
	 	

	 	
	 	 	 	 		 	 	 	

	

		

		

		

	

		

		

		

		

	

	

	

	

	

	

	

		

	

	
	
	 	

	 	 		
	 	 	

	

	

	 	

		
		

	

Face	 Recognition Prize	 Challenge

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Face	 Recognition 	Prize	 Challenge 	(FRPC) 	

Still	 Face	
Concept,	 Evaluation	P lan	a nd	AP I	

Version	3 .0	
All 	updates 	to	 this 	version 	of 	the 	document	 are	 highlighted 	in 	yellow. 	

	
Patrick	 Grother	 and 	Mei	 Ngan	

Contact	 via	 frpc@nist.gov 			

Image Group

Information Access Division

Information Technology Laboratory

May 22,	2017

17

18

19

NIST Concept, Evaluation	 Plan and API Page	 1 of 18

mailto:frpc@nist.gov

	 	

	 	
	 	 	 	 		 	 	 	

	

	
	 	 	 	 		

	 	 	 	 	 		
	 	 	 		
	 	 	 		
	 	 	 		
	 	 	 	 	 		
	 	 	 		
	 	 	 	 		
	 	 	 	 	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 		

	 	 	 	 	 	 	 		
	 	 	 		
	 	 	 	 	 		

	 	 	 	 		
	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		

		
	 		

	 	 	 	 	 		
	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 	 	 	 	 		
	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		

		

	

Face	 Recognition Prize	 Challenge

20
21
22
23
24

Table	of	Contents 	
1. Face	 Recognition Prize	 Challenge... 3

1.1. Roles of IARPA	 and	 NIST ... 3
1.2. Scope .. 3
1.3. Audience ... 3

25
26
27
28
29
30
31
32
33
34
35

1.4. Important 	Dates.. 3
1.5. Rules for participation .. 3
1.6. Reporting .. 4
1.7. Hardware specification ... 4
1.8. Operating system, compilation, and linking environment.. 4
1.9. Software	 and documentation ... 5
1.10. Runtime behavior ... 6
1.11. Single-thread requirement	 and parallelization... 6
1.12. Time limits .. 6

2. Data structures supporting the API .. 7
2.1. Requirement ... 7

36
37
38
39
40

42

2.2. File	 formats and data	 structures... 7
3. API specification ... 10

3.1. Namespace ... 10
3.2. Challenge IDENT (1:N)... 10
3.3. Challenge VERIF (1:1) .. 15

41

58
59
60

62
63
64
65
66

67

List	 of Tables
43
44
45
46
47
48
49
50

Table 1	 – FRPC Challenge	 Participation.. 3
Table 2	 – Implementation 	library 	filename 	convention... 5
Table 3	 – Processing time	 limits in milliseconds, per 640	 x 480	 color image, on a	 single	 CPU or GPU 7
Table 4	– Structure	for a	single	image.. 7
Table 5	 – Structure	 for a	 pair of eye	 coordinates... 7
Table 6	 – Labels describing	 template	 role.. 8
Table 7	 – Enrollment dataset template manifest... 8
Table 8	 – Structure	 for a	 candidate.. 9

51
52
53
54
55
56
57

61

Table 9	 – Enumeration	 of return	 codes.. 9
Table 10	 – ReturnStatus structure ... 9
Table 11	 – Procedural overview of the	 Challenge	 IDENT	 (1:N) test ... 10
Table 12	 – Enrollment initialization.. 12
Table 13	 – GPU	 index specification .. 12
Table 14	 – Enrollment feature extraction .. 13
Table 15	 – Enrollment finalization.. 13
Table 16	 – Probe	 template	 feature	 extraction initialization .. 14
Table 17	 – Identification 	initialization .. 15
Table 18	 – Identification 	search ... 15
Table 19	 – Functional summary of the	 Challenge	 VERIF	 (1:1) test... 15
Table 20	 – Initialization .. 17
Table 21	 – GPU	 index specification .. 17
Table 22	 – Template generation .. 18
Table 23	 – Template matching... 18

NIST Concept, Evaluation	 Plan and API Page	 2 of 18

	 	

	 	
	 	 	 	 		 	 	 	

	

 	 	 			

 	 	 	 		

		
	 	 	 	 	 	 	 	 	 	

 	 	 	 	

 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		 	 	 	 	

	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 		 	 	 	
	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 		 	 	 	 	 	 	 	 	 	 	 	

 	

 	 	 	

 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	 	
	 	 	 	

Face	 Recognition Prize	 Challenge

68

69

1. Face Recognition	 Prize Challenge

1.1. Roles of IARPA	 and NIST
70	
71	

72	

73 	

74	

75	
76	
77	
78	
79	

80	

81	
82	
83	
84	

85	

86	

87 	

88	
89	
90	
91	

92	
93	
94	

95	

IARPA 	directs 	the 	FRPC 	and 	awards 	the 	prizes. 	NIST 	is 	the 	test 	laboratory 	implementing 	the 	FRPC 	for 	IARPA. Prospective	
participants in the	 FRPC should consult the	 following	 IARPA	 documents before reading this document.

― IARPA’s FRPC challenge.gov Homepage

― IARPA’s 	FRPC 	Homepage	

― IARPA’s FRPC Rules

1.2. Scope 	
This document establishes a	 concept of operations and an application programming interface (API) for	 evaluation of face
recognition (FR) implementations submitted to the Face Recognition Prize Challenge (FRPC). There are two challenges
within FRPC, named “Challenge IDENT” and “Challenge VERIF”. Respectively, these are intended to attract the most
accurate	 one-to-many identification	 and	 one-to-one verification	 face recognition	 algorithms.

1.3. Audience	
Participation in	 FRPC is open	 to any organization worldwide,	subject 	to 	a 	few 	restrictions 	(see 	[IARPA-FRPC]. There is no
charge for participation. The target audience is researchers and developers of FR	 algorithms. While NIST intends to
evaluate	 stable technologies that	 could be readily made operational, the test	 is also open to experimental, prototype and
other technologies. All algorithms must be submitted	 as implementations of the APIs defined	 in	 this document.

1.4. Important	 Dates
Algorithms	 must	 be	 submitted	t o	N IST	 by	 the	 date	 given	on	 t he	 IARPA	c hallenge.gov	 website.	

1.5. Rules for participation

1.5.1. Participation	 agreement	
A	pa rticipant	 must	 properly	 follow,	 complete, 	and 	submit	 the	FR PC 	Participation 	Agreement 	(available 	from 	the 	FRPC 	
website).		 This 	must	 be 	done 	once,	either 	prior 	or 	in 	conjunction 	with 	the 	very 	first 	algorithm 	submission.		 It	 is	 not	
necessary	 to	do	 t his	 for	 each	s ubmitted	im plementation 	thereafter. 	

1.5.2. Options for participation

All	submissions shall implement exactly one of the functionalities	 defined in Table 1.	 A	 library shall not implement the API
of more than	 one challenge class.

Table	 1 – FRPC Challenge	 Participation

Function Challenge IDENT Challenge VERIF

API requirements 3.2 3.3

96
97 	
98 	

99 	
100	
101	
102	

Participants	 may	 submit	 zero, 	one, 	or	 two 	(0 	-	2)	 algorithms	 to 	Challenge 	IDENT.		Participants 	may 	enter 	zero 	or 	one 	(0 	-	1)	
algorithms	 to 	Challenge	V ERIF.	

	 1.5.3. Number	 of	 submissions	

1.5.4. Validation	
All	 participants	 must	 run	t heir	 software	 through	t he	 provided	F RPC	v alidation	pa ckage	 prior	 to	s ubmission.	 	The	 validation	
package	 will	 be	 made	 available	 at	 https://github.com/usnistgov/frpc.		 The 	purpose 	of 	validation 	is 	to 	ensure 	consistent	
algorithm 	output	 between	 the	p articipant’s	 execution	 and	 NIST’s	 execution.	

NIST Concept, Evaluation	 Plan and API Page	 3 of 18

http:challenge.gov
http:challenge.gov

	 	

	 	
	 	 	 	 		 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 			

	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	

 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 		 	
	 	 	

	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	
	 	 	 	 	 	 	 		

	 	

																																																																				
	 	

Face	 Recognition Prize	 Challenge

103	

104	
105	

106	
107	
108	
109	

110	

111	
112	
113	
114	

115	

116	
117	

118	
119	

120	

121	

122	
123	

124	

125	
126	
127 	

128 	
129 	

130 	
131	

132 	
133	
134 	
135	

136	

137	
138	
139	

1.6. Reporting 	
IARPA will announce the winners of the Prize Challenge.	 NIST may additionally report results in workshops, conferences,
conference papers	 and presentations, journal articles	 and technical reports.

