DESIGN DECISION SUPPORT FOR MBE WITH INFORMATION MODELING

Proceedings of the NIST Model-Based Enterprise Summit 2017 MBE17-024

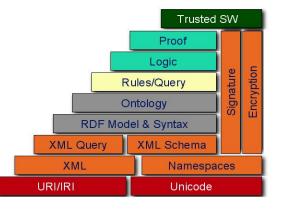
Douglas Eddy, Sundar Krishnamurty, and Ian Grosse

University of Massachusetts at Amherst

Overview

- MBE considerations of: 1) semantics and
 2) Additive Manufacturing (AM) capabilities
- Toward semantic knowledge management for design/manufacturing
- Method to use information for design/manufacturing decisions
- How we can integrate knowledge domains
- A way to apply this approach for industry

Semantic knowledge management for design / manufacturing

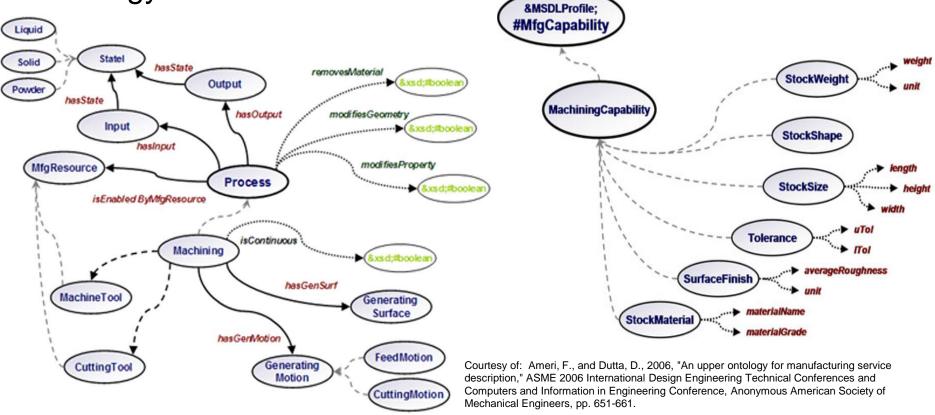

Motivation

- Capturing an using AM information in early design
- Compare AM alternative to other processes early
- Choose the best process combination early
- Prior approaches for conventional manufacturing
 - Work by Dr. Ameri at Texas State and others
- Approach to integrate AM information
- Process to execute decision rules
- Case study: => Should we AM this part or not?

Background

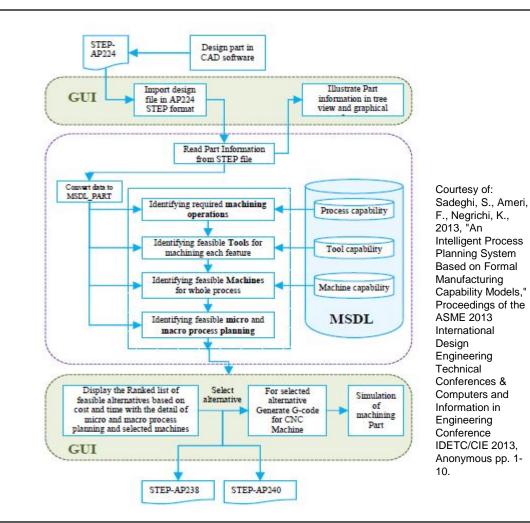
Why ontologies?

Semantic Web is ...


- a metadata based infrastructure for reasoning on the Web
 - an extension, not a replacement of the current web

- Engineering examples:
 - E-Design framework at UMass
 - Works at:
 - Georgia Tech
 - Clemson
 - Virginia Tech
 - Purdue
 - Wayne State

Courtesy of: http://www.w3c.it/talks/2005/openCulture/slide7-0.html


Prior work at Texas State

 Manufacturing Service Description Language (MSDL) ontology

Prior work at Texas State

- Computer Aided Process Planning (CAPP) with MSDL
- Executed for machined part based on its STEP information

Taxonomy development

Designation: F2792 – 12a

Standard Terminology for Additive Manufacturing Technologies^{1,2}

This standard is issued under the fixed designation F2792; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproxil. A superscript epsilon (e) indicates an editorial texture since size revision or reapproxil.

1. Scope

1.1 This terminology includes terms, definitions of terms, descriptions of terms, nomenclature, and acronyms associated with additive-manufacturing (AM) technologies in an effort to standardize terminology used by AM users, producers, researchers, educators, press/media and others.

Nora 1—The subcommittee responsible for this standard will review definitions on a three-year basis to determine if the definition is still accurate as stated. Revisions will be made when determined to be necessary.

2. Referenced Documents

2.1 ISO Standard.3

ISO 10303 -1:1994 Industrial automation systems and integration -- Product data representation and exchange -- Part 1: Overview and fundamental principles

3. Significance and Use

3.1 The definitions of the terms presented in this standard were created by this subcommittee. This standard does not purport to address safety concerns associated with the use of AM technologies. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use of additive manufacturing.

