
  

 

 

 

 

 

 

 

 

 
 

MINEX04 API Specification 16 December 2004 

Minutiae Interoperability Exchange Test 2004 (MINEX04) 

 API Specification  

Overview 
The Minutiae Interoperability Exchange Test 2004 (MINEX04) will determine 
the feasibility of using minutiae data (rather than image data) as the interchange 
medium for fingerprint information between different fingerprint matching 
systems.   

All images selected for use in MINEX04 have been gathered from subjects using 
live-scan devices or traditional paper & ink methods.  No latent fingerprint 
images will be used.  Furthermore all testing of fingerprint minutiae based 
identification systems in MINEX04 will be limited to automated, software-based 
systems.   

Particpants in MINEX04 shall be required to provide NIST with an SDK library 
which complies with the Application Program Interface (API) specified in this 
document.  The SDK library provided shall run on Pentium-based PC platforms 
using Windows 2000 or Red Hat Linux 7.2. 

The SDK provided must include functionality to extract a set of minutiae data 
from an individual fingerprint image and compute a match-score developed by 
comparing one set of minutiae data with another.  Participants submitting an SDK 
for testing shall at a minimum provide support for minutiae extraction and 
minutiae template matching based on (1) the participant's proprietary non-
standardized minutiae extraction method and/or template format (used to provide 
a baseline measurement and not designed for the interoperability tests); and (2) 
the basic (i.e. without extended data) ANSI INCITS 378-2004 [1] minutiae data 
format standard (as implemented by this document). 

Furthermore, in order to determine if significantly improved interoperability can 
be achieved with the use of ridge crossing information (in addition to the basic 
location and angle information), participants are strongly encouraged and 
requested to provide additional support for ANSI INCITS 378-2004 templates (as 
implemented by this document) with extended data including ridge count 
information for the 8 neighbor-octants surrounding each minutia.  If ridge count 
information is provided, participants may optionally include Core and Delta 
information in the extended data area as well. 

1 Fingerprint Image Data 

1.1 Format 
The SDK must be capable of processing fingerprint images supplied to the SDK 
in uncompressed raw 8-bit (one byte per pixel) grayscale format.  Each image 

Page 1 of 14 



  

 

 
 

 

 

 
 

 

 

 

 

MINEX04 API Specification 16 December 2004 

shall appear to have been captured in an upright position and approximately 
centered horizontally in the field of view.  The image data shall appear to be the 
result of a scanning of a conventional inked impression of a fingerprint.  Figure 1 
illustrates the recording order for the scanned image.  The origin is the upper left 
corner of the image.  The x-coordinate (horizontal) position shall increase 
positively from the origin to the right side of the image.  The y-coordinate 
(vertical) position shall increase positively from the origin to the bottom of the 
image.   

Figure 1 Order of scanned lines 
Raw 8-bit grayscale images are canonically encoded.  The minimum value that 
will be assigned to a "black" pixel is zero.  The maximum value that will be 
assigned to a "white" pixel is 255. Intermediate gray levels will have assigned 
values of 1- 254. The pixels are stored left to right, top to bottom, with one 8-bit 
byte per pixel. The number of bytes in an image is equal to its height multiplied 
by its width as measured in pixels; there is no header. The image height and 
width in pixels will be supplied to the SDK as supplemental information. 

1.2 Resolution and Dimensions 
All images for this test will employ 500 PPI resolution (horizontal and vertical). 

The dimensions of the fingerprint images will vary from 150 to 812 pixels in 
width, and 166 to 1000 pixels in height. 
Note – the SDK must be capable of processing images with any dimensions in these 
specified ranges without the use of separately invoked cropping or padding facilities. 
For example, SDKs which require cropping of large images must do so internal to the 
operation of the create_template (see below) API call. 

Page 2 of 14 



  

 

 

 

 

 

 

 

MINEX04 API Specification 16 December 2004 

1.3 Sensor and Impression Types 
The images used for this test come from a variety of sensors, and include both 
live-scanned and nonlive-scanned rolled and plain impression types.   

