

engineering laboratory

Good Testing is Hard Bad Testing is Easy

Robert Lipman MBE Summit April 4, 2017

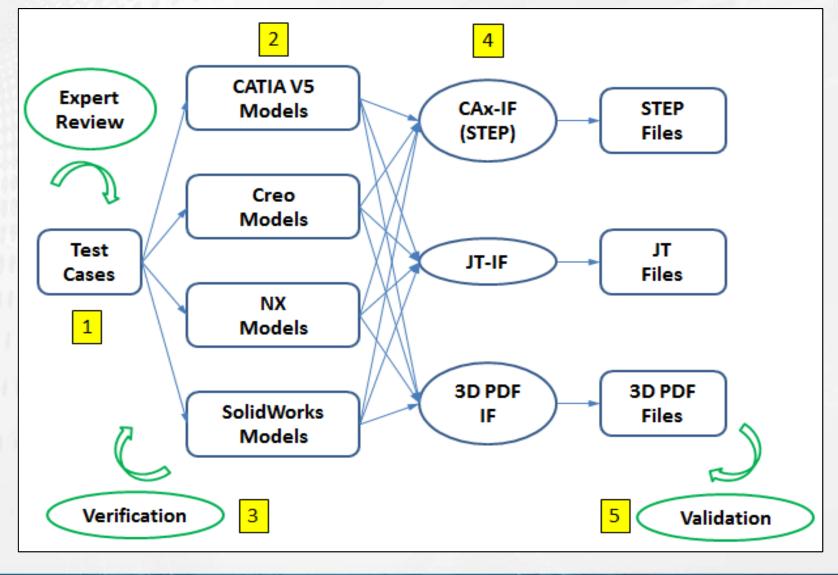
Outline

- Types of Testing
- Characteristics of Testing
- NIST CAD PMI Testing Project
- Bad Testing
- Testing Lessons Learned

Disclaimer: Any mention of commercial products in this presentation is for information only; it does not imply recommendation or endorsement by NIST.

Types of Testing

- Conformance, Interoperability
 - Kindrick, Sauter, Matthews, "Improving Conformance and Interoperability Testing", in StandardView, March 1996
- Syntax, Structure, Semantics
- Verification, Validation
- Representation, Presentation
- Manual, Automated
- Falsification
- Coverage Analysis


Characteristics of Testing

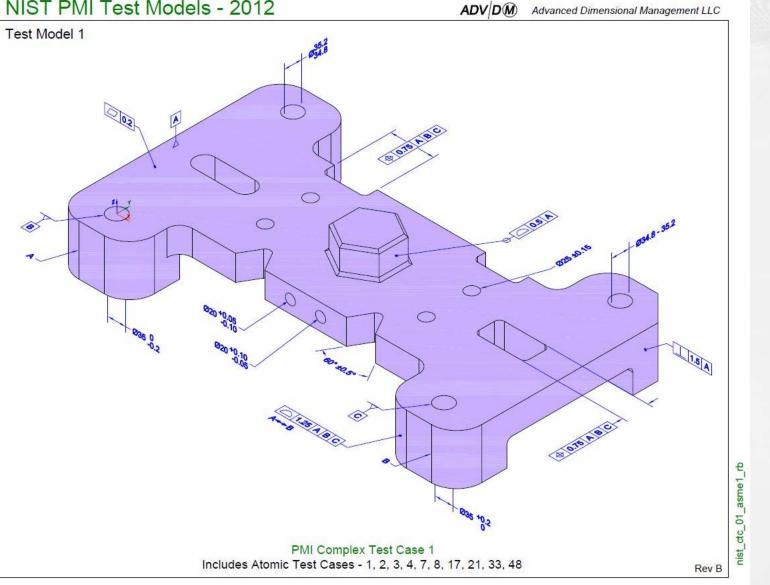
- Purpose
- Methodology
- Test cases, models, files
- Criteria
- Tools
- Results
- Certification