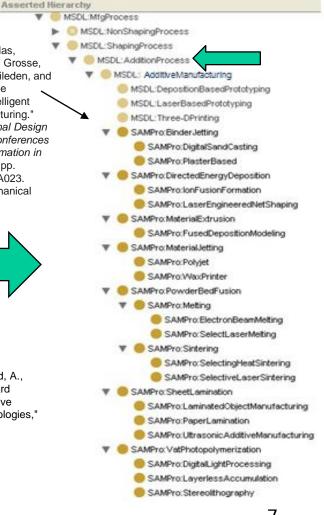
4. Additive Manufacturing Process Categories

4.1 The following terms provide a structure for grouping current and future AM machine technologies. These terms are useful for educational and standards-development purposes and are intended to clarify which machine types share process-

^a Through a mutual agreement with ASTM International (ASTM), the Society of Manufacturing Engineers (SME) contributed the technical experise of its RTAM Commanity members in ASTM to be used as the technical foundation for this ASTM standard, SME and its membership continue to play an active role in providing technical puldance to the ASTM standards development process.

³ Available from International Organization for Standardization (ISO), 1, ch. de la Wei-Creuse, Case postale 56, CH-1211, Geneva 20, Switzerland, http:// www.iso.org/iso/iso_catalogue/catalogue_ic/catalogue_ detail.htm?ssnumber-20159 ing similarities. For many years, the additive manufacturing industry lacked categories for grouping AM technologies, which made it challenging educationally and when communicating information in both technical and non-technical settings. These process categories enable one to discuss a category of machines, rather than needing to explain an extensive list of commercial variations of a process methodology.

- binder jetting, n—an additive manufacturing process in which a liquid bonding agent is selectively deposited to join powder materials.
- directed energy deposition, n—an additive manufacturing process in which focused thermal energy is used to fuse materials by melting as they are being deposited.
- Docussion--Focused thermal energy' means that an energy source (e.g., laser, electron beam, or plasma arc) is focused to melt the materials being deposited.
- material extrusion, n—an additive manufacturing process in which material is selectively dispensed through a nozzle or orifice.
- material jetting, n—an additive manufacturing process in which droplets of build material are selectively deposited. Decresson—Example materials include photopolymer and wax.
- powder bed fusion, n—an additive manufacturing process in which thermal energy selectively fuses regions of a powder bed.
- sheet lamination, n—an additive manufacturing process in which sheets of material are bonded to form an object.
- vat photopolymerization, n—an additive manufacturing process in which liquid photopolymer in a vat is selectively cured by light-activated polymerization.

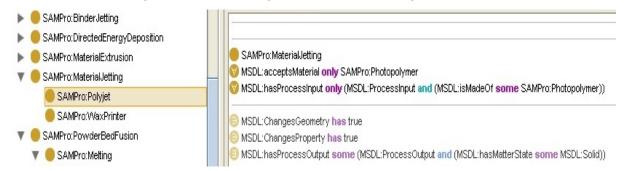

5. Terminology

- 5.1 Definitions:
- 3D printer, n-a machine used for 3D printing.
- 3D printing, n—the fabrication of objects through the deposition of a material using a print head, nozzle, or another printer technology.
- Discussion—Term often used synonymously with additive manufacturing; in particular associated with machines that are low end in price and/or overall capability.

Courtesy of: Eddy, Douglas, Sundar Krishnamurty, Ian Grosse, Maxwell Perham, Jack Wileden, and Farhad Ameri. "Knowledge Management With an Intelligent Tool for Additive Manufacturing." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V01AT02A023-V01AT02A023. American Society of Mechanical Engineers, 2015.

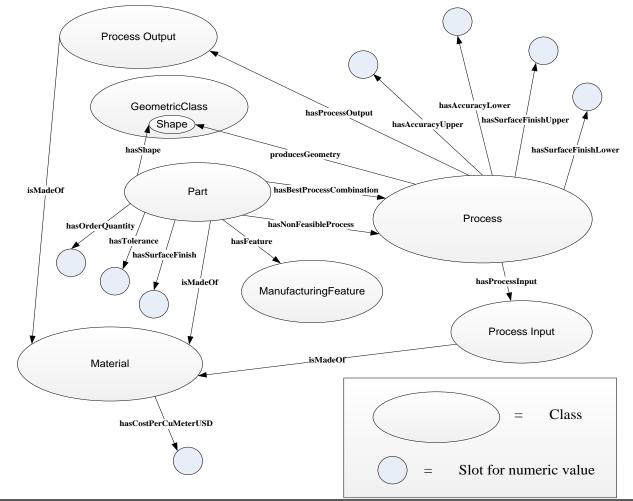
Courtesy of: Standard, A., "F2792. 2012. Standard Terminology for Additive Manufacturing Technologies," ASTM F2792-10e1.

¹ This terminology is under the jurisdiction of Committee F42 on Additive Manufacturing Technologies and is the direct responsibility of Subcommittee F42.91 on Terminology.