Important: This is an open test in which NIST	 will identify the algorithm and the developing organization.
Algorithm results will be attributed	 to	 the developer. Results will be machine generated (i.e. scripted)	 and will
include timing, accuracy and other	 performance results.	 These will	 be posted alongside results from other	
implementations.

1.7. 	Hardware 	specification	
NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of
computer blades	 that may be used	 in	 the testing. Each CPU has 512K	 cache. The bus runs at 667	 Mhz. The main	 memory
is 	192	 GB Memory as 24	 8GB modules. We anticipate that 16 processes can be run without time slicing, though NIST will
handle all multiprocessing work via fork()1 .	 Participant-initiated 	multiprocessing 	is 	not 	permitted.

NIST is requiring use of 64 bit implementations throughout.

1.7.1. Central	 Processing 	Unit	 (CPU)-only	 platforms	
Algorithms running only on	 CPUs will be executed	 on	 machines equipped	 with	 Intel	Xeon 	X5690	 3.47 GHz CPUs.

1.7.2. Duel	 Intel	 Xeon	 E5-2630	v4	 2. 2	G Hz	 -	Graphics	 Processing	 Units	 (GPU)-enabled	pl atforms 	
Algorithms	 running	 on	G PUs	 will	 be	 executed	on	 m achines	 equipped	w ith		

― Intel	Xeon 	E5-2695 v3 3.3	 GHz CPUs and

― Dual NVIDIA Tesla	 K40	 GPUs with 12GB of memory per GPU.

All	 GPU-enabled	 machines	 will	 be	r unning	C UDA	 version	 7.5.	 	cuDNN	 v5	 for	 CUDA	 7.5	 will	also 	be 	installed 	on 	these	
machines.	 	Implementations	 that	 use	 GPUs	 will	 only	 be	 run	 on	 GPU-enabled 	machines.		 	

1.8. Operating	system,	 compilation,	 and	 linking	 environment 	
The operating system that	 the submitted	 implementations shall run	 on	 will be released as a	 downloadable	 file	 accessible	
from http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso,	 which is the 64-bit version of CentOS
7.2 running Linux	 kernel 3.10.0.

For this test, Windows machines will not be	 used. Windows-compiled libraries	 are not permitted. All	software 	must 	run
under CentOS 7.2.

NIST will link the provided library file(s)	 to our	 C++ language test drivers. Participants are required to provide	 their library
in 	a 	format 	that 	is dynamically-linkable 	using the C++11 compiler, g++ version 4.8.5.	

A	t ypical	 link	 line	 might	 be	
g++ -std=c++11 -I. -Wall -m64 -o frpc frpc.cpp -L. –lfrpc_1N_acme_0_cpu

The	 Standard 	C++	l ibrary	 should 	be	 used	f or	 development.	 	The	 prototypes	 from 	this	 document	 will	 be	 written	t o	a 	 file	
"frpc.h"	w hich 	will	 be 	included 	via 		

#include <frpc.h>

The	 header	 files	 will	 be	 made	 available	 to 	implementers	 at	 https://github.com/usnistgov/frpc. 			

All	 compilation	a nd	t esting	 will	 be	 performed	on	 x 86_64	 platforms.	 	Thus,	 participants	 are	 strongly	 advised	t o	v erify	
library-level	compatibility 	with 	g++ 	(on 	an 	equivalent	p latform)	p rior	to 	submitting 	their	s oftware 	to 	NIST 	to 	avoid 	linkage 	
problems	 later	 on	(e.g.	 symbol	 name	 and	c alling	 convention	m ismatches,	 incorrect	 binary	 file	 formats,	 etc.).	

1 http://man7.org/linux/man-pages/man2/fork.2.html

NIST Concept, Evaluation	 Plan and API Page	 4 of 18

http://man7.org/linux/man-pages/man2/fork.2.html
http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso,	

	 	

	 	
	 	 	 	 		 	 	 	

	

 	 	 	 	1.9.1. Library and platform requirements

	 	 	

	 	
	

	
	 	 	

	 	 	 	 	 	

	 	 	 	
	

	 	 	

	 	
	

	 	
	

	 	 	
	 	

		 	

	 	 	
	 	 	 	 	

	 	 	
	 	 	
	 	 	

	
	

	 	
	

	
	

	

	 	

 	 	 	1.9.2. Configuration and developer-defined	 data

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	1.9.3. Submission folder hierarchy

	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	

 	 	 	 	 	

 	 	 	 	 	

 	 	 	 	

 	 	1.9.4. Installation 	and usage

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	

	

 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	

Face	 Recognition Prize	 Challenge

140	

141	
142	
143 	

144	
145	
146	
147	

148	
149	
150	
151	

152	

153	

1.9. Software 	and	 documentation	

Participants	 shall	 provide	N IST	w ith 	binary	 code	o nly	 (i.e.	 no 	source	 code).		 The	 implementation 	should 	be 	submitted 	in 	
the 	form 	of	a 	dynamically-linked 	library 	file.	

The	 core	 library	 shall	 be	n amed 	according	t o 	Table	 2. 		Additional	 supplemental	 libraries 	may	 be	 submitted	 that	 support	
this 	“core” 	library 	file 	(i.e.	the 	“core” 	library 	file 	may 	have 	dependencies 	implemented 	in 	these 	other 	libraries).		
Supplemental	 libraries	 may	 have	an y	 name,	 but	 the	“ core”	 library	 must	 be	d ependent	 on	 supplemental	 libraries	 in	 order	
to 	be 	linked 	correctly.	 The 	only	 library 	that 	will	be 	explicitly 	linked 	to 	the 	FRPC 	test	 driver	 is	t he 	“core” 	library.	

Intel	Integrated 	Performance 	Primitives 	(IPP)	 ® 	libraries 	are 	permitted 	if 	they 	are 	delivered 	as 	a 	part 	of 	the 	developer-
supplied	 library	 package.	 It	 is	t he	 provider’s	r esponsibility	 to	e stablish	pr oper	 licensing	 of	 all	 libraries.	 	The	 use	 of	 IPP	
libraries 	shall	not 	prevent 	running	 on	CP Us	 that	 do	not 	 support	 IPP.	 	Please	 take	 note	 that	 some	 IPP	 functions	 are	
multithreaded	 and	 threaded	 implementations	 are	p rohibited.	

NIST	 will	report 	the 	size 	of 	the 	supplied 	libraries.	 	

Table	 2 – Implementation 	library 	filename 	convention

Form libfrpc_challenge_provider_sequence_processor.ending

Underscore
delimited	 parts
of the filename

libfrpc challenge provider sequence processor ending

Description First part of the	
name, required	
to be this.

“1N”	 for IDENT
implementation
“11” for	 VERIF
implementation

Single	 word,	 non-
infringing name of
the main provider	
EXAMPLE: Acme

A	 one digit decimal
identifier to start at 0
and incremented by
1	 for each library
sent to NIST.

“gpu”	 if
implementation
uses GPUs;
“cpu”	 otherwise

.so

Example libfrpc_1N_acme_0_cpu.so

154	
155 	
156	

157	
158 	

159 	

160 	

161 	

162 	

163	
164 	
165 	
166	
167	
168	

169	
170	
171	

The implementation under test may be supplied with configuration files and supporting	 data	 files.	 NIST will report the
size of the supplied configuration files.

Participant submissions shall contain the following folders	 at the top level

― lib/ - contains	 all participant-supplied software libraries

― config/	 - contains	 all configuration and developer-defined	 data

― doc/ - contains	 any	 participant-provided	 documentation	 regarding the submission

― validation/ - contains	 validation output

The implementation shall be installable using simple file copy methods. It shall not require the use of a separate
installation 	program 	and 	shall	be 	executable 	on 	any 	number 	of 	machines 	without 	requiring 	additional	machine-specific	
license 	control	procedures 	or 	activation.		The 	implementation 	shall	not use nor enforce any usage controls or limits based	
on	 licenses, number of executions, presence of temporary files, etc. The implementation shall remain operable for at
least 	six 	months 	from 	the 	submission 	date.

1.9.5. Documentation

Participants shall provide	 documentation	 of additional functionality or behavior beyond that specified here. The	
documentation	 must define all (non-zero) developer-defined	 error or warning return	 codes.