These sensors will include but not be restricted to Identix DFR-90, Crossmatch 
300A, Smith-Heimann V300, and scanned paper. 

2 Minutiae Data 

2.1 Minutiae Identification and Placement 
For each participant’s non-standardized (e.g. proprietary) template 
implementation(s), all details regarding the identification, placement 
(determination of location and angular direction), and encoding of individual 
minutiae shall be according to the participant, and are beyond the scope of this 
document. 

For templates compliant with the basic ANSI INCITS 378-2004 (as implemented 
by this document), identification and placement (determination of location and 
angular direction) of individual minutiae shall be according to section 5 of ANSI 
INCITS 378-2004, and shall be limited to minutia of type "ridge ending" and 
"ridge bifurcation”. 

For templates compliant with ANSI INCITS 378-2004 (as implemented by this 
document) with an extended data area (i.e. containing ridge count information), 
the identification and placement (determination of location and angular direction) 
of individual minutiae shall follow the approach discussed sections 2.1.1 and 
2.1.2 of this document, and shall be limited to minutia of type "ridge ending" and 
"ridge bifurcation”. This approach, which enhances ANSI INCITS 378-2004, is 
based on the techniques used by the FBI's IAFIS system, and provides guidelines 
for identifying minutiae and determining their placement.  Note that this 
approach, while differing from the one described in section 5 of ANSI INCITS 
378-2004, does not require the extraction of any information beyond what is 
specified by that standard (i.e. only the method of identification and placement 
differs from ANSI INCITS 378-2004, the same kind of information is extracted). 

2.1.1 Minutiae Location 
Before the minutiae can be identified, the fingerprint is usually first 
binarized. The resultant image is then used as input into a skeletonization 
process that simultaneously thins the image until both the ridges and 
valleys are represented by one-pixel thick sequences of pixels.  This 
process creates a minutiae representation of the image consisting only of 
bifurcations. Ridge bifurcations are identified and located directly by the 
process, while ridge endings have been effectively converted into valley 
skeleton bifurcations (as a result of thinning the valleys). This process can 
be considered as an implementation of the medial skeleton approach used 

Page 3 of 14 



  

 

 
 
 

 
 

 

 
 

 

MINEX04 API Specification 16 December 2004 

by ANSI INCITS 378-2004. At this point, all of the minutiae are 
represented as bifurcations. The X and Y pixel coordinates of the 
intersection of the three legs of each minutia can be directly recorded in 
the template.   

2.1.2 Minutiae Direction 
Determination of the minutia direction can be extracted from each 
skeleton bifurcation. The three legs of every skeleton bifurcation must be 
examined and the endpoint of each leg determined.  Figures 2A through 
2C illustrate the three methods used for determining the end of a leg.  The 
ending is established according to the event that occurs first.  

• The 32nd pixel – Figure 2A and 2B 
• The end of skeleton leg if greater than 10 pixels (legs shorter are 

not used) – Figure 2A 
• A 2nd bifurcation is encountered before the 32nd pixel – Figure 2C 

The angle of the minutiae is determined by constructing three virtual rays 
originating at the bifurcation point and extending to the end of each leg.  
The smallest of the three angles formed by the rays is bisected to indicate 
the minutiae direction. 

 32 pixels

 <32 pixels 

 32 pixels 

32 pixels 

2nd Bifurcation 

Figure 2A Figure 2B 

Figure 2C 

2.2 Minutiae Type 
ANSI INCITS 378-2004 requires that each minutia have a type associated with it 
which is stored in the template. Templates compliant with ANSI INCITS 378-
2004 (as implemented by this document) shall be limited to minutiae of type 
"ridge ending" and "ridge bifurcation”.  Minutiae not satisfying these definitions 
shall not be extracted or included in the basic or extended data templates.  For 
those cases where it is not possible to reliably distinguish between a ridge ending 
and a bifurcation, the category of "other" shall be used.  This is a common 
characteristic of "inked" impressions that exhibit ridge endings being converted to 
bifurcations and bifurcations being converted to ridge ending due to over- or 

Page 4 of 14 



  

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

MINEX04 API Specification 16 December 2004 

under-inking found in the image.  Vendors whose systems do not distinguish 
between minutiae type or do not rely on minutiae type in their extraction or 
matching algorithms may assign the "other" type to all minutiae.  