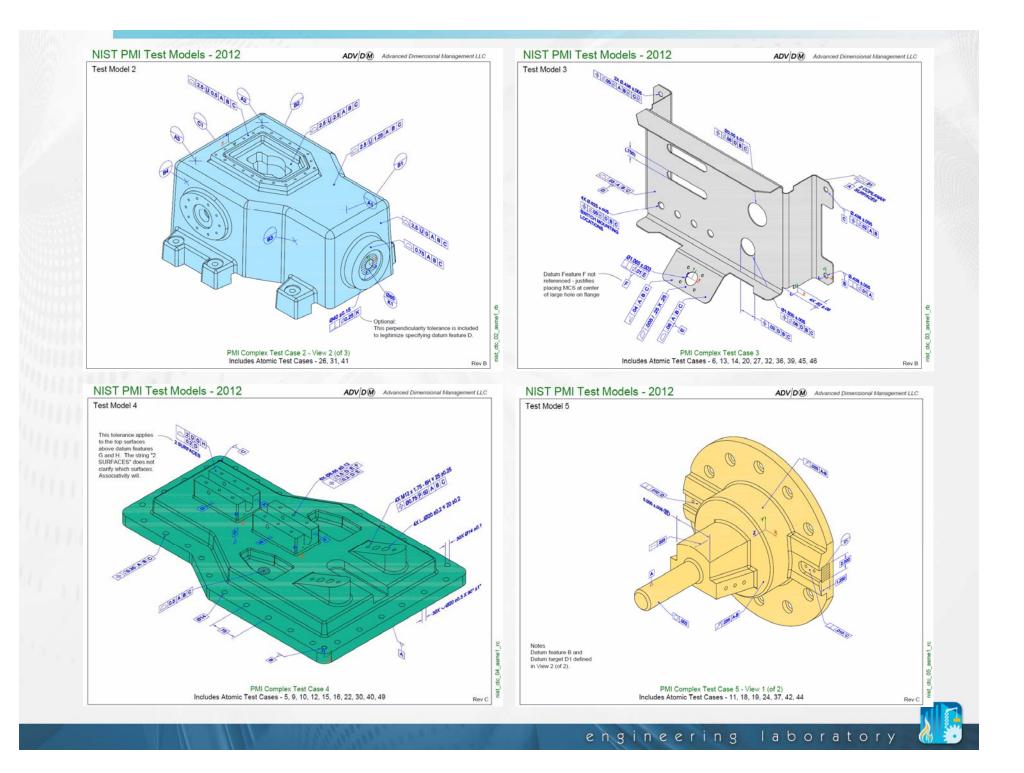
CAD PMI Testing Project

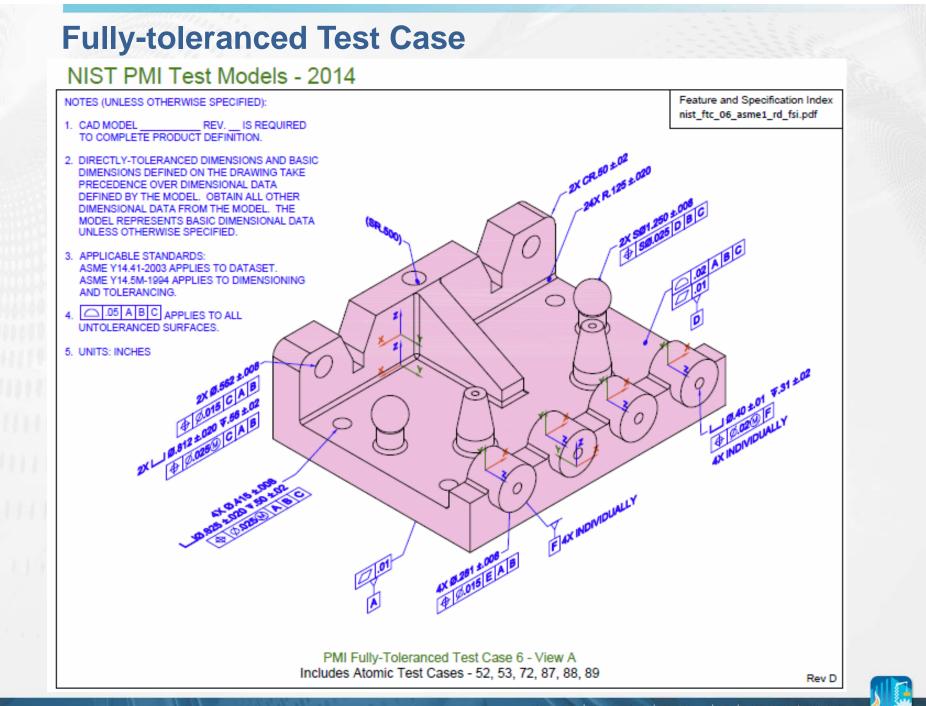
- Measure the conformance of CAD software and derivative files to ASME tolerance standards
- 11 test case definitions (2D drawing) based on Y14.5 and Y14.41
 - Approximately 100 PMI annotations and documentation
 - Expert review
- 8 (of 11) test cases modeled in CATIA, Creo, NX, SolidWorks
 - Verification of CAD models to test cases (CADIQ)
- Generate derivative STEP, JT, and 3D PDF files
 - Validation of derivative files to CAD models (CADIQ, STEP File Analyzer)
 - Testing by Implementor Forums
- Two verification and one validation reports
- https://go.usa.gov/mGVm