NIST Concept, Evaluation	 Plan and API Page	 5 of 18

	 	

	 	
	 	 	 	 		 	 	 	

	

 	 	 	

 	 	

 	

 	 	 	 	 	 	 	 	 	 	 	

 	 	

 	

 	1.11. Single-thread	 requirement 	and 	parallelization

Face	 Recognition Prize	 Challenge

172	
173 	
174 	

175 	

1.9.6. Modes of operation

Implementations	sh all	 not	 require 	NIST 	to 	switch 	“modes”	o f	 operation 	or	a lgorithm 	parameters.	F or 	example, 	the 	use 	of 	
two 	different	 feature 	extractors 	must	 either	 operate	au tomatically	 or	 be	 split	 across	 two	s eparate	 library 	submissions.	

1.10. Runtime behavior

176	
177 	
178 	

179 	
180 	

181 	

182 	
183 	

184	
185	
186 	

187 	
188	
189	
190	
191 	
192 	

193 	
194	
195 	
196 	
197 	
198 	

199 	

200	
201	
202	

203	
204 	
205 	
206 	
207 	
208 	
209 	

1.10.1. Interactive 	behavior,	stdout,	logging

The	 implementation 	will	 be	t ested 	in 	non-interactive 	“batch” 	mode 	(i.e.	without 	terminal	support).	Thus,	 the	 submitted	
library 	shall:	

- Not	 use 	any	 interactive	 functions	 such	a s	 graphical	 user	 interface 	(GUI)	 calls,	 or	 any	 other	 calls	 which	r equire 	
terminal 	interaction 	e.g.	 reads 	from 	“standard	i nput”.	

- Run	 quietly, i.e. it should	 not write messages to	 "standard	 error" and	 shall not write to	 “standard	 output”.

- Only	 if	re quested 	by 	NIST 	for	d ebugging, 	include 	a 	logging 	facility 	in 	which	 debugging	 messages	 are	w ritten 	to 	a	
log 	file 	whose	n ame	i ncludes	 the	p rovider	 and 	library 	identifiers 	and 	the	p rocess 	PID. 	

1.10.2. Exception handling

The	 application 	should 	include	 error/exception 	handling	 so 	that	 in 	the	 case	 of	 a	f atal	 error,	 the	 return	 code	 is	 still	
provided	t o	t he	 calling	 application.	

1.10.3. External	communication

Processes	 running	 on 	NIST	h osts	 shall	 not	 side-effect	 the	r untime	en vironment	 in 	any	 manner,	 except	 for	 memory	
allocation 	and	 release.	 	Implementations	 shall	 not	 write	an y	 data	t o 	external	 resource	(e.g.	 server,	 file,	 connection,	 or	
other	 process),	 nor	re ad 	from 	such,	nor 	otherwise 	manipulate 	it.	I f 	detected,	 NIST 	will	t ake 	appropriate 	steps,	 including 	
but	 not	 limited	t o,	 cessation	of 	 evaluation	of 	 all	 implementations	 from 	the	 supplier,	 notification	t o	t he	 provider,	 and	
documentation	of 	 the	 activity	 in 	published 	reports.	

1.10.4. Stateless 	behavior	
All	 components	 in	t his	 test	 shall	 be	 stateless,	 except	 as	 noted.	 		This	 applies	 to	f ace	 detection,	 feature	 extraction	a nd	
matching.	 	Thus,	 all	 functions	 should	 give	 identical	 output,	 for	 a	 given	 input,	 independent	 of	 the	 runtime	 history.	 		NIST	
will	 institute	 appropriate	 tests	 to	 detect	 stateful	 behavior.	 If	 detected,	 NIST	 will	 take	 appropriate	 steps,	 including	 but	 not	
limited 	to,	c essation 	of 	evaluation 	of 	all	implementations 	from 	the 	supplier,	n otification	 to 	the 	provider,	 and 	
documentation	of 	 the	 activity	 in	publ ished	r eports.	 	

Implementations 	must 	run 	in 	single-threaded 	mode,	 because	 NIST	 will	 parallelize 	the	 test	 by	 dividing	 the	 workload	a cross	
many	 cores	 and	 many	 machines.		 Implementations 	must 	ensure 	that 	there 	are 	no 	issues 	with 	their 	software 	being 	
parallelized	v ia	 the	 fork()	function 	– 	this	 applies	 to 	both 	GPU 	and 	CPU 	implementations	 submitted	 to	 FRPC. 	

For	 implementations	 using	 the	G PU:	 For	 any	 given	 GPU,	 NIST	 will	 run	 a	 single	 implementation	 process	 (i.e.,	 fork()	 once	 per	
GPU),	with 	12GB 	of	 main	 memory	 available	 for	 use	 by	 the	 algorithm.		 NIST 	machines	 are 	equipped 	with 	dual	G PUs,	 and	
the 	NIST 	test	h arness	 will	 load 	balance 	by 	telling 	the 	implementation 	which	GP U	 to 	use	 via	 the	 section 	3.2.2.3 	setGPU()	
function 	call.		 All	 calls	 to	s etGPU()	 will	 be	 performed	a fter	 a	c all	 to 	fork().		 Implementations 	using 	the 	GPU 	are 	encouraged 	
to 	perform 	initialization 	within 	the	 setGPU()	 function 	where 	1.	 which	 GPU	 to	 use	 is	 provided	 to	 the	 implementation	 and	 2.	
to 	support 	known 	limitations	 of	 commonly	u sed 	deep 	learning	f rameworks	 such 	as	 Caffe, 	where	 initialization	 must	 take	
place	 in	t he	 worker	 process.	

210 	
211	
212 	

1.12. Time	limits 	
The	 elemental	functions 	of 	the 	implementations 	shall	execute 	under 	the 	time 	constraints 	of 	Table	 3. 		These	 time	 limits	
apply	 to	 the	f unction 	call	 invocations 	defined	i n	s ection	3 . 		Assuming	 the 	times 	are 	random 	variables,	 NIST	 cannot	 regulate	

NIST Concept, Evaluation	 Plan and API Page	 6 of 18

	 	

	 	
	 	 	 	 		 	 	 	

	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	
	

 	 	 	 	 	

 	2.2.1. Overview

	 	 	 	 	 	

	 	 	 	
 	

 	
 	 	 	 	
 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

	
	 	 	 	 	 		 	

	 	
 	

 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 		 	
 	

Face	 Recognition Prize	 Challenge

213	
214	

215	

216 	

the 	maximum 	value,	 so 	the 	time 	limits 	are 	90-th 	percentiles. 		This	 means	 that	 90% 	of	 all	 operations	 should	 take	 less	 than	
the 	identified 	duration.		 Timing	 will	 be	 estimated 	from 	at	 least	 1000	s eparate	 invocations	 of	 each	e lemental	 function.	

The	 time	 limits	 apply	 per	 image.	

Table	 3 – Processing time 	limits 	in 	milliseconds,	per 640	 x	 480 color image,	on 	a 	single CPU or GPU

Function Challenge IDENT (1:N) Challenge VERIF (1:1)
Template Generation 2000 2000

1:N finalization (on gallery	 of 100K	 enrolled templates) 3600000 NA

1:N Search (on 100K	 enrolled templates) 25000 NA

1:1	 Comparison NA 1

217	

218	

219	
220 	
221 	

222 	 2.2. File	 formats 	and	 data	 structures 	

223	
224	
225	
226	

227	

2. Data structures supporting the API

2.1. Requirement	
FRPC 	participants	 shall	 implement 	the	 relevant 	C++ 	prototyped	i nterfaces 	of	 clause 	3.	 	C++ 	was	 chosen	i n	or der	 to	m ake 	
use 	of	 some 	object-oriented	f eatures.	

In 	this 	face 	recognition 	test,	an 	individual	is 	represented 	by 	a	K	 = 	1	tw o-dimensional	 facial	 image. 		Most	 images	 will	
contain 	exactly	f ace.	 	In 	a 	small	 fraction 	of	 the 	images, 	other,	 smaller,	 faces	 will	 appear	 in	t he 	background.	 	Algorithms	
should 	detect	 one	 foreground	 face	 in	 each	 image	 and	 produce	 one	 template.	