Note – Although ANSI INCITS 378-2004 uses the category of “other” to describe 
minutiae that  are neither ridge endings nor ridge bifurcations, such as trifurcations and 
crossovers, MINEX04 has no  provision for minutiae types other than ridge endings and 
bifurcations. 

2.3 Minutiae Coordinate System and Angle Conventions 
For templates compliant with ANSI INCITS 378-2004 (as implemented by this 
document), the coordinate system and angle conventions used shall be those 
defined in sections 5.3.1 and 5.4.1, respectively, of ANSI INCITS 378-2004.  

Note that for MINEX04 it is additionally required that all coordinates and angles 
for minutiae shall be recorded with respect to the original image input to the 
SDK. In other words, they shall not be recorded with respect to any image 
processing subimage(s) created by the SDK during the minutiae extraction 
process. 

2.4 ANSI INCITS 378-2004 Minutiae Data Format 
The SDK must support the creation and matching of fingerprint minutiae 
templates in the format specified by both ANSI INCITS 378-2004 “Fingerprint 
Minutiae Format for Data Interchange” and this document.  

At a minimum, the SDK shall support ANSI INCITS 378-2004 compliant 
templates (as implemented by this document) without extended data. 

Support for ANSI INCITS 378-2004 compliant templates (as implemented by this 
document) with extended data is strongly encouraged but optional.   

2.4.1 Constraints 
A template that is created and/or processed by the SDK which complies 
with ANSI INCITS 378-2004 shall be formatted as a non-encapsulated 
byte-array containing an ANSI INCITS 378-2004 minutiae record and 
with the following constraints: 
Note – templates which fail to meet any of the conditions below will be 
considered non-standardized, and will be tested as such (i.e. they will not be 
tested as ANSI INCITS 378-2004 type templates). 

• CBEFF wrappers shall not be used. 

• The record header shall be fixed at 26 bytes in length (i.e. only 2 bytes 
shall be used to record the total record length in the header). 

• The CBEFF PID (Product ID) field shall be set to 0. 

• The number of Finger Views shall be limited to one. 

Page 5 of 14 



  

 
 

  

 

 

 

  

 

 

 
 
 

 

 

 

 

 

 

 

 

 

MINEX04 API Specification 16 December 2004 

• The fields Finger Position, Impression Type, and Size of Scanned 
Image (in both the x and y directions) shall be input by the test 
application at run-time. 

• The field Impression Type shall only range in values from 0 through 3 
that will include plain and rolled, live-scan and nonlive-scan images. 

• The field Capture Equipment ID shall be set to 0 (unreported). 

• The field Capture Equipment Compliance shall be set to 0. 

• The Minutia Quality field for each minutia shall be set to 0. 

• The fields X (horizontal) resolution and Y (vertical) resolution shall be 
set to 197 (pixels/cm). 

• The maximum number of minutiae encoded in a template shall be 128. 

• The field Minutiae Type shall be set in accordance with ANSI INCITS 
378-2004 section 6.5.2.1 with the exception of type “other” which 
shall be assigned in accordance with section 2.2 of this specification, 
thus: 

o 01 – ridge ending 

o 10 – ridge bifurcation 

o 00 – ridge ending or bifurcation (but undetermined as to which) 

• Extended data shall be optional (i.e. it is not required). 

• Extended data shall not include vendor-defined information. 

• Extended data, if supplied, must include Ridge Count information 
extracted using the Eight-neighbor Ridge Count Extraction Method (as 
defined in section 2.4.2 below). Nonspecific or four-neighbor 
extraction methods are not permitted. 

• Extended data may include Core and Delta information, but only in 
addition to Ridge Count information (i.e. Core and Delta information 
without Ridge Counts are not permitted). 

• Core and Delta information shall be limited to a maximum of two 
Cores and two Deltas. 

• Minutiae records shall not exceed 4500 bytes in length. 

