
FIVE

NIST Concept, Evaluation Plan, and API Page 1 of 38

 1

 2

 3

 4

 5

 6

 7

Face In Video Evaluation (FIVE)
Concept, Evaluation Plan, and API

Version 0.4

8

9

10

11

 12

13

14

Patrick Grother and Mei Ngan

Image Group

Information Access Division

Information Technology Laboratory

October 3, 2014

 15

 16

 17

FIVE

NIST Concept, Evaluation Plan, and API Page 2 of 38

Timeline of the FIVE Evaluation 18

Phase Date External actions, deadlines

Phase 0 2014-07-15 Web site up, announce schedule

2014-08-15 First draft Evaluation Plan and API

2014-08-31 Public comments on first drafts due

2014-10-01 Second draft Evaluation Plan and API

2014-10-15 Public comments on second drafts due

2014-10-30 Third draft Evaluation Plan and API. Draft five.h available.

2014-11-07 Public comments on third drafts due

2014-11-10 Final Evaluation Plan and API available. Final five.h available

2014-11-10 FIVE validation package available

2014-11-17 Updates to FIVE validation package as necessary

Phase 1 2014-11-17 Opening of Phase 1 submission period

 2015-02-08 Deadline for submission for inclusion of results in first interim report card

2015-03-28 First interim report card released to submitting participants

Phase 2 2015-04-01 Opening of Phase 2 submission period

2015-06-05 Deadline for submission for inclusion of results in second interim report card.

2015-07-30 Second interim report card released to submitting participants

Phase 3 2015-08-01 Opening of Phase 3

2015-10-05 Deadline for submission of algorithms to Phase 3

 19
 20
November 2014

Su Mo Tu We Th Fr Sa

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30

 December 2014

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

January 2015

Su Mo Tu We Th Fr Sa

 1 2 3

 4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

February 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

 March 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

April 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4

 5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30

May 2015

Su Mo Tu We Th Fr Sa

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

June 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

July 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4

 5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

August 2015

Su Mo Tu We Th Fr Sa

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31

September 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30

 21

Major API Changes since FRVT 2013 Class V 22

The header/source files for the API will be made available to implementers at http://nigos.nist.gov:8080/five. 23

― The structures ONEFACE (see Table 11) and MULTIFACE (see Table 12) have been changed to classes. 24

― The MULTIFACE class contains a new “description” member variable and valid values are specified in Table 10. 25

― The labels for describing types of still images have been updated (see Table 9). 26

― The ONEVIDEO (see Table 14) class contains a new “peopleDensity” member variable and valid values are specified in 27
Table 13. 28

29

http://nigos.nist.gov:8080/five

FIVE

NIST Concept, Evaluation Plan, and API Page 3 of 38

Table of Contents 30

1. FIVE ... 6 31
1.1. Scope ... 6 32
1.2. Audience .. 6 33
1.3. Market drivers ... 7 34
1.4. Offline testing .. 7 35
1.5. Phased testing ... 7 36
1.6. Interim reports .. 7 37
1.7. Final reports ... 7 38
1.8. Application scenarios ... 8 39
1.9. Image source labels ... 8 40
1.10. Rules for participation ... 8 41
1.11. Number and schedule of submissions ... 8 42
1.12. Use of multiple images per person .. 9 43
1.13. Core accuracy metrics ... 9 44
1.14. Generalized accuracy metrics .. 10 45
1.15. Reporting template size... 10 46
1.16. Reporting computational efficiency .. 10 47
1.17. Exploring the accuracy-speed trade-space .. 10 48
1.18. Hardware specification .. 10 49
1.19. Operating system, compilation, and linking environment .. 11 50
1.20. Software and documentation .. 11 51
1.21. Runtime behavior .. 12 52
1.22. Threaded computations .. 13 53
1.23. Time limits ... 13 54
1.24. Test datasets .. 14 55
1.25. Ground truth integrity ... 15 56