Table	 4 – Structure for a	 single image

C++ code fragment Remarks
typedef struct Image

{

uint16_t width;

uint16_t height;

uint16_t depth;

std::shared_ptr<uint8_t> data;

} Image;

Number of pixels horizontally
Number of pixels vertically
Number	 of	 bits per	 pixel.	 Legal values are 8 and 24.
Managed pointer to	 raster scanned	 data. Either RGB	 color or
intensity.
If 	image_depth ==	 24	 this points to 3WH bytes RGBRGBRGB...
If 	image_depth 	== 		8 	this 	points 	to 		WH 	bytes	 IIIIIII

228	
229 	
230 	
231 	
232 	
233 	

234 	
235	

236 	

237 	

2.2.2. Data structure for eye coordinates
Implementations have the option to return eye coordinates of	 each facial image. This function, while not	 necessary for	 a
recognition test, will assist	 NIST in assuring the correctness of	 the test	 database. The primary mode of	 use will be for	 NIST
to inspect	 images for	 which eye coordinates are not	 returned, or	 differ	 between implementations. The returning of eye
coordinates	 is	 optional for	 implementations.	 For those who	 choose not to	 implement this, both isLeftAssigned and
isRightAssigned should be set to false.

The eye coordinates shall follow the placement semantics of the ISO/IEC 19794-5:2005	 standard - the geometric
midpoints of the endocanthion and exocanthion (see clause 5.6.4 of the ISO 	standard).

Sense: The	 label "left" refers to subject's left eye	 (and	 similarly for the right eye), such	 that xright < xleft.

Table	 5 – Structure for a	 pair of eye	 coordinates

C++ code fragment Remarks
typedef struct EyePair

NIST Concept, Evaluation	 Plan and API Page	 7 of 18

	 	

	 	
	 	 	 	 		 	 	 	

	

 	
 	

	 	 	 	 	 	 	 	 	
 	

	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 		 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

 	

 	2.2.3. Template	 role

	 	 	 	 	

	 	 	 	 	
 	

 	 	 	 	 	
 	 	 	 	 	
 	 	 	
 	 	 	 	

 	

 	 	 	 	 	2.2.4. Data type for similarity scores

 	 	 	 	 	 	2.2.5. File structure for enrolled template collection

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	
	 	 	
	 	 	

	 	 	

Face	 Recognition Prize	 Challenge

{

bool isLeftAssigned;

bool isRightAssigned;

uint16_t xleft;
uint16_t yleft;

uint16_t xright;
uint16_t yright;

} EyePair;

If 	the 	subject’s 	left 	eye 	coordinates 	have 	been 	computed 	and 	assigned
successfully, this	 value should be set to true, otherwise false.
If 	the 	subject’s 	right 	eye 	coordinates 	have 	been 	computed 	and 	assigned
successfully, this	 value should be set to true, otherwise false.
X	 and	 Y	 coordinate of the center of the subject's left eye. If 	the 	eye
coordinate is	 out of range (e.g.	 x < 0 or	 x >= width),	 isLeftAssigned
should be set to false.
X	 and	 Y	 coordinate of the center	 of	 the subject's right	 eye. If	 the eye
coordinate is	 out of range (e.g.	 x < 0 or	 x >= width),	
isRightAssigned should be set to false.

238	
239	
240	

241	

Labels	 describing	t he	t ype/role	o f	 the	t emplate	t o 	be	gen erated 	will	 be	p rovided 	as 	input	 to 	template	gen eration.		 This	
supports	a symmetric	a lgorithms	w here	 the	 enrollment	 and	 recognition	 templates	m ay	 differ	 in	 content	 and	 size. 	

Table	 6 – Labels	 describing template role

Label as C++ enumeration Meaning
enum class TemplateRole {

Enrollment_1N,
Search_1N,

Enrollment_11,
Verification_11

};

Enrollment template for 1:N identification
Search template for 1:N identification

Enrollment template	 for 1:1	 comparison
Verification	 template for 1:1 comparison

242	
243	
244	
245	
246	

247	
248	
249	

250 	
251 	
252 	
253 	

254 	
255 	
256 	

257 	
258 	

259 	

Identification 	and 	verification 	functions 	shall	return 	a 	measure 	of 	the 	similarity 	between 	the 	face	d ata 	contained 	in 	the 	
two 	templates.		 The 	datatype 	shall	b e 	an	e ight	 byte	 double	 precision	r eal.		 The 	legal	r ange 	is 	[0,	 DBL_MAX],	where 	the 	
DBL_MAX	 constant	 is	l arger	 than 	practically	n eeded 	and 	defined 	in 	the 	<climits> 	include 	file.	 Larger	 values	 indicate	m ore	
likelihood 	that 	the 	two 	samples 	are 	from 	the 	same 	person.	

Providers	 are	c autioned	 that	 algorithms	 that	 natively	 produce	f ew 	unique	v alues	 (e.g.	 integers 	on 	[0,127])	 will	b e 	
disadvantaged	by 	 the	 inability	 to	s et	 a	 threshold	pr ecisely,	 as	 might	 be	 required	t o	a ttain	a 	 false	 match	r ate	 of	 exactly	
0.0001,	 for	 example.	

To 	support	 the	 Challenge	 IDENT 	(1:N)	te st,	NIST 	will 	concatenate 	enrollment 	templates 	into 	a 	single 	large 	file, 	the 	EDB 	(for	
enrollment	 database).	 	The	E DB 	is 	a	s imple	b inary 	concatenation	of 	 proprietary	 templates.	 	There	 is	 no	he ader.	 There	 are	
no	de limiters.	 The	 EDB	m ay	 be	 many	 gigabytes	 in 	length. 	

This	 file	 will	 be	 accompanied 	by	 a	m anifest;	 this	 is	 an 	ASCII	 text	 file	 documenting	 the	 contents	 of	 the	 EDB.	 	The	 manifest	
has	 the	 format	s hown 	as	 an 	example 	in 	Table	 7.		 If 	the 	EDB 	contains 	N 	templates,	 the 	manifest	 will	c ontain 	N 	lines.		 The 	
fields 	are 	space 	(ASCII	 decimal	 32)	d elimited.	 	There 	are 	three 	fields.	 	Strictly 	speaking,	 the 	third	c olumn	i s	 redundant.	

Important:	If 	a 	call	to 	the 	template 	generation 	function 	fails,	or 	does 	not 	return 	a 	template,	NIST 	will	include 	the 	Template	
ID 	in 	the 	manifest 	with 	size 	0. 		Implementations 	must 	handle 	this 	appropriately.	

Table	 7 – Enrollment dataset template manifest

Field name Template ID Template Length Position of first byte	 in EDB
Datatype required std::string Unsigned decimal integer Unsigned decimal integer
Example lines of a	 manifest file appear
to the right. Lines 1, 2, 3	 and N appear.

90201744 1024 0
person01 1536 1024
7456433 512 2560
...

NIST Concept, Evaluation	 Plan and API Page	 8 of 18

	 	

	 	
	 	 	 	 		 	 	 	

	

	

 	 	 	 	 	 	 	2.2.6. Data structure for result of an identification	 search

	 	 	 	 	

	 	 	 	 	
 	
 	
 	 	 	 	 		 	
 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		 	 	 	 	
	 	 	 	 	 	 	 	

	
 	

	

 	 	 	 	 	 	 	 	 	2.2.7. Data structure for return value of API function calls

	 	 	 	 	 	

	 	 	 	
 	

 	
 	 	 	 	
 	 	 	 	 	 	
 		
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	
 		 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
 	

	

	 	 	 	

	 	 	 	
 	

 	
 	 	 	
 	

 	

Face	 Recognition Prize	 Challenge

subject12 	 1024	 307200000	
260	
261	

262 	
263	
264 	

265 	

The	 EDB 	scheme	 avoids	 the 	file 	system 	overhead 	associated 	with 	storing 	millions 	of	 small	 individual	files.	

All	 identification	s earches	 shall	 return	a 	 candidate	 list	 of	 a	 NIST-specified 	length.	 	The 	list	 shall	 be 	sorted 	with 	the	 most	
similar	 matching 	entries	l ist	 first	 with	 lowest	 rank.	 	The	 data	 structure	 shall	 be	 that	 of	 Table	 8. 	

Table	 8 – Structure for a	 candidate

C++ code fragment Remarks
1. typedef struct Candidate

2. {

3. bool isAssigned; If 	the 	candidate 	computation succeeded,	this	 value is	 set to true. False	 otherwise.
4. std::string templateId; The Template ID from the enrollment database manifest defined in clause 2.2.5.
5. double similarityScore; Measure of similarity between the identification template and the enrolled candidate.

Higher scores mean more likelihood that the samples are of the same person.

An	 algorithm is free to assign any value	 to a	 candidate. The	 distribution of values will have	
an impact on the	 appearance	 of a	 plot of false-negative and	 false-positive identification	
rates.