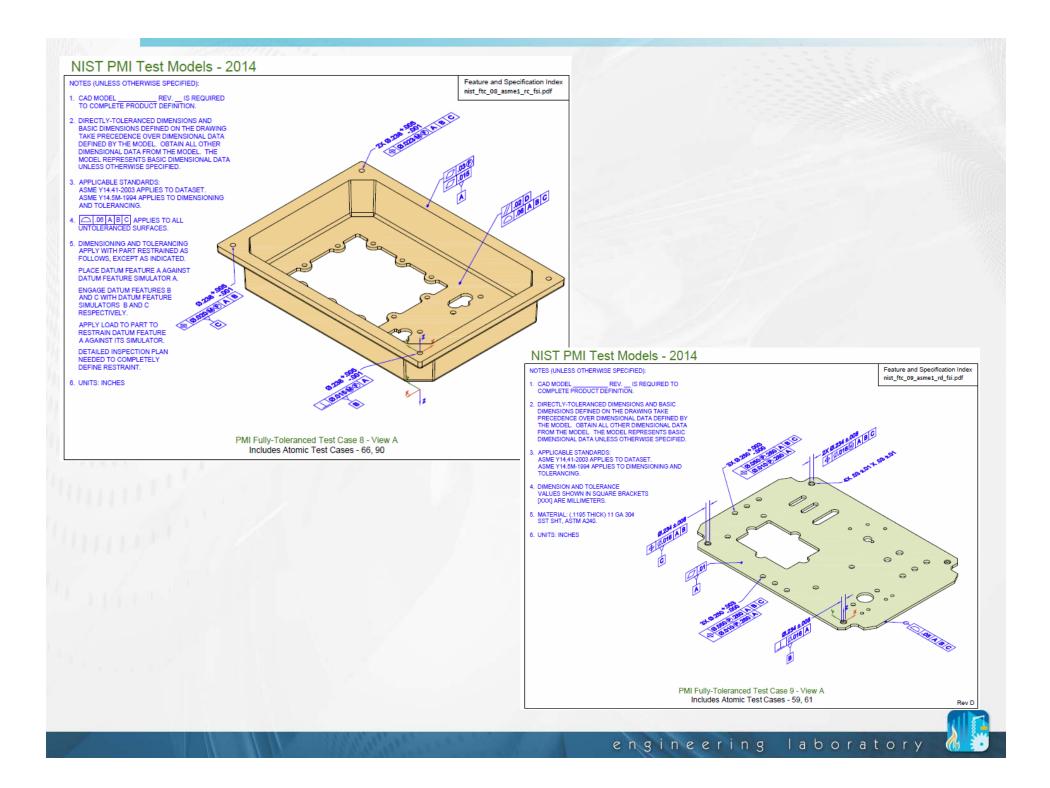
CAD PMI Testing Project

engineering laboratory 🕻

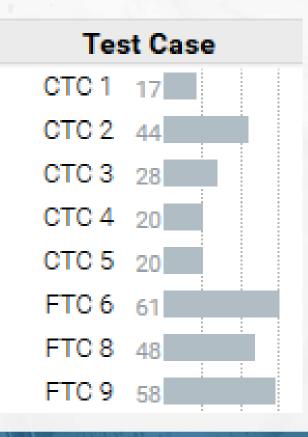

Two Types of Test Cases

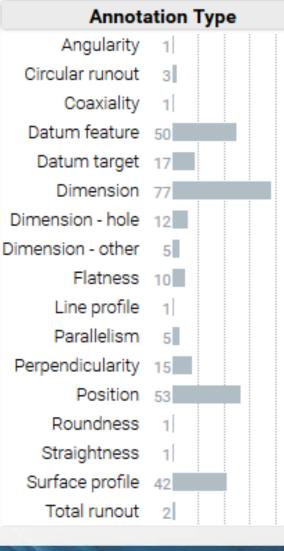

- Combined Test Case
 - Not a complete specification of PMI
- Fully-toleranced Test Case
 - Each feature is adequately controlled and constrained
- Geometric and dimensional tolerances, datums, and modifiers
- Not necessarily best practice or how you might tolerance a part


eering


Combined Test Case

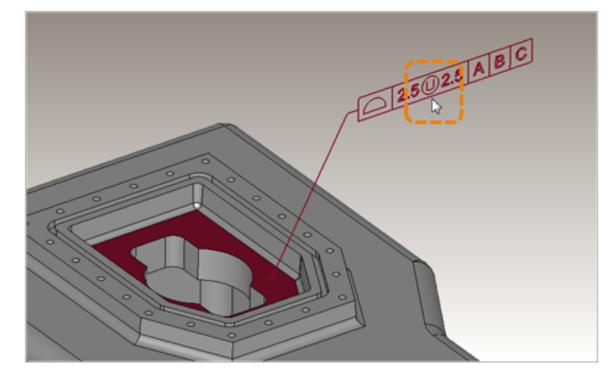
NIST PMI Test Models - 2012





CAD PMI Testing Project

- Test Case Browser
- Interactive coverage analysis of annotations
- <u>https://pages.nist.gov/CAD-PMI-Testing/</u>

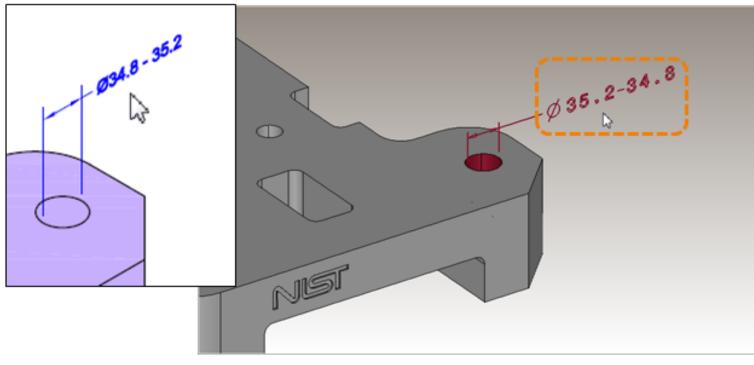


CAD PMI Testing Project

- Verification of CAD models and validation of derivative files
 - Characteristics of graphic and semantic PMI
 - High-level synthesis of raw results
- Report generic results from the CAD systems
- Interactive browser for raw results
- Exploratory data analysis

Semantic (Representation) PMI Error

Annotation Parameters: Representation Limitation FCF parameter defined with encoded text



The unequally disposed modifier in this feature control frame is defined as a text symbol and not as a named parameter.

Graphical (Presentation) PMI Error

Annotation Layout: DIM limits displayed in reversed order

Test Case

The lower and upper limits of this dimension are displayed in the reverse order from what is specified.