• The field Finger Quality will be input by the test application (and shall 
be output identically by the SDK) at run-time and represent only the 
quality of the original image.  It will be limited to 5 discrete values, 
which directly correspond (as shown in Table 1 below) to values on 
the NIST Fingerprint Image Quality (NFIQ) [3] scale.  This image 
quality information may be used by each SDK to alter its normal 
processing paths within the match function. 

Page 6 of 14 



  

 
 

 

 

  

 

 

 

 
 

 

 

 

MINEX04 API Specification 16 December 2004 

Finger Quality value 
used in MINEX 

Description NIST NFIQ Value (for 
reference only) 

1 Poor 5 

25 Fair 4 

50 Good 3 

75 Very Good 2 

100 Excellent 1 

Table 1 - Finger Quality values 

Integer values other than those shown in Table 1 are not defined and 
will not be provided by the test application. 

2.4.2 Eight-neighbor Ridge Count Extraction Method 
Templates containing extended data shall contain ridge count information 
extracted for every minutia recorded in the minutiae data area (refer to 
section 6.5.2 of ANSI INCITS 378-2004) of the template.  Ridge count 
information shall be extracted as follows. 

• Every minutia identified in the minutiae data area shall be assigned its 
own unique “neighborhood” consisting of eight octants (angular 
sectors of 45 degrees) of a (theoretical) circle centered on the location 
of the minutia.  The octants shall be numbered counterclockwise from 
zero to seven with octant number zero locally center aligned with the 
direction of the minutiae.  Figure 3 provides an example of a center 
minutiae whose “tail” is aligned toward the “South-Southwest” 
direction. The zero octant will span the arc of 22.5 degrees on either 
side of “South-Southwest”. The “tail” bisects the zero octant. 

Octant 0 
Octant 1 

Octant 2 

Octant 3 

Octant 4
Octant 5 

Octant 6 

Octant 7 

Figure 3 – Minutiae neighborhood 

Page 7 of 14 



  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

           

MINEX04 API Specification 16 December 2004 

• For each octant, a ridge count is produced by counting the number of 
ridges crossed by a (theoretical) straight line between the center 
minutia and the minutia nearest to it (i.e. its “nearest neighbor”) in that 
octant, including the ridge on which the nearest neighbor minutia lies 
(i.e. the number of intervening ridges plus one).  

Valid ridge counts range from zero to 15.  If a given octant has no 
neighboring minutiae in it, the ridge count shall be zero.  If the number of 
ridges counted exceeds 13, the ridge count shall be set to14.  If the count 
cannot be calculated because the intervening image area between the two 
minutiae is blurred and insufficient to estimate an accurate ridge count, the 
count shall be set to 15. 

Note that the ridge(s) defining the minutia are considered part of the 
minutia.  For example, if the center minutia is a bifurcation, and if the 
straight line passes through one of the ridge segments forming the 
bifurcation, the latter is not counted separate from the minutia and does 
not increment the count.  

Note also that due to the curving of ridges, the straight line between a 
minutia and its neighbor might cross a ridge twice (or more).  In this case 
the same ridge shall not be counted more than once, unless the straight line 
which connects the center minutia to its nearest neighbor minutia passes 
through at least the center of one valley before entering back into the same 
ridge. A ridge can not be counted unless the straight line passes at least to 
the center of the ridge thickness. 

Minutia Index Minutia Neighbor 
Index Ridge Count Octant Index 

(not stored) 

0x01 0x06 0x05 0 

0x01 0x03 0x09 1 

0x01 0x00 0x00 2 

… … … … 

0x01 0x11 0x0D 7 

0x02 0x04 0x05 0 

0x02 0x10 0x09 1 

… … … … 

0x80 0x6F 0x02 7 

Table 2 – Example Ridge Count Data 

Page 8 of 14 



  

 

 

 

 

 

 

 
 

 

 

     
 

   
 
 

MINEX04 API Specification 16 December 2004 

The formatting and storage of Ridge Count data in the extended data 
section shall be according to ANSI INCITS 378-2004.  ANSI INCITS 
378-2004 specifies that all ridge count data shall be stored in increasing 
order of (center) minutia index number, with 8 neighbor-octant counts 
recorded for each. In contrast to ANSI INCITS 378-2004 however, this 
specification requires that ridge counts be recorded in sequential octant 
index order for each center minutiae.  Octants with no neighboring 
minutiae shall be recorded with the minutia neighbor index and the ridge 
count set to 0. Table 2 is an example of the proper ordering for ridge 
count information. 