6. } Candidate;

266	

267	

268	 Table	 9 – Enumeration of return codes

Return	 code as C++	 enumeration Meaning
enum class ReturnCode {

Success=0,

ConfigError=1,

RefuseInput=2,

ExtractError=3,

ParseError=4,

TemplateCreationError=5,

VerifTemplateError=6,

NumDataError=7,

TemplateFormatError=8,

EnrollDirError=9,

InputLocationError=10

GPUError=11,

VendorError=12

};

Success
Error reading configuration files
Elective refusal to process the input,	e.g. 	because 	cannot 	handle 	greyscale
Involuntary 	failure 	to 	process 	the 	image,	e.g. 	after 	catching 	exception
Cannot parse the input data
Elective refusal to produce a “non-blank” template (e.g. insufficient	 pixels
between	 the eyes)
For matching, either or both of the input templates were result of failed
feature extraction
The implementation cannot support the number of images
Template file is in an incorrect format or defective
An	 operation	 on	 the enrollment directory failed	 (e.g. permission, space)
Cannot locate the input data – the input	 files or names seem incorrect
There was a	 problem setting or accessing	 the	 GPU
Vendor-defined	 failure. Failure codes must be documented	 and	
communicated to NIST with the submission of the implementation under test.

269	

270 	 Table	 10 – ReturnStatus structure

C++ code fragment Meaning
struct ReturnStatus {

ReturnCode code;

std::string info;

// constructors

};

Return	 Code
Optional information string

NIST Concept, Evaluation	 Plan and API Page	 9 of 18

	 	

	 	
	 	 	 	 		 	 	 	

	

	

 	 	

 	3.1. Namespace

	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	

	

	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 		 	 	

	 	 	 	

	 	 	 	 	 	 	 	
	

	

	 	
	

	

	 	 	 	 	 	 	 	 	 	 	
	 	 		 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 		 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	 	
		 	 	 	 	 	 		 	

	 	 	 	 	 	 		

	 	 	 	 	
	 	 	

	 	 	 	 	
	

	

	

	 	 	 	 	
	

	 	 	

	 	 		 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	
	 	 	 	
	

	 	 	 		 	
	 	 	 	 	

	 	 	 	 	

Face	 Recognition Prize	 Challenge

271	

272	

273	
274 	
275 	

276 	
277	

278 	

279	
280 	
281 	

282 	

283 	

3. API specification
Please	n ote	th at	i ncluded 	with 	the 	FRPC 	validation 	package 	(available 	at	 https://github.com/usnistgov/frpc)	i s 	a 	“null” 	
implementation 	of 	this 	API. 		The	nul l	 implementation	has 	 no	re al	 functionality 	but	d emonstrates 	mechanically 	how 	one	
could 	go 	about	 implementing 	this	 API. 	

All	 data	 structures	 and	AP I	 interfaces/function	c alls	 will	 be	 declared	i n	t he	 FRPC	namespace.	

3.2. Challenge	IDENT	(1:N) 	

3.2.1. Overview 	
The	 1:N 	identification 	application 	proceeds	 in 	two 	phases,	 enrollment 	and 	identification.		The 	identification 	phase 	
includes 	separate 	probe 	feature 	extraction	s tage,	and 	a 	search 	stage. 	

The 	design 	reflects 	the 	following 	testing 	objectives	 for	 1:N 	implementations.	

- support	 distributed 	enrollment	 on 	multiple 	machines,	 with	m ultiple	 processes	 running	 in	pa rallel	
- allow 	recovery	 after	 a	f atal	 exception,	 and 	measure	t he	n umber	 of	 occurrences 	
- allow 	NIST	t o 	copy	 enrollment	 data	o nto 	many	 machines	 to 	support	 parallel	 testing 	
- respect	th e 	black-box	 nature	 of	 biometric	 templates 	
- extend 	complete	f reedom 	to 	the	p rovider	 to 	use	ar bitrary 	algorithms 	
- support	 measurement	 of	 duration 	of	 core 	function 	calls 	
- support	 measurement	 of	 template 	size 	

Table	 11 – Procedural overview of the	 Challenge	 IDENT (1:N) test

Ph
as
e # Name Description Performance	 Metrics to be	

reported by NIST

En
ro
llm

en
t

E1 Initialization initializeEnrollmentSession()

Give the implementation the name of a directory where any provider-
supplied configuration data will have been placed by	 NIST. This location
will otherwise be empty.

The implementation is permitted read-only access to the	 configuration
directory.

E2 Parallel
Enrollment

createTemplate(TemplateRole=Enrollment_1N)

For each of N individuals, pass K	 =	 1	 image of the individual to	 the
implementation	 for conversion	 to	 a template. The implementation	 will
return a template to the calling application.

NIST's calling application will be responsible for storing all templates as
binary files. These will not be available to	 the implementation	 during
this enrollment	 phase.

Multiple instances of the calling application may run simultaneously or
sequentially. These may	 be executing on different computers. The
same person will not be enrolled twice.

Statistics of the	 times needed to
enroll an individual.

Statistics of the	 sizes of created
templates.

The incidence of failed template
creations.

E3 Finalization finalizeEnrollment()

Permanently finalize	 the	 enrollment directory. This supports, for
example, adaptation of the	 image-processing functions, adaptation of
the representation, writing of	 a manifest, indexing, and computation of	
statistical information over the enrollment dataset.

Size	 of the enrollment	 database
as a	 function of population size	
N.

Duration of this operation. The
time needed to execute this
function shall be reported with

NIST Concept, Evaluation	 Plan and API Page	 10 of 18

	 	

	 	
	 	 	 	 		 	 	 	

	

	 	 	 	 	 	 	
	 	 	 	

	 	 	
	

	 	 	

	 	 	 	 	 	 	 	 		 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 		 	 	 	 	 	
	

	 	 	 	
	 	

	

	 	
	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 			

	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
		 	 	 	 	 	 			

	 	 	 	
	 	

	 	 	 	
	 	

	

	 	 	

	 	 	 	 	 	 	 	 		 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	
	 	

	

	 	 	

	 	 	 	 	 			

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 				

	 	 	 	
	 	

	 	 	 	 	 	
	 	

	

 	3.2.2.1. Interface

	 	 	 		 	
 	

	

	

	

	

	

	

Face	 Recognition Prize	 Challenge

The implementation is permitted read-write-delete	 access to the
enrollment directory during	 this phase.

the preceding enrollment	 times.
Pr
ob

e	
 Te
m
pl
at
e	

 Cr
ea
tio

n

S1 Initialization initializeProbeTemplateSession()

Tell the implementation the location of an enrollment directory. The
implementation could look at the enrollment data.

The implementation is permitted read-only access to the enrollment
directory during this phase. Statistics of the	 time	 needed for this
operation.

Statistics of the	 time	 needed for
this operation.

S2 Template
preparation

createTemplate(TemplateRole=Search_1N)

For each probe, create	 a	 template	 from K	 =	 1 image.	 This operation will	
generally	 be	 conducted in a	 separate process invocation to step S3.

The result of this step is a	 search template.

Multiple instances of the calling application may run simultaneously or
sequentially. These may	 be executing on different computers.

Statistics of the	 time	 needed for
this operation.

Statistics of	 the size of	 the
search template.

Se
ar
ch

S3 Initialization initializeIdentificationSession()

Tell the implementation the location of an enrollment directory. The
implementation should read all	 or some of the enrolled data into main
memory, so that searches can	 commence.

The implementation is permitted read-only access to the enrollment	
directory during this phase.

Statistics of the	 time	 needed for
this operation.

S4 Search identifyTemplate()

A	 template is searched	 against the enrollment database.

Developers shall not attempt to improve the duration of the
identifyTemplate() function by offloading any of	 its processing
into the createTemplate() function.

Statistics of the	 time	 needed for
this operation.

Accuracy metrics - Type I +	 II
error rates.

Failure	 rates.

284	

285	
286 	
287 	

3.2.2. API	

The	 software 	under	 test	 must	 implement	 the	 interface	 IdentInterface	by	 subclassing	 this	 class	 and	i mplementing	
each 	method 	specified 	therein. 	

C++ code fragment Remarks
1. Class IdentInterface

{
public:

virtual ReturnStatus initializeEnrollmentSession(
const std::string &configDir) = 0;

virtual ReturnStatus createTemplate(
const Image &face,
TemplateRole role,
std::vector<uint8_t> &templ,
EyePair &eyeCoordinates) = 0;

virtual ReturnStatus finalizeEnrollment(
const std::string &enrollmentDir,
const std::string &edbName,
const std::string &edbManifestName) = 0;

virtual ReturnStatus initializeProbeTemplateSession(
const std::string &configDir,
const std::string &enrollmentDir) = 0;

virtual ReturnStatus initializeIdentificationSession(
const std::string &configDir,
const std::string &enrollmentDir) = 0;

2.