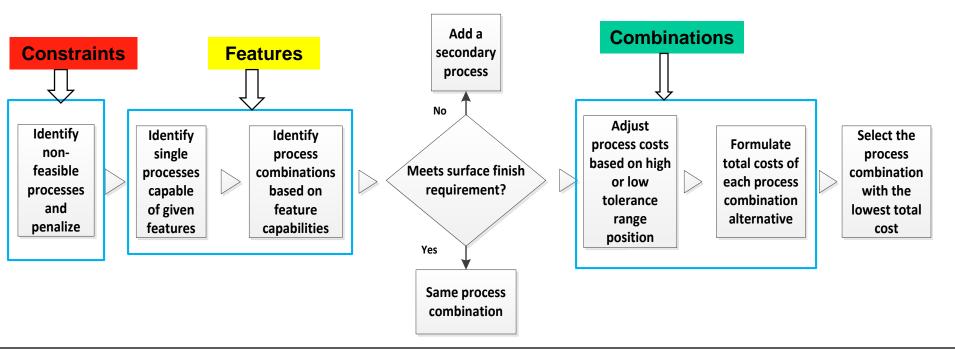

Current edition approved March 1, 2012. Published March 2012. Originally approved in 2009. Last previous edition approved in 2012 as F2792-12. DOI: 10.1520/F2792-12A.

Process capability definition

- Using Protégé v. 3.4.8
- Defined by property restrictions
 - Some inherited from conventional process definitions:



• Others unique to a specific AM process:


Knowledge management framework

- AM information fits into prior structural framework
- This way, AM processes can be compared to the others.
- Enables Semantic Additive Manufacturing PROcess Planning (SAMPro)

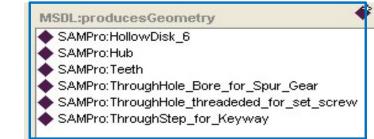
Decision rule process of SAMPro

- Aligned with traditional DFM principles
- Executes on information prior to any CAD
- Early high level comparison => best path to proceed

Case study – steel spur gear

- How should we make it? =>
- Part information

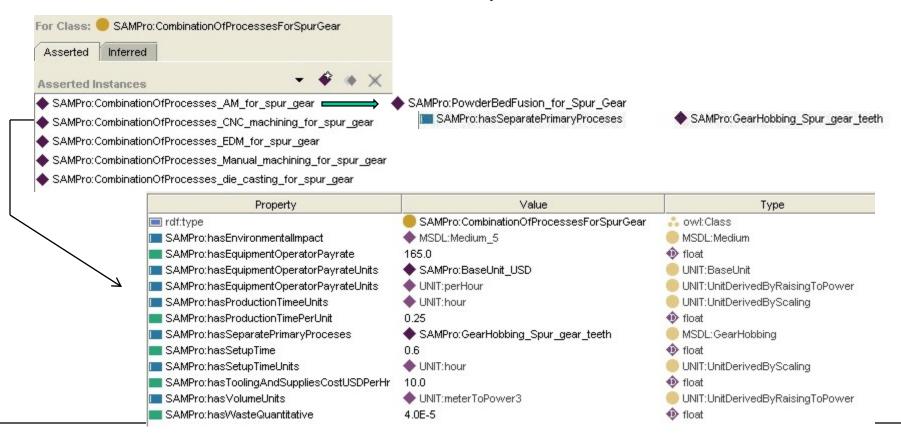
false


Information to be determined

Informa	tion given	about part design	by SWRL rules
MSDL:hasShape 🛛 🔶	ک 🛟 🔦	MSDL:hasFeature 🔶 🔶 🍬	SAMPro:hasCostPerUnit & 수 수 🛛
SAMPro:HollowDisk_6		◆ SAMPro:Hub ◆ SAMPro:Teeth	Value Type
MSDL:isMadeOf	۰ 🚓 👟	SAMPro:ThroughHole_Bore_for_Spur_Gear	
MSDL:AlloySteel_15		 SAMPro:ThroughHole_threadeded_for_set_screw SAMPro:ThroughStep_for_Keyway 	SAMPro:hasBestProcessCombination
MSDL:hasTolerance	823		-
	5.0E-5	SAMPro:hasDimensionalUnits 🛛 🕈 🗣 🛳	
SAMPro:hasPartVolume	2 X	ONIT:meter	SAMPro:hasNonFeasibleProcess 🛛 👻 🍖 🛳
	5.7E-5		
MSDL:hasSurfaceFinish	0 X	SAMPro:hasVolumeUnits SAMPro:hasVolumeUnits UNIT:meterToPower3	
	16.0	CAMProbacSurfaceEiniebUnite	
MSDL:hasDiameter	8 X	SAMPro:BaseUnit_inch	SAMPro:hasProductionTimePerUnit 🖉 🛛
	0.05	OUNIT:micro	
MSDL:hasLength	0 X	SAMPro:hasOrderQuantity 오 수 🏾	SAMPro:hasToolingAndSuppliesCostPerHr
	0.038	Value Type	
MSDL:hasWidth	0 X	600.0 float	
	0.02	SAMPro:NumberOfOrdersAnticipated 🖉 🔀	
MCDL upStandard	2 23	12.0	

Modeling the information about processes

- Compared to information about the part's requirements
- Utilizes the same framework for AM and conventional manufacturing
 - Note that slots are labeled as MSDL here.
 - Common slots for all processes



