominal satellite condition

- $\Delta T = PPS_{CSClock} PPS_{DUT}$
- TIC data after Warm-up estimation
- Downlink
- Nominal satellite condition

- Allan Time Deviation
 Estimate from ΔT after
 Warm-up time
- Downlink
- Nominal satellite condition

Zoomed TDEV

Fig. 6.71 – pg. 193

Fig. 6.72 – pg. 194

Fig. 6.73 – pg. 195

- Number of reported satellites in view scatter plot
- Downlink
- Nominal satellite condition

- Nominal Satellite Condition
- Timing
 - Downlink
 - <u>Uplink 1</u>
 - Uplink 2
 - Combo DL + UL1

- C/N0 scatter plots (top)
- 95% confidence regions for median C/N₀ (bottom)
- Uplink 1
- Nominal satellite condition

212

- $\Delta T = PPS_{CSClock} PPS_{DUT}$
- TIC data after Warm-up estimation
- Uplink 1
- Nominal satellite condition

- Allan Time Deviation
 Estimate from ΔT after
 Warm-up time
- Uplink 1
- Nominal satellite condition

Zoomed TDEV

Fig. 6.78 – pg. 200

Fig. 6.79 – pg. 201

Fig. 6.80 – pg. 202

214

- Number of reported satellites in view scatter plot
- Uplink 1
- Nominal satellite condition

- Nominal Satellite Condition
- Timing
 - Downlink
 - Uplink 1
 - <u>Uplink 2</u>
 - Combo DL + UL1

- C/N0 scatter plots (top)
- 95% confidence regions for median C/N₀ (bottom)
- Uplink 2
- Nominal satellite condition

- $\Delta T = PPS_{CSClock} PPS_{DUT}$
- TIC data after Warm-up estimation
- Uplink 2
- Nominal satellite condition

- Allan Time Deviation
 Estimate from ΔT after
 Warm-up time
- Uplink 2
- Nominal satellite condition

Zoomed TDEV

Fig. 6.85 – pg. 207

Fig. 6.86 – pg. 208

Fig. 6.87 – pg. 209

220

- Number of reported satellites in view scatter plot
- Uplink 2
- Nominal satellite condition

- Nominal Satellite Condition
- Timing
 - Downlink
 - Uplink 1
 - Uplink 2
 - Combo DL + UL1

- C/N0 scatter plots (top)
- 95% confidence regions for median C/N₀ (bottom)
- Combo DL +UL1
- Nominal satellite condition
- DL fixed: -50 dBm

Fig. 6.95 – pg. 217

224

- $\Delta T = PPS_{CSClock} PPS_{DUT}$
- TIC data after Warm-up estimation
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm

- Allan Time Deviation
 Estimate from ΔT after
 Warm-up time
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm

Zoomed TDEV

Fig. 6.92 – pg. 214

Fig. 6.93 – pg. 215

- Number of reported satellites in view scatter plot
- Combo DL + UL1
- Nominal satellite condition
- DL fixed: -50 dBm

Development Board GPS Receivers

Nominal Satellite Constellation

DEV Antenna Response

- External DUT antenna was measured
- Active antenna response is normalized

229

Development Board GPS Receivers

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - Uplink 2
 - Combo DL + UL1

- C/N0 plots
- Downlink
- Nominal satellite condition
- 1200 points per LTE power level per satellite

- 3D position error
- Downlink
- Nominal satellite condition

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Downlink
- Nominal satellite condition

Development Board GPS Receivers

- Nominal Satellite Condition
 - Downlink
 - <u>Uplink 1</u>
 - Uplink 2
 - Combo DL + UL1

- C/N0 plots
- Uplink 1
- Nominal satellite condition
- 1200 points per LTE power level per satellite

- 3D position error
- Uplink 1
- Nominal satellite condition

Baseline (BL) – No LTE Power

- Number of reported satellites in view scatter plot
- Uplink 1
- Nominal satellite condition

Development Board GPS Receivers

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - <u>Uplink 2</u>
 - Combo DL + UL1

- C/N0 plots
- Uplink 2
- Nominal satellite condition
- 1200 points per LTE power level per satellite

- 3D position error
- Uplink 2
- Nominal satellite condition

Baseline (BL) – No LTE Power

241

- Number of reported satellites in view scatter plot
- Uplink 2
- Nominal satellite condition

Development Board GPS Receivers

- Nominal Satellite Condition
 - Downlink
 - Uplink 1
 - Uplink 2
 - <u>Combo DL + UL1</u>

- C/N0 plots
- Combo DL + UL1
- Nominal satellite condition
- 1200 points per LTE power level per satellite

- 3D position error
- Combo DL + UL1
- Nominal satellite condition

Baseline (BL) – No LTE Power

Fig. F.13 – pg. 363

245

- Number of reported satellites in view scatter plot
- Combo DL + UL1
- Nominal satellite condition

Development Board GPS Receivers

- Limited Satellite Condition
 - Downlink

• Uplink 1

- C/N0 plots
- Downlink
- Limited satellite condition
- 1200 points per LTE power level per satellite

Fig. F.23 – pg. 376

- 3D position error
- Downlink
- Limited satellite condition

Baseline (BL) – No LTE Power

Fig. F.24 – pg. 377

- Number of reported satellites in view scatter plot
- Downlink
- Limited satellite condition

Development Board GPS Receivers

- Limited Satellite Condition
 - Downlink

Uplink 1

- C/N0 plots
- Uplink 1
- Limited satellite condition
- 1200 points per LTE power level per satellite

- 3D position error
- Uplink 1
- Limited satellite condition

Baseline (BL) – No LTE Power

253

- Number of reported satellites in view scatter plot
- Uplink 1
- Limited satellite condition

- Nominal Satellite Condition
- TTFF
 - Downlink
 - Uplink 1

- TTFF (Cold-Start)
- TTFF scatter plots
- Empirical estimates of the CDF
- Downlink
- Nominal satellite condition
- 100 trials

Fig. F.21 – pg. 373

- Nominal Satellite Condition
- TTFF
 - Downlink
 - <u>Uplink 1</u>

- TTFF (Cold-Start)
- TTFF scatter plots
- Empirical estimates of the CDF
- Uplink 1
- Nominal satellite condition
- 100 trials

Fig. F.22 – pg. 374

- Nominal Satellite Condition
- Timing
 - Downlink
 - Uplink 1
 - Combo DL + UL1

- C/NO scatter plots (left)
- 95% confidence regions for median C/N₀ (right)
- Number of reported satellites in view scatter plot
- Downlink
- Nominal satellite condition

- $\Delta T = PPS_{CSClock} PPS_{DUT}$
- TIC data after Warm-up estimation
- Allan Time Deviation Estimate from ΔT after Warm-up time
- Zoomed TDEV
- Downlink
- Nominal satellite condition

- Nominal Satellite Condition
- Timing
 - Downlink
 - <u>Uplink 1</u>
 - Combo DL + UL1

262

- C/NO scatter plots (left)
- 95% confidence regions for median C/N₀ (right)
- Number of reported satellites in view scatter plot
- Uplink 1
- Nominal satellite condition

- $\Delta T = PPS_{CSClock} PPS_{DUT}$
- TIC data after Warm-up estimation
- Allan Time Deviation Estimate from ΔT after Warm-up time
- Zoomed TDEV
- Uplink 1
- Nominal satellite condition