2.5 Non-Standardized Minutiae Data Format 
A template that is created or processed by the SDK in a manner or format which 
does not comply with ANSI INCITS 378-2004 (as implemented by this 
document) – for example proprietary templates – will be considered non-
standardized. The specific creation method or format of non-standardized 
templates shall not be disclosed by the Participant, and all such templates will be 
treated as opaque data objects in MINEX04.  The SDK must support at least one 
such non-standardized minutiae extraction and/or template format. 

Note that the length of non-standardized templates may vary, however it is 
strongly recommended that their length not exceed 8192 bytes (8K) in length. 

3 Testing Interface Description 
MINEX04 participants shall submit an SDK which provides the following 
interface (shown in C-style pseudo-code prototypes). 

3.1 Pre-defined Values 
The following are pre-defined values (constants) for use in specifying parameters 
to the MINEX04 testing interface: 

// Template type codes 

#define MIN_A 0x0100 // Basic M1 (x,y,theta)
#define MIN_B 0x0101 // Basic M1 + ridge counts 

Note:  MIN_B may optionally include Core & Delta information in addition to the Ridge 
Count Information. 

#define MIN_PROP 0x0200 // LSB indexes format 

Note: The least-significant byte (LSB) of MIN_PROP is used for indexing specific proprietary 
template  formats where more than one such format is generated and/or matched by an SDK. It 
is the responsibility of those submitting their SDK toMINEX04 to document all such formats in 
so far as the index value to use for selecting each one. 

Page 9 of 14 



  

 

 

 

 

 

 

 
 

 
 

 
 

 
  

  
 

 

   
 

 

MINEX04 API Specification 16 December 2004 

// Impression type codes 

#define IMPTYPE_LP 0x00 // Live-scan plain
#define IMPTYPE_LR 0x01 // Live-scan rolled
#define IMPTYPE_NP 0x02 // Nonlive-scan plain
#define IMPTYPE_NR 0x03 // Nonlive-scan rolled 

// Finger position codes 

#define FINGPOS_UK 0x00 // Unknown finger
#define FINGPOS_RT 0x01 // Right thumb
#define FINGPOS_RI 0x02 // Right index finger
#define FINGPOS_RM 0x03 // Right middle finger
#define FINGPOS_RR 0x04 // Right ring finger
#define FINGPOS_RL 0x05 // Right little finger
#define FINGPOS_LT 0x06 // Left thumb
#define FINGPOS_LI 0x07 // Left index finger
#define FINGPOS_LM 0x08 // Left middle finger
#define FINGPOS_LR 0x09 // Left ring finger
#define FINGPOS_LL 0x0A // Left little finger 

// Finger quality values 

#define QUAL_POOR 1 // NFIQ value 5
#define QUAL_FAIR 25 // NFIQ value 4
#define QUAL_GOOD 50 // NFIQ value 3
#define QUAL_VGOOD 75 // NFIQ value 2
#define QUAL_EXCELLENT 100 // NFIQ value 1 

3.2  Minutiae Extraction and Matching 

3.2.1 Get Template Size 

INT32 
get_max_template_size(const UINT16 template_type,

const UINT16 height,
const UINT16 width,
UINT *size); 

Description 

This function returns the maximum number of bytes required for the ANSI INCITS 378-
2004 or non-standardized (e.g. proprietary) template as specified by the template_type 
parameter, given the height and width dimensions (in pixels) of an input raw image.   It 
may be assumed that memory for the size parameter is allocated before the call. 

Parameters 
template_type (input): The type of template indicated (e.g. MIN_B). 

height (input): The number of pixels indicating the height of the image. 