3.

4.

5.

6.

7.

NIST Concept, Evaluation	 Plan and API Page	 11 of 18

	 	

	
	 	 	 	 		 	 	 	

	

	

	 	
 	 	 	 	 	 	

	 	 	 		 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	

 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	
	 	 	 		 	

	

	

	 	 	 		

	 	 	 	
	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 		 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	

	 	 	
	

	
	 	

	 	 	 	 	 	 	 	

	 	 	 	

	

Face	 Recognition Prize	 Challenge

8. virtual ReturnStatus identifyTemplate(
const TattooRep &idTemplate,
const uint32_t candidateListLength,
std::vector<Candidate> &candidateList,
bool &decision) = 0;

virtual ReturnStatus setGPU(uint8_t gpuNum) = 0;

static std::shared_ptr<IdentInterface> getImplementation();

};

9.

10. Factory method to return a	 managed pointer
to the IdentInterface object. This
function is implemented by the submitted
library and must return a managed pointer to
the IdentInterface object.

11.

288	
289 	
290	
291	
292	

There is one class (static) method declared in IdentInterface. getImplementation() which must also be
implemented.	This 	method 	returns 	a 	shared 	pointer 	to 	the 	object 	of 	the 	interface 	type, 	an 	instantiation 	of 	the
implementation 	class.	A 	typical	implementation 	of 	this 	method 	is 	also 	shown 	below 	as 	an 	example.

C++ code fragment Remarks
#include “frpc.h”

using namespace FRPC;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<IdentInterface>
IdentInterface::getImplementation()
{

return std::make_shared<NullImpl>();
}

// Other implemented functions

293	

294	
295	
296	

297 	

3.2.2.2. Initialization 	of 	the 	enrollment 	session	
Before	 any	 enrollment	 feature	 extraction	c alls	 are	 made,	 the	 NIST	 test	 harness	 will	 call	 the	 initialization	f unction	of 	 Table	
12. 		This	 function 	will	 be	 called	BE FORE	 any	 calls	 to	f ork()	 are	 made.	

Table	 12 – Enrollment initialization

Prototype ReturnStatus initializeEnrollmentSession(
const std::string &configDir); Input

Description This function initializes the implementation under test and	 sets all needed	 parameters. This function will be called
N=1 times by the NIST application, prior to	 parallelizing M >= 1 calls to	
createTemplate(TemplateRole=Enrollment_1N) via fork().

Input 	Parameters configDir A	 read-only directory containing any developer-supplied configuration parameters	 or
run-time data files.

Output
Parameters

None

Return	 Value See	 Table 9 for	 all valid return code values.

298	
299	
300	
301	

302	

3.2.2.3. GPU	I ndex	 Specification	
For	 implementations	 using	 GPUs,	 the	f unction 	of	 Table	 13	 specifies	a 	sequential	 index	 for	 which 	GPU 	device	 to 	execute	
on.	 	This	 enables	 the	 test	 software	 to	or chestrate	 load	ba lancing	 across	 multiple	 GPUs.		 This	 function	 will	 be	 called	 AFTER	
a	c all	 to	 fork()	 is 	made. 	

Table	 13 – GPU	 index specification

Prototypes	 ReturnStatus	 setGPU 	(

	
NIST Concept, Evaluation	 Plan and API Page	 12 of 18

	 	

	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	

	 	 	 	 	 		 	 	 	 	 	 	 	
	 	 		 	

	
	

	 	

	 	 	 	 	 	 	

 	

	 	 	 	 	

	 	 	 	
	 	 	

	 	 	
	 	

	 	
	
	

	 	 	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 			

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 		 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 			

	
	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	

	
	 	 	 		 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	

Face	 Recognition Prize	 Challenge

uint8_t gpuNum); Input
Description This function sets the GPU device number to be used by all subsequent implementation function calls. gpuNum is

a	 zero-based	 sequence value of which	 GPU device to	 use. 0 would	 mean	 the first detected	 GPU, 1 would	 be the
second GPU, etc. If 	the 	implementation 	does 	not 	use 	GPUs, 	then 	this 	function 	call	should 	simply 	do 	nothing.

Input
Parameters

gpuNum Index 	number 	representing 	which 	GPU 	to 	use.

Return	 Value See	 Table 9 for	 all	 valid return code values.

303	
304	
305	
306 	

307 	

3.2.2.4. Enrollment
An	I mage	 is 	converted 	to 	a 	single 	enrollment 	template 	using 	the 	function 	of 	Table	 14. 		For	 the	m ore	i nformation	 regarding	
the 	types	 of	i magery 	that	w ill	 be 	used,	 please 	refer 	to 	the 	FRPC 	Rules	 Document	 at	 https://www.challenge.gov/wp-
content/uploads/2017/04/IARPA_NIST_FRPC_Rules.pdf. 		

Table	 14 – Enrollment feature extraction

Prototypes ReturnStatus createTemplate(
const Image 	&face, Input
TemplateRole role, Input
std::vector<uint8_t> &templ, Output
EyePair &eyeCoordinates); Output

Description Takes an Image and outputs a	 proprietary template and, optionally, associated eye	 coordinates. The	 vector to store	
the template will be initially empty, and it	 is up to the implementation to populate it with the appropriate data.

For enrollment templates (TemplateRole=Enrollment_1N):	 If 	the 	function 	executes 	correctly (i.e. returns a successful
return code), the NIST calling application will store the template.	 The NIST application will concatenate the templates
and pass the	 result to the	 enrollment finalization function (see	 section 13).	 When the implementation fails to produce
a	 template (i.e.	 returns a non-successful return code),	it 	shall 	still 	return 	a 	blank 	template 	(which 	can 	be 	zero 	bytes 	in
length).	 The template will	 be included in the enrollment database/manifest like all	 other enrollment templates, but is
not expected	 to	 contain	 any feature information.

IMPORTANT. 		NIST's 	application writes the template to disk.	 Any data needed during subsequent searches should be
included in the template, or created from the templates during the enrollment finalization	 function	 of section 13

For identification/probe templates (TemplateRole=Search_1N):	 The NIST	 calling application may commit the template
to permanent	 storage, or	 may keep it	 only in memory (the developer implementation does not	 need to know). If 	the
function returns a non-successful return status, the output template will not be used in subsequent search operations.

Input
Parameters

face Input 	face 	image

role Label describing the type/role of the template to	 be generated.	 In this case, it will	 either	 be
Enrollment_1N or Search_1N.

Output
Parameters

templ The output template. The format	 is entirely unregulated.	 This will be an empty vector	 when
passed	 into	 the function, and	 the implementation can resize	 and populate	 it with the	 appropriate	
data.

eyeCoordinates (Optional)	 The function	 may choose to return the estimated eye centers for	 the input	 face image.
Return	 Value See	 Table 9 for	 all valid return code values.

308	
309 	
310 	

311 	
312 	
313 	

314 	
315 	
316 	

317 	

NIST	 Concept,	 Evaluation	P lan 	and 	API	 	 Page	13 	 of	 18	
	

3.2.2.5. Finalize 	enrollment	
After	 all	 templates	 have	 been	c reated,	 the	 function	of 	 Table	 15	 will	 be	 called.	 	This	 freezes	 the	 enrollment	 data.	 	After	 this	
call	 the 	enrollment	 dataset	 will	 be 	forever	 read-only.	 		

The	f unction 	allows 	the	i mplementation 	to 	conduct,	 for 	example,	 statistical 	processing	o f 	the	f eature	d ata,	 indexing	an d 	
data 	re-organization.	 	The 	function	m ay 	alter	 the 	file 	structure.	 	It	 may 	increase 	or	 decrease 	the 	size 	of	 the 	stored	da ta.	 	
No 	output	 is	 expected 	from 	this 	function,	 except 	a	r eturn 	code. 			

Implementations 	shall	not 	move 	the 	input 	data. 			Implementations 	shall	not 	point 	to 	the 	input 	data. 		Implementations 	
should 	not 	assume	t he	i nput 	data 	will	 be	 readable 	after 	the 	call. 		Implementations 	must, 	at 	a 	minimum, 	copy 	the 	input 	
data 	or 	otherwise	ext ract	 what	 is	 needed	f or	 search. 	