MSDL:hasAccuracyUpper	2 & X
Value	Туре
5.08E-4	float
MSDL:hasAccuracyLower	<i>⊳</i> + ≈
Value	Туре
2.54E-4	float
MSDL:hasProcessInput	Ŷ
MSDL:hasProcessInput SAMPro:RawMaterial_Alloy_	steel_powder_or_Liqu
	steel_powder_or_Liqu
SAMPro:RawMaterial_Alloy_	÷ 🍫
SAMPro:RawMaterial_Alloy_ MSDL:hasProcessOutput	÷ 🍫

Candidate process combinations

- Examples
 - Several alternatives to compare

Case specific rules

- Example: What combination of processes are needed to EDM the part?
- SWRL rule to check for tolerance by EDM:

SWRL Rule

MSDL:Part(SAMPro:SpurGear) ∧ MSDL:WireEDM(SAMPro:WireEDM_Spur_gear) ∧ MSDL:hasTolerance(SAMPro:SpurGear, ?y) ∧ MSDL:hasAccuracyLower(SAMPro:WireEDM_Spur_gear, ?x) ∧ swrlb:greaterThan(?x, ?y) →

SAMPro:hasSeparateSecondayProcess(SAMPro:CombinationOfProcesses_EDM_for_spur_gear, SAMPro:GearHobbing_Spur_gear_teeth) ∧ SAMPro:hasSeparateThirdProcess(SAMPro:CombinationOfProcesses_EDM_for_spur_gear, SAMPro:Reaming_bore_for_spur_gear) ∧ MSDL:hasProcessOutput(SAMPro:CombinationOfProcesses_EDM_for_spur_gear, SAMPro:ProcessOutput_completely_finished_spur_gear)

Inferred information from rule that determined additional processes are necessary:

Property	Value
MSDL:hasProcessOutput	SAMPro:ProcessOutput_completely_finished_spur_geal
🔲 rdf:type	SAMPro:CombinationOfProcessesForSpurGear
SAMPro:hasSeparatePrimaryProceses	SAMPro:WireEDM_Spur_gear
SAMPro:hasSeparateSecondayProcess	SAMPro:GearHobbing_Spur_gear_teeth
SAMPro:hasSeparateThirdProcess	SAMPro:Reaming_bore_for_spur_gear

Addressing OWL limitations for calculations

- loop ort of overlap built in	Property AssSlope	Value 2.0	float
Import of swrlm built-in	hasXvalue	5.0	 Itoat Itoat
	hasYintercept	3.0	float
 Eval function for multiple operations 	📕 hasYvalue	13.0	🚸 float
	rdf:type	LineEquation	💑 owl:Class
Example: y = mx + b	hasYvalue		2 X
Execution of the rule below			13.0
	hasYintercept		2 X
returns the value of			3.0
			0.20
	hasSlope		2 X Q
			2.0
	hasXvalue		<i>₽</i> ₽ ⊠
		Value	Туре
SWRL Rules	5.0		float
Enabled Name Expression	_		
Rule-1	w, ?h) → hasArea(?	'x, ?a)	
Rule-2	x) ∧ swrlm:eval(?a,'	"b+m*x", ?b, ?m, ?	'x) → hasYvalue(?y, ?a)
→ SWRLJessBridge → Rules → Classes → Individuals → Axioms → Inferred Axioms			
Inferred Axioms			
http://www.owl-ontologies.com/Ontology1437419304.owl#hasYvalue(http://www.owl-ontologies.com/Ontology143741930	4.owl#Yvalue, 13.0)		

Discussion

Pros

- Consistent with emerging Semantic Web technologies
- Advantage of using prior work to add new concepts
- Shows that AM can fit within conventional manufacturing framework
 - Suitable for consistent logical comparisons => process selection
- Conceptual proof of this concept
 - Potential for early design decisions with transparency
- Extendable to accept constantly expanding knowledge base

Cons

- Time to create rules
- Learning syntax
- Functionality of rules
- User friendliness of the tools needs improvement

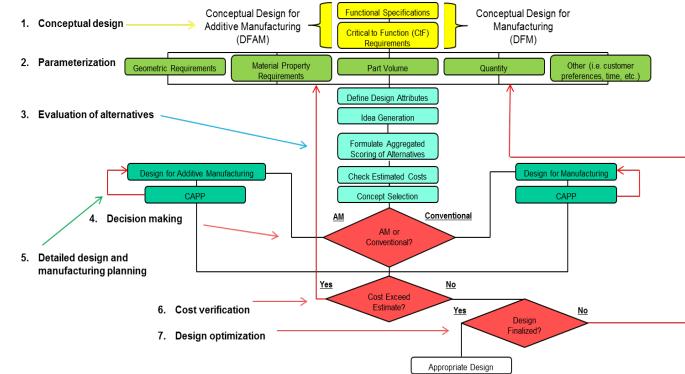
Higher level challenges

- Basic Formal Ontology (BFO) alignment
 - Theory developed by Barry Smith from U at Buffalo and others
 - Can domain concepts be represented consistently and related with other domains?

- Later, how we address these challenges
- Next, methodical prescription for use...