2. Data structures supporting the API .. 15 57
2.1. Overview .. 15 58
2.2. Requirement .. 15 59
2.3. File formats and data structures ... 15 60
2.4. File structures for enrolled template collection .. 20 61

3. API Specification ... 21 62
3.2. 1:N Identification ... 22 63
3.3. Interfaces ... 24 64

4. References .. 36 65
Annex A Submission of Implementations to the FIVE .. 37 66

A.1 Submission of implementations to NIST .. 37 67
A.2 How to participate.. 37 68
A.3 Implementation validation ... 38 69

 70

List of Figures 71

Figure 1 – Organization and documentation of the FIVE ... 6 72
Figure 2 – Examples of pose angles and their encodings (yaw, pitch) ... 16 73
 74

List of Tables 75

Table 1 – Abbreviations .. 5 76
Table 2 – Subtests supported under the FIVE activity .. 8 77
Table 3 – Cumulative total number of algorithms ... 8 78
Table 4 – Summary of accuracy metrics ... 9 79
Table 5 – Implementation library filename convention ... 11 80
Table 6 – Number of threads allowed for each function ... 13 81

FIVE

NIST Concept, Evaluation Plan, and API Page 4 of 38

Table 7 – Processing time limits in milliseconds .. 13 82
Table 8 – Main video corpora (others will be used) ... 14 83
Table 10 – Labels describing types of images... 15 84
Table 11 – Labels describing types of MULTIFACEs .. 16 85
Table 12 – ONEFACE class .. 17 86
Table 13 – MULTIFACE class ... 17 87
Table 14 – Labels describing the density of people in the video frames ... 17 88
Table 15 – ONEVIDEO Class .. 17 89
Table 16 – EYEPAIR Class .. 18 90
Table 17 – PersonTrajectory typedef ... 18 91
Table 18 – PERSONREP Class .. 19 92
Table 19 – CANDIDATE Class .. 19 93
Table 20 – CANDIDATELIST typedef ... 19 94
Table 21 – ReturnCode class .. 20 95
Table 22 – Enrollment dataset template manifest ... 20 96
Table 23 – API implementation requirements for FIVE .. 21 97
Table 24 – Procedural overview of the identification test ... 22 98
Table 25 – VideoEnrollment::initialize ... 24 99
Table 26 – VideoEnrollment::generateEnrollmentTemplate ... 25 100
Table 27 – VideoFinalize::finalize ... 26 101
Table 28 – VideoFeatureExtraction::initialize .. 27 102
Table 29 – VideoFeatureExtraction::generateIdTemplate ... 27 103
Table 30 – VideoSearch::initialize .. 28 104
Table 31 – VideoSearch::identifyVideo and VideoSearch::identifyImage .. 29 105
Table 32 – ImageEnrollment::initialize ... 30 106
Table 33 – ImageEnrollment::generateEnrollmentTemplate ... 30 107
Table 34 – ImageFinalize::finalize ... 31 108
Table 35 – ImageFeatureExtraction::initialize .. 32 109
Table 36 – ImageFeatureExtraction::generateIdTemplate .. 33 110
Table 37 – ImageSearch::initialize .. 34 111
Table 38 – ImageSearch::identifyVideo .. 34 112
 113

114

FIVE

NIST Concept, Evaluation Plan, and API Page 5 of 38

Acknowledgements 115

― The authors are grateful to the experts who made extensive comments on the first version of this document. 116

Project History 117

― 2012 – 2014 – The FRVT 2013 program included a video track (class V) that evaluated face recognition from video. 118
The FIVE program supersedes the FRVT work but proceeds in an almost identical manner. 119

― August 15, 2014 - Release of first public draft of the Face In Video Evaluation (FIVE) – Concept, Evaluation Plan and 120
API v0.1. 121

Terms and definitions 122

The abbreviations and acronyms of Table 1 are used in many parts of this document. 123

Table 1 – Abbreviations 124

FNIR False negative identification rate

FPIR False positive identification rate

FIVE NIST’s Face In Video Evaluation program

FRVT NIST’s Face Recognition Vendor Test program

FTA Failure to acquire a search sample

FTE Failure to extract features from an enrollment image

DET Detection error tradeoff characteristic: For identification this is a plot of FNIR vs. FPIR.