Table	 15 – Enrollment finalization

https://www.challenge.gov/wp

	 	

	 	
	 	 	 	 		 	 	 	

	

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
			 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	
	 	 	 	 			 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	
	

	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 		 	 	 	 	 	 	 	 		 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	

	
	

	 	

	 	 	 	 	 	 	 	 	

 	 	3.2.2.6. Probe	 Template	 Feature	 Extraction Initialization

	 	 	 	 	 		

	 	 	 	
	 	 	 	
	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 		 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

		 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	 	

	 	 	 	 	 	 	 	

 	 	3.2.2.7. Search Initialization

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	

Face	 Recognition Prize	 Challenge

Prototypes ReturnStatus finalizeEnrollment(
const std::string &enrollmentDir, Input
const std::string &edbName, Input
const std::string &edbManifestName); Input

Description This function takes the name of the top-level	 directory where the enrollment database	 (EDB) and its manifest have	
been	 stored. These are described	 in	 section	 2.2.5.	 The enrollment directory permissions will	 be read + write.	

The function supports post-enrollment, developer-optional, book-keeping	 operations, statistical processing and data	
re-ordering for fast in-memory searching. The function will generally be called in a separate process after	 all the
enrollment processes are	 complete.

This function should be tolerant of being called two or more times. Second and third invocations should probably do
nothing.

Input
Parameters

enrollmentDir The top-level	 directory in which enrollment data was placed.	 This variable allows an
implementation to locate any private initialization data it elected to place in the directory.

edbName The name of a	 single file containing concatenated templates, i.e. the	 EDB of section 2.2.5.
While the file will have read-write-delete permission, the implementation should only	 alter
the file if	 it	 preserves the necessary content, in other	 files for	 example.
The file may be	 opened directly. It is not necessary to prepend a	 directory name. This is a	
NIST-provided	 input – implementers shall	 not internally hard-code or assume any	 values.

edbManifestName The name of a	 single file containing the EDB	 manifest of section 2.2.5.
The file may be opened directly. It is not necessary to prepend a	 directory name. This is a	
NIST-provided	 input – implementers shall	 not internally hard-code or assume any	 values.

Output
Parameters

None

Return Value See	 Table 9 for	 all valid return code values.

318	
319 	
320 	

321 	

322	
323	
324	
325	

Before	 Images	 are	s ent	 to 	the	i dentification 	feature	ex traction 	function,	 the	t est	 harness 	will	 call	 the	i nitialization 	function	
in 	Table	 16. 		This	 function 	will	 be	 called 	BEFORE	an y	 calls	 to 	fork()	 are	 made.	

Table	 16 – Probe	 template feature extraction initialization

Prototype ReturnStatus initializeProbeTemplateSession(
const std::string &configDir, Input
const std::string &enrollmentDir); Input

Description This function initializes the implementation under test and	 sets all needed	 parameters. This function	 will be
called once by the NIST application	 immediately before any M ³ 1	 calls to
createTemplates(TemplateRole=Search_1N). The implementation has read-only access to	 its prior enrollment
data.

Input 	Parameters configDir A	 read-only directory containing any developer-supplied configuration parameters or	
run-time data files.

enrollmentDir The read-only top-level	 directory in which enrollment data was placed and then
finalized by the implementation.	 The implementation can parameterize subsequent	
template production on the basis of	 the enrolled dataset.

Output
Parameters

none

Return	 Value See	 Table 9 for	 all valid return code values.

The function of Table 17 will be called once prior to one or more calls of the searching function of	 Table 18.	 The function
might set static internal variables so that the enrollment database is available to the subsequent identification searches.
This function will be called BEFORE	 any calls	 to fork() are made.

NIST Concept, Evaluation	 Plan and API Page	 14 of 18

	 	

	 	
	 	 	 	 		 	 	 	

	

	 	 		

	 	 	 	
	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	3.2.2.8. Search

	 	 	

	 	 	 	 	
	 	 	 	
	 	 	 	

	 	
	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

 	3.3.1. Overview

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	

	 	 	 	 	 	
	

326

Face	 Recognition Prize	 Challenge

Table	 17 – Identification 	initialization

Prototype ReturnStatus initializeIdentificationSession(
const string &configDir, Input
const string &enrollmentDir); Input

Description This function reads whatever	 content	 is present	 in the enrollmentDir,	for 	example 	a 	manifest 	placed 	there 	by 	the
finalizeEnrollment() function.

Input 	Parameters configDir A	 read-only directory containing any developer-supplied configuration parameters	 or
run-time data files.

enrollmentDir The read-only top-level	 directory in which enrollment data was placed.
Return	 Value See	 Table 9 for	 all valid return code values.

327	
328 	
329 	

330 	

The	 function 	of	 Table	 18	 compares	a 	 proprietary	 identification	t emplate	 against	 the	 enrollment	 data	 and	r eturns	 a	
candidate 	list. 	

Table	 18 – Identification 	search

Prototype ReturnStatus identifyTemplate (
const std::vector<uint8_t> &idTemplate, Input
const uint32_t candidateListLength, Input
std::vector<Candidate>	 &candidateList, Output
bool &decision); Output

Description This function searches a	 template against the enrollment set, and outputs a	 list of candidates. The candidateList
vector will initially	 be empty, and	 the implementation	 shall populate the vector with	 candidateListLength	 entries.

Input 	Parameters idTemplate A	 template from createTemplate(TemplateRole=Search_1N) - If 	the 	value 	returned
by that function	 was non-zero the contents of	 idTemplate	 will not be	 used and	 this
function (i.e.	 identifyTemplate) will not be	 called.

candidateListLength The number of candidates the search should return

Output
Parameters

candidateList A	 vector containing "candidateListLength "	 objects of candidates. The datatype is
defined	 in	 section	 2.2.6.	 Each candidate shall	 be populated by the
implementation.	 The candidates shall	 appear in descending order of similarity
score - i.e.	 most similar entries appear first.

decision A	 best guess at whether there is a mate within	 the enrollment database. If there
was a mate found, this value should be set to true, Otherwise, false. Many such
decisions allow a single point to	 be plotted	 alongside a DET.

Return	 Value See	 Table 9 for	 all valid return code values.
331	

332	
333	

334 	

335	
336	
337 	
338 	

339 	

NOTE:	 Ordinarily	 the	 calling	 application	 will	 set	 the	 input	 candidate	 list	 length	 to	 operationally	 typical	 values,	 say	 0	 £ 	L	 	£ 	
200,	 and	 L	 <<	N .	 	We	 will	 measure	 the	 dependence	 of	 search	 duration	on	 L .	

3.3. Challenge	 VERIF	 (1:1)	

The	 1:1	t esting	 will	 proceed	 in	 the 	following	 phases:	 optional	 offline	 training;	 preparation	of 	 enrollment	 templates;	
preparation	of 	 verification	t emplates;	 and	m atching.	 	Note	 that	 training,	 template	 creation,	 and	 matching	m ay	 all	 be	
performed	a s	 separate 	processes.	 	These	 are	 detailed 	in 	Table	 19. 	

Table	 19 – Functional summary of the	 Challenge	 VERIF (1:1) test

Phase Description Performance	 Metrics to be reported	 by NIST

Initialization initialize()
Function to read configuration data, if	 any.

None

NIST Concept, Evaluation	 Plan and API Page	 15 of 18

	 	

	 	
	 	 	 	 		 	 	 	

	

	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 		 	 	
	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	
	

	 	
	 	 	 	 	 	 	

	 	 	 	 	 		 	 	
	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	
	

	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		

	 	 	 	 	 	
	 	 	 	
	 	 	 	 	 	 	

	
NIST	 requires	 that	 these	 operations	 may	 be	 executed	 in	 a	 loop	 in	 a	 single	 process	 invocation,	 or	 as	 a	 sequence	 of	 independent 	process	
invocations,	 or	 a 	mixture 	of 	both.	

 	3.3.2.1. Interface

	 	 	 		 	
 	

	

	

	

	

	 	
	 	 	 	 	 	 	

	 	 	 		 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	

 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	
	 	 	 		 	

Face	 Recognition Prize	 Challenge

Enrollment createTemplate(TemplateRole=Enrollment_11)
Given K = 1	 input images of an individual, the	 implementation
will create a proprietary enrollment template. NIST will
manage storage of these templates.

Statistics of the	 time	 needed to produce	 a	 template.
Statistics of template	 size. Rate of failure to	 produce a
template

Verification createTemplate(TemplateRole=Verification_11)
Given K =	 1	 input images of an	 individual, the implementation	
will create a proprietary verification template. NIST will
manage storage of these templates.