Method to inform design decisions

- Motivation
 - Right decision made early AM or not AM?
- Decision Support System for Additive Manufacturing (DS-SAM)
 - Usable template
 - Rationale
- Design process
- Case study
- Recent improvements to the method

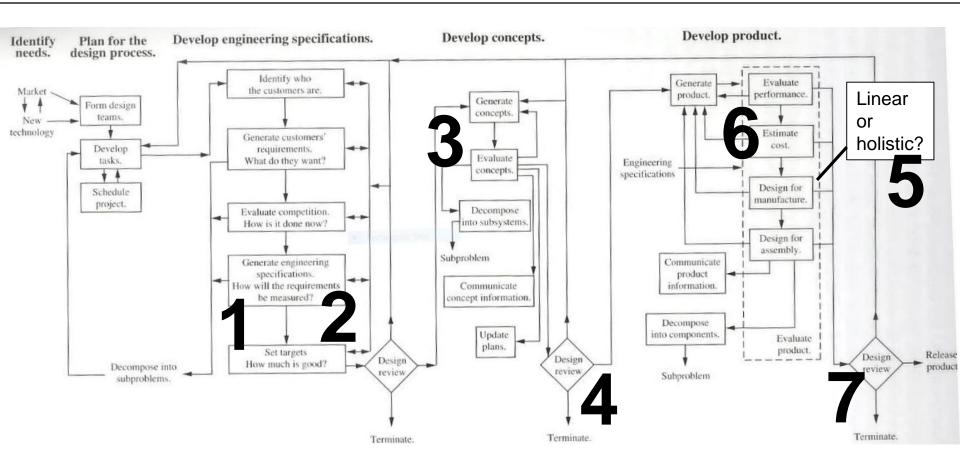

Background

- Some current AM research gaps
 - Design and manufacturing integration
 - Early design stage process planning
 - AM process capabilities vs. conventional manufacturing
 - When and how to best use DFAM
 - When should we not use AM?

Objectives:

- 1. Decision making method
 - With early stage information
- 2. Usable template to assess and compare alternatives

Decision Support System for Additive Manufacturing (DS-SAM)

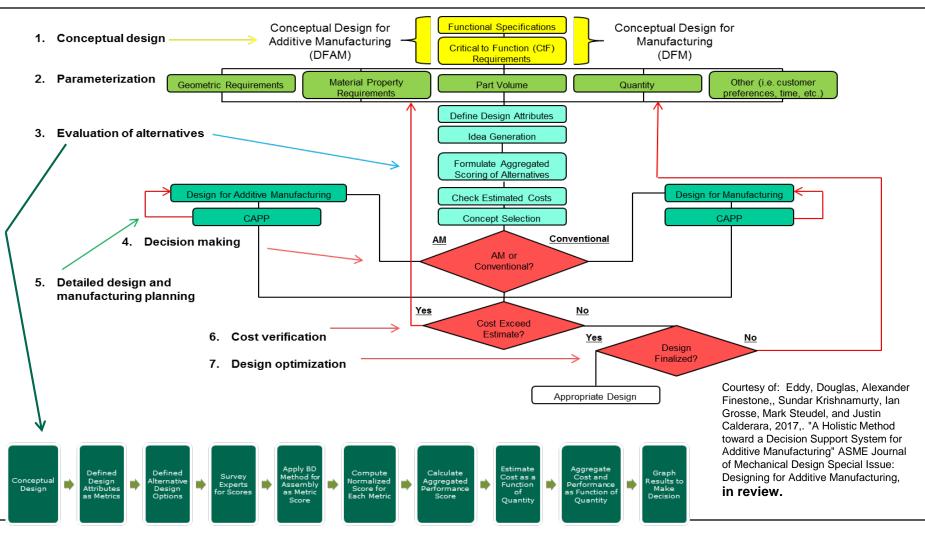


How can we:

- 1. decide correctly? (effectiveness)
- 2. decide early? (efficiency)

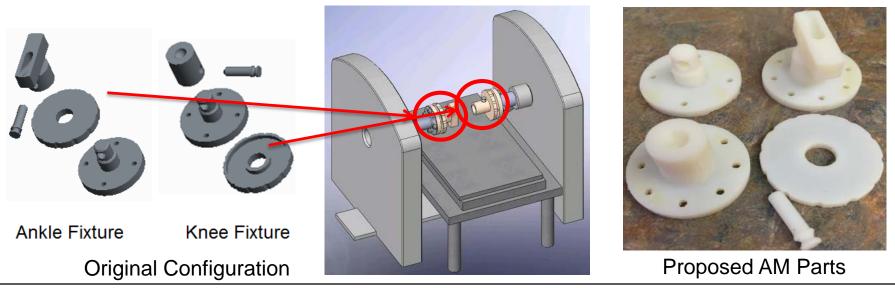
Courtesy of: Eddy, Douglas, Justin Calderara, Mark Price, Sundar Krishnamurty, and Ian Grosse. "Approach Towards a Decision Support System for Additive Manufacturing." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V01AT02A047-V01AT02A047. American Society of Mechanical Engineers, 2016.

Where does it fit?