Page 10 of 14 



  

 

 
 

 
   

 
 

    

 
 

 
 

 

  
  

    
 

 
  

 
   

 
 

 
 

 
 

   
 

 
 

 
  

 
  

 
  

 
 

    
 
 

MINEX04 API Specification 16 December 2004 

width (input): The number of pixels indicating the width of the image. 

size (output): The maximum template size in bytes. 

Return Value 

This function returns zero on success or a documented non-zero error code otherwise. 

3.2.2 Create Template 

INT32 
create_template(const BYTE* raw_image,

const BYTE image_quality,
const UINT16 template_type,
const BYTE finger_position,
const BYTE impression_type,
const UINT16 height,
const UINT16 width,
BYTE *template); 

Description 

This function takes a raw image as input and outputs the corresponding standardized or 
proprietary template as specified by the template_type parameter. The memory for the 
template is allocated before the call (i.e., create_template() does not handle the 
memory allocation for the template parameter). The function returns either success (0) or 
failure (non-zero).  Failure indicates a failure to enroll the image and will result in the 
output of a null template which may be used in later comparisons. 

Note – For templates of type MIN_A and MIN_B, null templates are defined as having an 
ANSI INCITS 378-2004 compliant header (only) with the fields View Number and Number of 
Minutiae set to 0.  No data follows the header in this case. 

Parameters 
raw_image (input): The uncompressed raw image used for template creation. 

image_quality (input): The quality of the image (e.g. QUAL_EXCELLENT). 

template_type (input): The template type to be output (e.g. MIN_B). 

finger_position (input): The finger position code (e.g. FINGPOS_LI). 

impression_type (input): The impression type code (e.g. IMPTYPE_LP). 

height (input): The number of pixels indicating the height of the image. 

width (input): The number of pixels indicating the width of the image. 

template (output): The processed template. 

Return Value 

This function returns zero on success or a documented non-zero error code otherwise. 

Page 11 of 14 



  

 

 
 

 

 

 

 
 

  
 

 

  
 

 

 
   

 
   

 
 

 
   

 
  

 
 

   
   

  

 

 

 

MINEX04 API Specification 16 December 2004 

3.2.3 Match Templates 

INT32 
match_templates(const UINT16 probe_template_type,

const BYTE* probe_template,
const UINT16 gallery_template_type,
const BYTE* gallery_template,
float* score); 

Description 
This function compares two templates and outputs a match score.   The probe_template 
parameter shall be compared to the gallery_template parameter (in this order, if the 
SDK’s matching operation is order dependent).  The score returned is a floating-point 
number which represents the similarity of the original fingerprint images  from which the 
templates where created.  Scores should not be quantized.  It may be assumed that 
memory for the score parameter is allocated before the call.  Note that comparisons in 
which either template is a null template (see 3.2.2 above) shall cause the matching 
operation to fail and output a (documented) error code. 

Parameters 

probe_template_type (input): The type of probe template (e.g. MIN_A). 

probe_template (input): A template returned by create_template(). 

gallery_template_type (input): The type of gallery_template (e.g. MIN_A) 

gallery_template (input): A template returned by create_template(). 

score (output): A similarity score resulting from comparison of the templates. 

Return Value 

This function returns zero on success (i.e. a valid score was produced) or a documented 
non-zero error code on failure. In the latter case, the function is expected to return a 
score which is outside the range of legitimate score values, for example -1. 

3.3 Error Codes and Handling 
The participant shall provide documentation of all (non-zero) error or warning 
return codes (see section 4.3, Documentation). 

The application should include error/exception handling so that in the case of a 
fatal error, the return code is still provided to the calling application. 

At minimum the following return codes shall be used. 

Return 
code Explanation  

0 Success 
1 Image size not supported 
2 Template type not supported 
3 Failed to extract minutiae (template creation failed) 

Page 12 of 14 



  

 

 

 

 

 

 

 

 

 

 
 

MINEX04 API Specification 16 December 2004 

4 Failed to match templates – null probe or gallery template 
5 Failed to match templates – unable to parse probe template 
6 Failed to match templates – unable to parse gallery template 

All messages which convey errors, warnings or other information shall be 
suppressed. 