Statistics of the	 time	 needed to produce	 a	 template.
Statistics of template	 size. Rate of failure to	 produce a
template.

Matching	 (i.e.
comparison)

matchTemplates()
Given a proprietary enrollment and a proprietary verification
template, compare them to produce a similarity score.

Statistics of the	 time	 taken to compare	 two templates.
Accuracy measures, primarily reported	 as DETs,	
including for partitions of the input datasets.

340	
341	
342	

343	

344	
345 	
346 	

3.3.2. API	

The	 software 	under	te st	m ust	i mplement	th e	 interface 	VerifInterface	by	 subclassing	 this	 class	 and	i mplementing	
each 	method	 specified 	therein. 	

C++ code fragment Remarks
1. class VerifInterface

{
public:

virtual ReturnStatus initialize(
const std::string &configDir) = 0;

virtual ReturnStatus createTemplate(
const Image &face,
TemplateRole role,
std::vector<uint8_t> &templ,
EyePair &eyeCoordinates) = 0;

virtual ReturnStatus matchTemplates(
const std::vector<uint8_t> &verifTemplate,
const std::vector<uint8_t> &enrollTemplate,
double &similarity) = 0;

virtual ReturnStatus setGPU(uint8_t gpuNum) = 0;

static std::shared_ptr<VerifInterface> getImplementation();

};

2.

3.

4.

5.

6.

7. Factory method to return a	 managed pointer
to the VerifInterface object. This
function is implemented by the submitted
library and must return a managed pointer to
the VerifInterface object.

8.

347	
348 	
349	
350	
351	

There is one class (static) method declared in VerifInterface. getImplementation() which must also be
implemented 	by 	the implementation.	 This method returns a shared pointer to the object of the interface type, an
instantiation 	of 	the 	implementation 	class. A typical implementation of this method is also shown below as an example.

C++ code fragment Remarks

NIST Concept, Evaluation	 Plan and API Page	 16 of 18

	 	

	 	
	 	 	 	 		 	 	 	

	

 	

	 	 		

	 	 	 	
	 	 	 	

	
	

	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	
	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	

		 	 	 	 	 	 	 	 	 	 	 	
	

	
	

	 	

	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		 	 	 	 	 	 	 	

	 	 		 	
	

	
	 	

	 	 	 	 	 	 	 	

 	3.3.2.4. Template	 generation

	 	 	 	 	 	 	 	 	 	 		 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

Face	 Recognition Prize	 Challenge

#include “frpc.h”

using namespace FRPC;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<VerifInterface>
VerifInterface::getImplementation()
{
 return std::make_shared<NullImpl>();
}

// Other implemented functions

352	
353 	
354 	

355 	

3.3.2.2. Initialization 	
The	 NIST	 test	 harness	 will	 call	 the 	initialization 	function 	in 	Table	 20	 before	 calling	 template	 generation	or 	 matching.		 This	
function 	will	 be 	called 	BEFORE 	any 	calls 	to 	fork()	a re 	made.	

Table	 20 – Initialization

Prototype ReturnStatus initialize(
const std::string &configDir); Input

Description This function initializes the implementation under test. It will be called	 by the NIST application	 before any call to	
createTemplate() or matchTemplates().	 The implementation under test	 should set	 all parameters. This
function will be called N=1 times by the NIST application, prior to	 parallelizing M >= 1 calls to	 createTemplate()
via fork().

Input 	Parameters configDir A	 read-only directory containing any developer-supplied configuration parameters	 or run-
time data files. The name of this directory is assigned by NIST, not hardwired by the
provider. The names of the files in	 this directory are hardwired	 in	 the implementation and
are	 unrestricted.

Output
Parameters

none

Return	 Value See	 Table 9 for	 all valid return code values.

356	
357	
358	
359	

360	

361	
362 	
363	
364	

3.3.2.3. GPU	I ndex	 Specification 	
For	 implementations	 using	 GPUs,	 the	f unction 	of	 Table	 21	 specifies	a 	sequential	 index	 for	 which 	GPU 	device	 to 	execute	
on.	 	This	 enables	 the 	test	 software 	to	or chestrate	 load	ba lancing	 across	 multiple	 GPUs.		 This	 function 	will	 be	 called 	AFTER 	
a	c all	 to	 fork()	 is	 made. 	

Table	21 	 – 	GPU	i ndex	 specification	

Prototypes ReturnStatus setGPU (
uint8_t gpuNum); Input

Description This function sets the GPU device number to be used by all subsequent implementation function calls.	 gpuNum is
a	 zero-based	 sequence value of which	 GPU device to	 use. 0 would	 mean	 the first detected	 GPU, 1 would	 be the
second GPU, etc. If 	the 	implementation 	does 	not 	use 	GPUs, 	then 	this 	function 	call	should 	simply 	do 	nothing.

Input
Parameters

gpuNum Index 	number 	representing 	which 	GPU 	to 	use.

Return	 Value See	 Table 9 for	 all valid return code values.

The function of Table 22 supports role-specific	 generation of a template data. Template format is 	entirely 	proprietary.
For the	 more	 information regarding the	 types of imagery that will be	 used, please	 refer to the	 FRPC Rules Document at
https://www.challenge.gov/wp-content/uploads/2017/04/IARPA_NIST_FRPC_Rules.pdf.

NIST Concept, Evaluation	 Plan and API Page	 17 of 18

https://www.challenge.gov/wp-content/uploads/2017/04/IARPA_NIST_FRPC_Rules.pdf

	 	

	 	
	 	 	 	 		 	 	 	

	

	 	 		

	 	 	 	
	 	 	 	

	 	 	
	 	

	 	
	
	

	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	

	
	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	
	

	
	 	 	 		 	 	 	 		 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	

 	3.3.2.5. Matching

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		 	 	

	 	 	 		 	 	 	 	 	
	 	 	 	

	 	 	 	 		 	
	 	 	 		 	 	 	 	

	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	

 	

365

369

Face	 Recognition Prize	 Challenge

Table	 22 – Template	 generation

Prototypes ReturnStatus createTemplate(
const Image &face, Input
TemplateRole role, Input
std::vector<uint8_t> &templ, Output
EyePair &eyeCoordinates); Output

Description Takes an Image	 and outputs a proprietary template and optionally, associated eye	 coordinates. The	 vector to store the
template will be initially empty, and	 it	 is up to the implementation to populate it with the appropriate data. In 	all	
cases, even when unable to extract features, the output	 shall be a template that	 may be passed to the
matchTemplates() function without	 error.	 That	 is, this routine must internally encode "template creation failed" and
the matcher	 must	 transparently handle this.

Input
Parameters

face Input 	face 	image

role Label describing the type/role of the template to	 be generated.	 In this case, it will	 either	 be
Enrollment_11	 or Verification_11.

Output
Parameters

templ The output template. The format	 is entirely unregulated. This will be an empty vector when
passed	 into	 the function, and	 the implementation	 can	 resize and	 populate it with	 the
appropriate	 data.

eyeCoordinates (Optional)	 The function	 may choose to return the estimated eye centers for	 the input	 face
image.

Return	 Value See	 Table 9 for	 all valid return code values.

366	
367	

368 	

Matching of one enrollment against one verification template shall be implemented by the function of Table 23.

Table	 23 – Template	 matching

Prototype ReturnStatus matchTemplates(
const std::vector<uint8_t> &verifTemplate, Input
const std::vector<uint8_t> &enrollTemplate, Input
double &similarity); Output

Description Compare two proprietary templates and output a	 similarity score,	 which need	 not satisfy the metric properties.
When either or both of the	 input templates are	 the	 result of a	 failed template generation (see Table 22), the
similarity	 score shall be -1	 and the	 function return value shall be VerifTemplateError.

Input 	Parameters verifTemplate A	 verification template from createTemplate(role=Verification_11). The underlying
data can	 be accessed	 via verifTemplate.data(). The size,	in 	bytes, of the template
could be retrieved as	 verifTemplate.size().

enrollTemplate An	 enrollment template from createTemplate(role=Enrollment_11). The
underlying data	 can be	 accessed via	 enrollTemplate.data(). The	 size, in bytes, of
the template could be retrieved as enrollTemplate.size().

Output
Parameters

similarity A	 similarity score resulting from comparison	 of the templates, on	 the range
[0,DBL_MAX].	 See section 2.2.4.

Return	 Value See	 Table 9 for	 all valid return code values.

NIST Concept, Evaluation	 Plan and API Page	 18 of 18