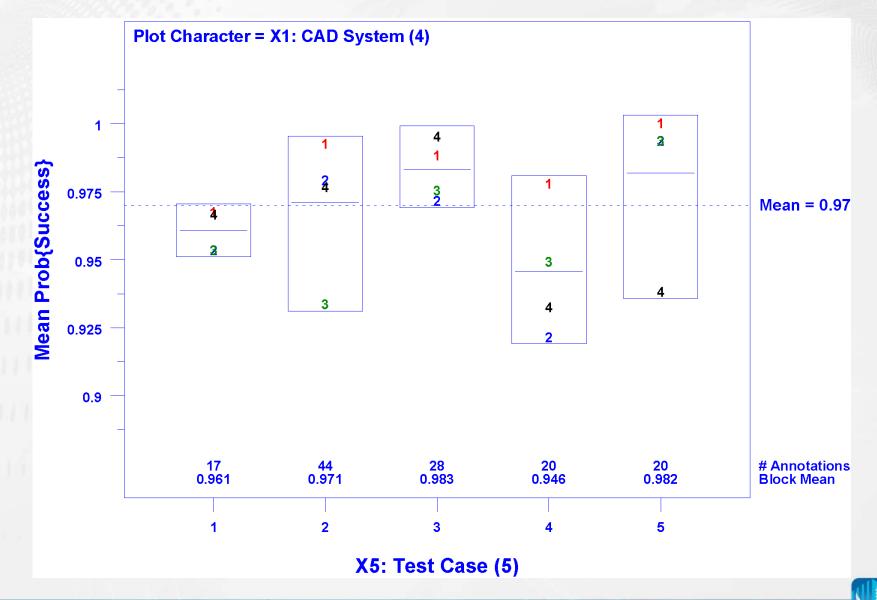
Presentation Limitation

Raw Results

TShow all 🌣 🎟 😧 🔀 🟌

411 NIST PMI Test Results Response: 0

CAD System	PMI Annotation		Error Category			
CAD B (2015) 91		5 10 15 20 25	Annotation geometry (semantic)	82		
CAD D (2015) 80	⊕ .01 A G H (Oriented)	24	Annotation structure (semantic)	63		
CAD C (2015) 51	F	12	Annotation layout (graphic)	62		
CAD A (2015) 50	3X ⊕ .03 A G H (Oriented)	12	Annotation parameters (semantic)	59		
CAD C (2012) 49	4X M12 J 1.75 - 6H J25 ±0.25	11	Annotation text (graphic)	58		
CAD D (2012) 38	В	10	Annotation location (graphic)	31		
CAD B (2012) 37	1.50 ±.05	10	Annotation lines (graphic)	24		
CAD A (2012) 15	3X ⊕ .060 A B C (Oriented)	9	Annotation visibility (graphic)	16		
8 Rows # 100	3X ⊕ .020 A B C (Oriented)	9	Annotation orientation (graphic)	16		
Test Case	E	8	9 Rows	# 10		
FTC 9 122	⊕ 0.75 A B C	8	Error Type			
FTC 6 111	C	7	Q Search			
CTC 2 46	□ .05 D B C / .01 D / 2 SURFACES	7	DFS not attached to FCF	25		
FTC 8 39	4X ∟ø20 ±0.2 ↓20 ±0.2	7	FCF not associated with SG curve	20		
CTC 4 39	24X R.125 ±.020	7	FCF extension lines defined as separate DIM	18		
CTC 1 24	$\triangle 1.25 A B C / A \leftrightarrow B$	7	DIM has extraneous space	17		
CTC 3 17	J.50 ±.02	7	Counterbore DIM defined as two separate DIM's	16		
CTC 5 13	(SR.500)	7	FCF text defined as separate note	13		
8 Rows # 200	□ .015/L1 ↔ L2	6	DTS requires DFS to be defined	12		
Annotatio	I.31 ±.02	6	DFS has no extension line	10		
Position tol. 99	G C1	5	FCF extension line defined as separate DIM	9		
Hole dimension 62	•	5	Hole DIM defined as two separate DIM's	8		
Dimension 61	⊕ Ø.050 (P).260 A B C / Ø.010 (P).2 4X R	5	FCF between-basis defined with encoded text	8		
Datum target 57		5	DTS visible in wrong view	8		
Datum feature 55	4X .03 ±.01 X .03 ±.01 2X SØ1.250 ±.008	5	DTS not associated with SG point	8		
Surface profile tol. 35	2X 501.250 ±.008 2X R	5	DIM not associated with complete set of faces	8		
Other dimension 24	2X R 2X 1.00 : 3.00 +	5	DIM edge association is extraneous	8		
Flatness tol. 7	1.56 ±.02		DTS text is backwards in this view	7		
Perpendicularity tol. 3	4.56 ±.02	5	FCF text is extraneous	6		
Parallelism tol. 3	.375 ±.000 × 1.500 ±.012	4	FCF pattern text is extraneous	6		
Total runout tol. 2		4	FCF extension line DIM text is extraneous	6		
Straightness tol. 2	3X Ø.250 +.003/000	4	FCF diameter symbol not specified	6		
Line profile tol. 1	3/ g.230 +.003/*.000		DTS not associated with SG curve	6		