INCITS InterNational Committee on Information Technology Standards

ISO/IEC 19794 ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image
data. First edition: 2005-06-15. (See Bibliography entry).

MBE NIST's Multiple Biometric Evaluation program

NIST National Institute of Standards and Technology

SDK The term Software Development Kit refers to any library software submitted to NIST. This is used
synonymously with the terms "implementation" and "implementation under test".

125

FIVE

NIST Concept, Evaluation Plan, and API Page 6 of 38

1. FIVE 126

1.1. Scope 127

The Face In Video Evaluation (FIVE) is being conducted to assess the capability of face recognition algorithms to correctly 128
identify or ignore persons appearing in video sequences – i.e. the open-set identification problem. Both comparative and 129
absolute accuracy measures are of interest, given the goals to determine which algorithms are most effective and 130
whether any are viable for the following primary operational use-cases: 131
 132

1. High volume screening of persons in the crowded spaces (e.g. an airport) 133
2. Low volume forensic examination of footage from a crime scene (e.g. a convenience store) 134
3. Persons in business meetings (e.g. for video-conferencing) 135
4. Persons appearing in television footage 136

 137
These applications differ in their tolerance of false positives, whether a human examiner will review outputs, the prior 138
probabilities of mate vs. non-mate presence, and the cost of recognition errors. 139
 140
Out of scope: Areas that are out of scope for this evaluation and will not be studied include: gait, iris and voice 141
recognition; recognition across multiple views (e.g. via stereoscopic techniques); tracking across sequential cameras (re-142
identification); anomaly detection; detection of evasion. 143
 144
This document establishes a concept of operations and an application programming interface (API) for evaluation of face 145
recognition in video implementations submitted to NIST's Face In Video Evaluation. See 146
http://www.nist.gov/itl/iad/ig/five.cfm for all FIVE documentation. 147

 148

 Face In Video Evaluation
(FIVE)

1:N identification

Video-to-
video

Still-to-
video

Video-to-
still

API and Concept of Operations are defined in this document

Figure 1 – Organization and documentation of the FIVE 149

1.2. Audience 150

Universities and commercial entities with capabilities in detection and identification of faces in video sequences are 151
invited to participate in the FIVE Video test. 152

http://www.nist.gov/itl/iad/ig/five.cfm

FIVE

NIST Concept, Evaluation Plan, and API Page 7 of 38

Organizations will need to implement the API defined in this document. Participation is open worldwide. There is no 153
charge for participation. While NIST intends to evaluate technologies that could be readily made operational, the test is 154
also open to experimental, prototype and other technologies. 155

1.3. Market drivers 156

This test is intended to support a plural marketplace of face recognition in video systems. There is considerable interest 157
in the potential use of face recognition for identification of persons in videos. 158

1.4. Offline testing 159

While this set of tests is intended as much as possible to mimic operational reality, this remains an offline test executed 160
on databases of images. The intent is to assess the core algorithmic capability of face recognition in video algorithms. This 161
test will be conducted purely offline - it does not include a live human-presents-to-camera component. Offline testing is 162
attractive because it allows uniform, fair, repeatable, and efficient evaluation of the underlying technologies. Testing of 163
implementations under a fixed API allows for a detailed set of performance related parameters to be measured. 164

1.5. Phased testing 165

To support research and development efforts, this testing activity will embed multiple rounds of testing. These test 166
rounds are intended to support improved performance. Once the test commences, NIST will evaluate implementations 167
on a first-come-first-served basis and will return results to providers as expeditiously as possible. Providers may submit 168
revised SDKs to NIST only after NIST provides results for the prior SDK and invites further submission. The frequency with 169
which a provider may submit SDKs to NIST will depend on the times needed for developer preparation, transmission to 170
NIST, validation, execution and scoring at NIST, and developer review and decision processes. 171