4 Software and Documentation 

4.1 SDK Library and Platform Requirements 
Individual SDKs provided must not include multiple “modes” of operation, or 
algorithm variations.  No switches or options will be tolerated within one library.  
For example, the use of 2 different “coders” by a minutiae extractor must be split 
across 2 separate SDK libraries. 

Participants shall provide NIST with binary code only (i.e. no source code) − 
supporting files such as header (“.h”) files notwithstanding. It is preferred that the 
SDK be submitted in the form of a single static library file (ie. “.LIB” for 
Windows or “.a” for Linux).  However, dynamic/shared library files are 
permitted.   

If dynamic/shared library files are submitted, it is preferred that the API interface 
specified by this document be implemented in a single “core” library file with the 
base filename ‘libminex’ (for example, ‘libminex.dll’ for Windows or 
‘libminex.so’ for Linux). Additional dynamic/shared library files may be 
submitted that support this “core” library file (i.e. the “core” library file may have 
dependencies implemented in these other libraries). 

Note that dependencies on external dynamic/shared libraries such as compiler-
specific development environment libraries are discouraged.  If absolutely 
necessary, external libraries must be provided to NIST upon prior approval by the 
Test Liaison. 

The SDK will be tested in non-interactive “batch” mode (i.e. without terminal 
support). Thus, the library code provided shall not use any interactive functions 
such as graphical user interface (GUI) calls, or any other calls which require 
terminal interaction (e.g. calls to “standard input” or “standard output”). 

NIST will link the provided library file(s) to a C language test driver application 
(developed by NIST) using the GCC compiler (for Windows platforms 
Cygwin/GCC version 3.3.3 will be used; for RedHat Linux 7.2 platforms GCC 
version 2.96 will be used.  All GCC compilers use Libc 6). For example, 

gcc –o mintest mintest.c -L. –lminex 

Participants are required to provide their library in a format that is linkable using 
GCC with the NIST test driver, which is compiled with GCC.  All compilation 

Page 13 of 14 

https://libminex.so


  

 

 
 

MINEX04 API Specification 16 December 2004 

and testing will be performed on x86 platforms running either Windows 2000 or 
Red Hat Linux 7.2 (dependent upon the operating system requirements of the 
SDK). Thus, participants are strongly advised to verify library-level compatibility 
with GCC (on an equivalent platform) prior to submitting their software to NIST 
to avoid linkage problems later on (e.g. symbol name and calling convention 
mismatches, incorrect binary file formats, etc.). 

4.2 Installation 
The SDK must install easily (i.e. one installation step with no participant 
interaction required) to be tested, and shall be executable on any number of 
machines without requiring additional machine-specific license control 
procedures or activation. 

It is recommended that the SDK be installable using simple file copy methods, 
and not require the use of a separate installation program.  Contact the Test 
Liaison for prior approval if an installation program is absolutely necessary. 

4.3 Documentation 
Complete documentation of the SDK shall be provided, and shall detail any 
additional functionality or behavior beyond what is specified in this document. 

The documentation must define all error and warning codes. 

4.4 Speed 
On average, a template match operation shall take no more than 10 milliseconds, 
and a template creation operation shall take no more than 1 second to complete 
(using a 2GHz Pentium IV). 

Processing speed will be noted but will not be a primary evaluation criterion. 

References 
[1] American National Standard for Information Technology - Finger 
Minutiae Format for Data Interchange, ANSI/INCITS 378-2004, www.incits.org 

[2] R. M. McCabe, "ANSI/NIST-ITL 1-2000 Data Format for the Interchange 
of Fingerprint, Facial, and Scar Mark & Tattoo (SMT) Information," 
ftp://sequoyah.nist.gov/pub/nist_internal_reports/sp500-245-a16.pdf 

[3] E. Tabassi, et al. “Finger Print Image Quality,” NISTIR 7151 2004 
(Gaithersburg, MD: National Institute of Standards and Technology, August 
2004) ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7151/ir_7151.pdf 

Page 14 of 14 

ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7151/ir_7151.pdf
ftp://sequoyah.nist.gov/pub/nist_internal_reports/sp500-245-a16.pdf
www.incits.org