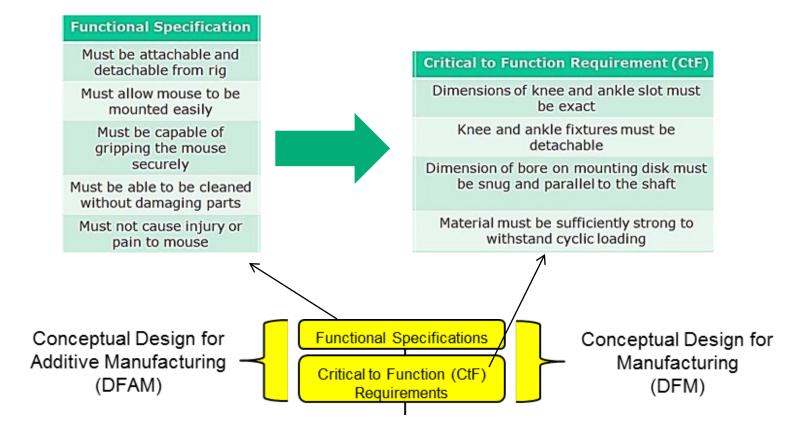


Courtesy of: Ullman, David G. The Mechanical Design Process. New York: McGraw-Hill, 1992.

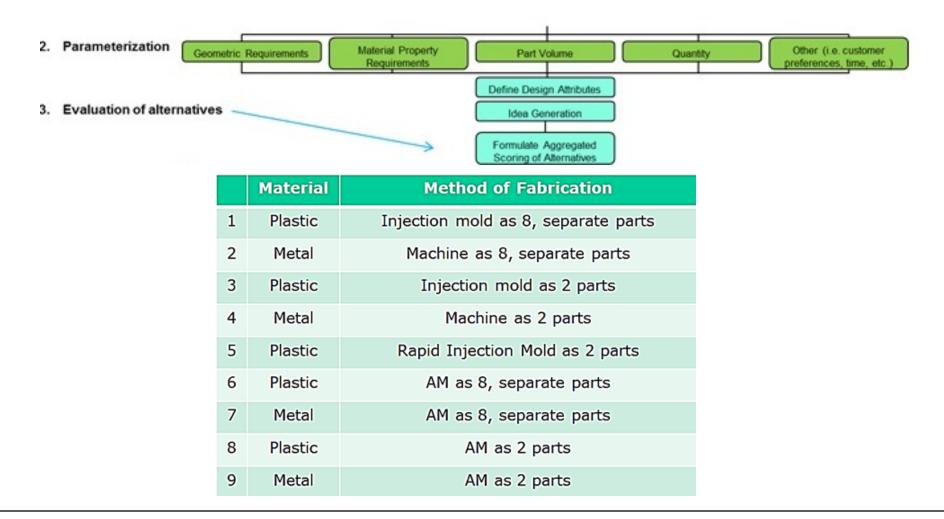
Rationale for approach


- Manufacturing influence on design
 - Conventional manufacturing => reduce complexity
 - DFAM => increase complexity to improve design
- Increases array of design concepts
- Holistic comparison of alternatives
 - Parameterized
 - Multiple attributes

DS-SAM approach



Case Study: Animal Subject Test Mechanism

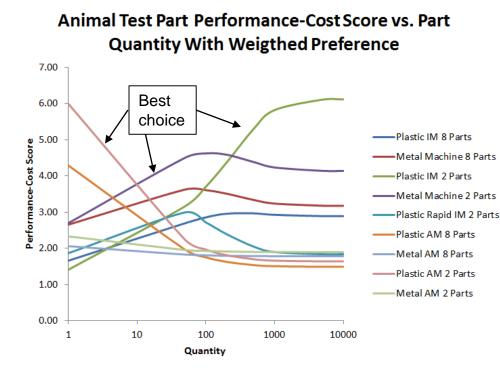

- Parts used in mouse-leg mounting rig for cancer research lab
 - Originally CNC machined of aluminum
- <u>Goal</u>: Use DS-SAM to determine whether correct process was used, analyze for various quantities
- Collaboration with Prof. Maureen Lynch at UMass Life Sciences Lab

Function specifications and requirements

Alternatives identified

Formulate aggregated scoring

- Scoring from expert with AHP
 - Preference
 - Performance
- DFA for "Ease of Assembly"
 - 8 part efficiency = 32%
 - 2 part efficiency = 100%