For the schedule and number of SDKs of each class that may be submitted, see sections 1.10 and 1.11. 172

1.6. Interim reports 173

The performance of each SDK will be reported in a "score-card". This will be provided to the participant. While the score 174
cards may be used by the provider for arbitrary purposes, they are intended to facilitate development. Score cards will 175

 be machine generated (i.e. scripted), 176

 be provided to participants with identification of their implementation, 177

 include timing, accuracy and other performance results, 178

 include results from other implementations, but will not identify the other providers, 179

 be expanded and modified as revised implementations are tested, and as analyses are implemented, 180

 be generated and released asynchronously with SDK submissions, 181

 be produced independently of the other status of other providers’ implementations, 182

 be regenerated on-the-fly, usually whenever any implementation completes testing, or when new analysis is added. 183

NIST does not intend to release these interim test reports publicly. NIST may release such information to the U.S. 184
Government test sponsors. While these reports are not intended to be made public, NIST can only request that agencies 185
not release this content. 186

1.7. Final reports 187

NIST will publish one or more final public reports. NIST may also 188

 publish additional supplementary reports (typically as numbered NIST Interagency Reports), 189

 publish in other academic journals, 190

 present results at conferences and workshops (typically PowerPoint). 191

FIVE

NIST Concept, Evaluation Plan, and API Page 8 of 38

Our intention is that the final test reports will publish results for the best-performing implementation from each 192
participant. Because “best” is ill-defined (accuracy vs. time vs. template size, for example), the published reports may 193
include results for other implementations. The intention is to report results for the most capable implementations (see 194
section 1.13, on metrics). Other results may be included (e.g. in appendices) to show, for example, examples of progress 195
or tradeoffs. IMPORTANT: Results will be attributed to the providers. 196

1.8. Application scenarios 197

This test will include one-to-many identification tests for video sequences. As described in Table 2, the test is intended to 198
represent identification applications for face recognition in video. 199

Table 2 – Subtests supported under the FIVE activity 200

Video-to-Video Video-to-Still Still-to-Video

1. Aspect 1:N identification of video-to-video 1:N identification of video-to-still 1:N identification of still-to-video

2. Enrollment dataset N enrolled video sequences N enrolled stills N enrolled video sequences

3. Prior NIST test
references

Equivalent to 1 to N matching in [FRVT 2013]

4. Example application Open-set identification against a central database, e.g. a search of a wanted criminal through a live-
video surveillance system at an airport who may attempt to flee the country

5. Score or feature space
normalization support

Any score or feature based statistical normalization techniques-are applied against enrollment database

6. Intended number of
subjects

Expected O(102) - O(104)

7. Number of images per
individual

N/A Variable, see section 1.12. Variable, see section 1.12.

1.9. Image source labels 201

NIST may mix images from different sources in an enrollment set. For example, NIST could combine frontal images and 202
images with varying poses into a single enrollment dataset. For this reason, in the data structure defined in clause 2.3.3, 203
each image is accompanied by a "label" which identifies the set-membership images. Legal values for labels are in clause 204
2.3.2. 205

1.10. Rules for participation 206

A participant must properly follow, complete and submit a participation agreement (see Annex A). This must be done 207
once, not before November 17, 2014. It is not necessary to do this for each submitted SDK. All submitted SDKs must 208
meet the API requirements as detailed in section 3. 209

1.11. Number and schedule of submissions 210

The test is conducted in three phases, as scheduled on page 2. The maximum total (i.e. cumulative) number of 211
submissions is regulated in Table 3. 212

Table 3 – Cumulative total number of algorithms 213

Phase 1 Total over Phases
1 + 2

Total over Phases 1 + 2 + 3

Cumulative total number
of submissions

2 3 5 if at least 1 was successfully executed by end Phase 2
2 if zero had been successfully executed by end Phase 2

The numbers above may be increased as resources allow. 214

NIST cannot conduct surveys over runtime parameters because NIST must limit the extent to which participants are able 215
to train on the test data. 216