High-level Results

	Element				
Representation Limitations	Count	CAD A	CAD B	CAD C	CAD D
Annotation structure	127	98%	94%	98%	95%
Annotation parameters	127	96%	99%	98%	98%
Annotation geometry	127	100%	96%	98%	92%
Coordinate system structure	12	0%	0%	0%	0%
Coordinate system parameters	12	100%	100%	100%	100%
Supplemental geometry structure	6	100%	100%	100%	100%
Supplemental geometry parameters	6	100%	100%	100%	100%

	Element				
Presentation Limitations	Count	CAD A	CAD B	CAD C	CAD D
Annotation visibility	127	100%	99%	96%	99%
Annotation color	127	100%	100%	100%	100%
Annotation name	127	100%	100%	100%	100%
Annotation layout	127	98%	96%	93%	98%
Annotation location	127	99%	100%	94%	98%
Annotation orientation	127	100%	100%	98%	99%
Annotation lines	127	100%	97%	96%	99%
Annotation text	127	98%	89%	100%	96%
Coordinate system visibility	12	100%	100%	100%	67%
Coordinate system color	12	100%	100%	100%	100%
Coordinate system name	12	100%	100%	83%	100%
Coordinate system text	12	100%	100%	100%	67%
Supplemental geometry visibility	6	100%	100%	100%	0%
Supplemental geometry color	6	100%	100%	100%	100%
Saved view structure	8	100%	100%	100%	0%
Saved view name	8	100%	100%	100%	100%
Saved view frustum	8	100%	100%	100%	0%

Exploratory Data Analysis

engineering laboratory

Bad Testing

- IFC Industry Foundation Classes (building industry)
- Current IFC Certification Testing is good
 - Well-defined test cases, methodology, criteria
- Some previous IFC testing was not as good
 - Lipman, Palmer, Palacios, "Assessment of conformance and interoperability testing methods used for construction industry product models", in Journal of Automation in Construction, 2011.
 - Poorly characterized test cases
 - Unrealistic test purposes
 - Meaningless test criteria

- Purpose
- Methodology
- Test cases, models, files
- Criteria
- Tools
- Results

- Purpose
 - Very specific
 - Did not consider other possible uses of the CAD models
- Methodology
- Test cases, models, files
- Criteria
- Tools
- Results

- Purpose
- Methodology
 - Costly, time-consuming
 - Consider efficiency
- Test cases, models, files
- Criteria
- Tools
- Results

- Purpose
- Methodology
- Test cases, models, files
 - Driven by ASME Y14 annotation standards
 - Not necessarily common practice or common geometry
 - Distribution of tolerances skews results
- Criteria
- Tools
- Results

- Purpose
- Methodology
- Test cases, models, files
- Criteria
 - Scope
 - Dependent on purpose and tools
- Tools
- Results

- Purpose
- Methodology
- Test cases, models, files
- Criteria
- Tools
 - Who validates the validator?
- Results

- Purpose
- Methodology
- Test cases, models, files
- Criteria
- Tools
- Results
 - Raw vs. high-level vs. statistical
 - Skewed by distribution of annotations
 - Not weighted

- Good testing is challenging
- Good testing is time-consuming
- Good testing requires funding

Resources

- NIST CAD PMI Testing Project https://go.usa.gov/mGVm
 - Interactive Test Case and Verification Results Browser <u>https://pages.nist.gov/CAD-PMI-Testing/</u>
- STEP File Analyzer <u>https://go.usa.gov/yccx</u>
- CAx-IF <u>https://www.cax-if.org/</u>
- JT-IF <u>http://www.prostep.org/en/projects/jt-implementor-forum.html</u>
- 3D PDF-IF <u>http://www.3dpdfconsortium.org/implementor-forum/</u>
- AP242 Benchmark Testing <u>http://benchmark.ap242.org/</u>