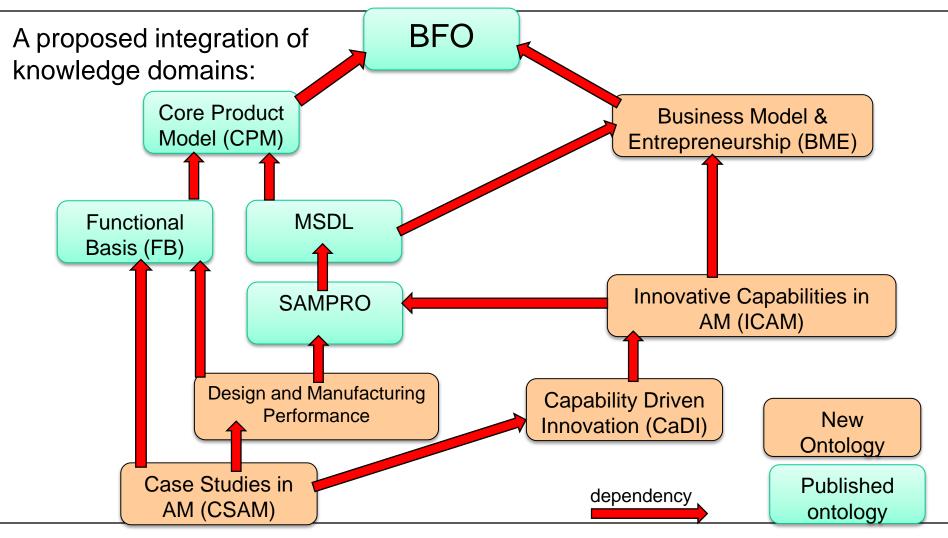

Final Rankings of Alternatives

1st	Metal Machine 8 Parts (0.1649)
2nd	Metal Machine 2 Parts (0.1519)
3rd	Metal AM 2 Parts (0.1353)
4th	Metal AM 8 Parts (0.1274)
5th	Plastic AM 2 Parts (0.1036)
6th	Plastic IM 8 Parts (0.0984)
7th	Plastic AM 8 Parts (0.0958)
8th	Plastic IM 2 Parts (0.0711)
9th	Plastic Rapid IM 2 Parts (0.0515)

			Cleaning	Withstand Fatigue Load	Geometry	Mouse Safety/Comfort	Ease of Assembly
	·	Plastic IM 8 Parts	7	8	9	9	
Critical Criteria	Preference Score	Metal Machine 8 Parts	10	10	8	8	
Cleaning	3	Plastic IM 2 Parts	7	8	3	6	
Withstand Fatigue Load	10	Metal Machine 2 Parts	10	10	3	6	
Geometry	8	Plastic Rapid IM 2 Parts	7	7	3	6	
Mouse Safety/Comfort	7	Plastic AM 8 Parts	7	6	10	10	
Ease of Assembly	5	Metal AM 8 Parts	8	8	10	10	
		Plastic AM 2 Parts	7	6	10	10	
		Metal AM 2 Parts	8	8	10	10	
		1				1	

Comparative results

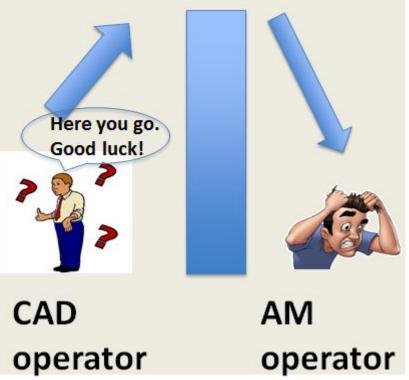
Final formulation: $PerfCost(N) = [(Perf_{score}) * (Perf_{weight})] + [(Cost_{Norm}(N)) * (Cost_{weight})]$


	Performance Rankings of Alternatives
1 st	Metal Machine 8 Parts (0.1649)
2 nd	Metal Machine 2 Parts (0.1519)
3 rd	Metal AM 2 Parts (0.1353)
4 th	Metal AM 8 Parts (0.1274)
5 th	Plastic AM 2 Parts (0.1036)
6 th	Plastic IM 8 Parts (0.0984)
7 th	Plastic AM 8 Parts (0.0958)
8 th	Plastic IM 2 Parts (0.0711)
9 th	Plastic Rapid IM 2 Parts (0.0515)

Discussion

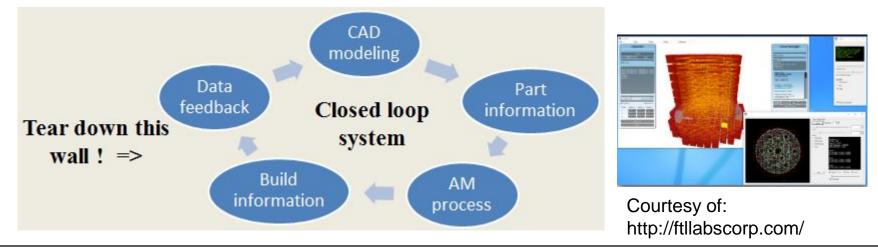
Contributions:

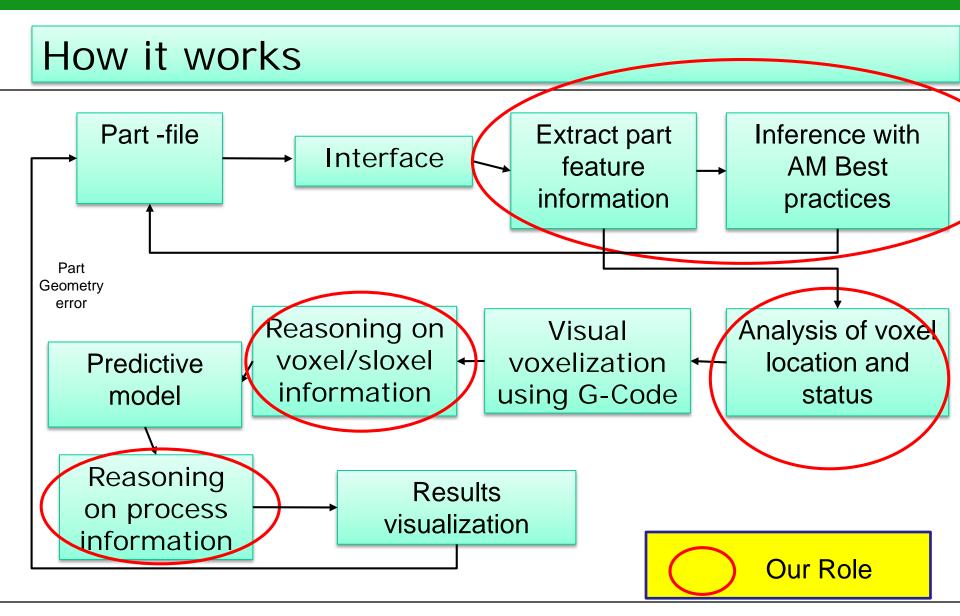
- Practical guidance
- Useful methodology
- Recent improvements
- Important guidelines:
 - 1. Is it grounded in established principles?
 - 2. Can we make the best decision as early as possible?
 - 3. Is it as efficient as possible?
 - 4. Can we combine for fit with other approaches?
 - a) How does it compare with others?
 - b) And within high level domain concepts?...


How can we solve the high level information modeling problem?

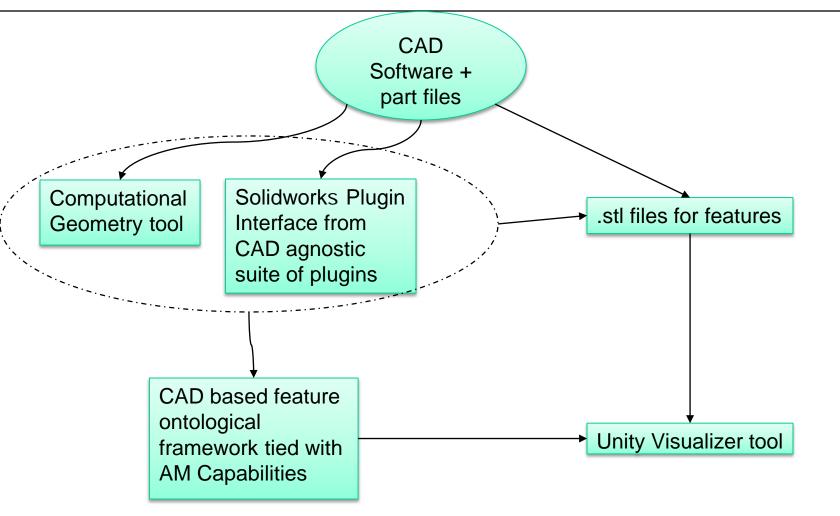
Industry relevance

The disconnect between CAD and metal AM operations gets expensive!

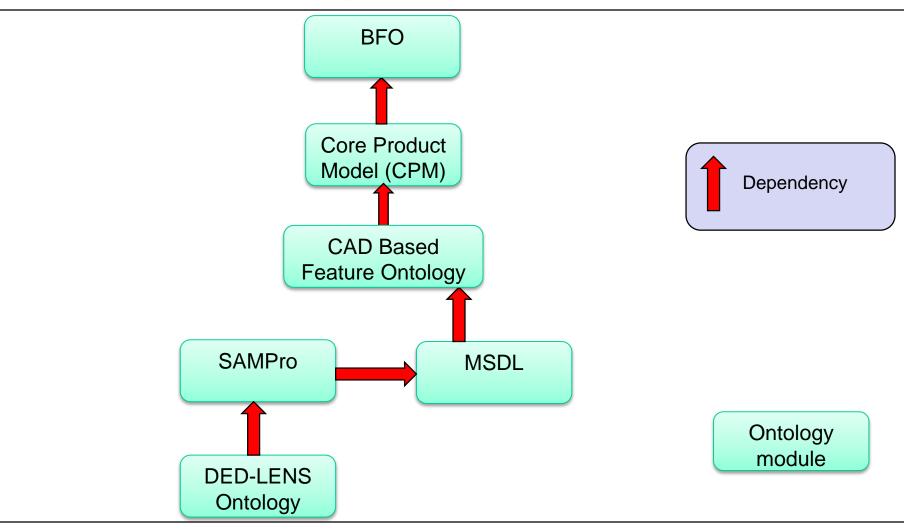

- **Problem:** Nothing tells a CAD operator whether their model will produce a good or bad part until it's too late!
- Solution: An effective tool would alert the CAD operator by a green light or red flag



Problem statement


There's a lack of open qualification and certification data tools for metallic AM parts!

- Potential data includes: tool parameters, result targets, scan paths, process data, and measured results.
- Existing CAD tools can not acquire and manage such data
- Framework required to manage, store, and manipulate data



Visualization tool flow

CAD feature ontology in BFO

Summary

- Represent knowledge for AM with that of other manufacturing semantically (based on context)
- Information can be used in methodical decision making.
- Method addressed early decision making about AM or not AM assessments.
- Future work could link information domains at the highest level of concepts.
- Application can relate part features to AM capabilities to influence design/process decisions.

Questions?

Design 37