FIVE

NIST Concept, Evaluation Plan, and API Page 9 of 38

1.12. Use of multiple images per person 217

Some of the proposed datasets includes K > 2 images per person for some persons. For video-to-still recognition in this 218

test, NIST will enroll K 1 images under each identity. For still-to-video, the probe will consist of K 1 images. Normally 219
the probe will consist of a single image, but NIST may examine the case that it could consist of multiple images. The 220
method by which the face recognition implementation exploits multiple images is not regulated: The test seeks to 221
evaluate developer provided technology for multi-presentation fusion. This departs from some prior NIST tests in which 222
NIST executed fusion algorithms (e.g. [FRVT2002b]), and sum score fusion, for example, [MINEX]). 223

This document defines a template to be the result of applying feature extraction to a set of K 1 images or K 1 video 224
frames. That is, a template contains the features extracted from one or more images or video frames, not generally just 225
one. An SDK might internally fuse K feature sets into a single representation or maintain them separately - In any case the 226
resulting proprietary template is contained in a contiguous block of data. All identification functions operate on such 227
multi-image or multi-frame templates. 228

The number of images per person will depend on the application area: 229

― In civil identity credentialing (e.g. passports, driving licenses) the images will be acquired approximately uniformly 230
over time (e.g. five years for a Canadian passport). While the distribution of dates for such images of a person might 231
be assumed uniform, a number of factors might undermine this assumption1. 232

― In criminal applications the number of images would depend on the number of arrests2. The distribution of dates for 233
arrest records for a person (i.e. the recidivism distribution) has been modeled using the exponential distribution, but 234
is recognized to be more complicated. NIST currently estimates that the number of images will never exceed 100. 235

1.13. Core accuracy metrics 236

For identification testing, the test will target open-universe applications such as benefits-fraud and watch-lists. It will not 237
address the closed-set task because it is operationally uncommon. 238

While some one-to-many applications operate with purely rank-based metrics, this test will primarily target score-based 239
identification metrics. Metrics are defined in Table 4. The analysis will survey over various rank and thresholds3. Plots of 240
the two error rates, parametric on threshold, will be the primary reporting mechanism. 241

Table 4 – Summary of accuracy metrics 242

Application Metric

1:N Identification (Video-to-Still) FPIR = The rate at which unknown subjects are incorrectly associated with any
of N enrolled identities. The association will be parameterized on a
continuous threshold T.

FNIR = The rate at which known subjects are incorrectly not associated with the
correct enrolled identities. The association will be parameterized on a
continuous threshold T, and a candidate rank, R.

 243
FPIR will be estimated using probe images or video clips for which there is no enrolled mate. The stability of FPIR at a 244
fixed threshold under changes to image properties or demographics will be reported. 245

NIST will extend the analysis in other areas, with other metrics, and in response to the experimental data and results. 246

1 For example, a person might skip applying for a passport for one cycle (letting it expire). In addition, a person might submit identical
images (from the same photography session) to consecutive passport applications at five year intervals.
2 A number of distributions have been considered to model recidivism, see ``Random parameter stochastic process models of criminal
careers.'' In Blumstein, Cohen, Roth & Visher (Eds.), Criminal Careers and Career Criminals, Washington, D.C.: National Academy of
Sciences Press, 1986.
3 Threshold and rank limits are established operationally to limit human labor requirements: One the one side, in a low volume forensic
application e.g. investigation of video collected in a convenience store hold-up, or in looking at videos of passengers dis-embarking
flights to document an asylum claim, an examiner might be willing to adjudicate R >> 1 candidates with threshold, T = 0. At the other
end, a high volume watch-list application in which crowded airport concourses are surveilled for bad actors, a high threshold would be
used to limit false positive outcomes. In that case, candidate lists will often have zero length. NIST will report metrics appropriate to
the “human-automated” hybrid application, and the “lights-out” hits-are-rare use case.

FIVE

NIST Concept, Evaluation Plan, and API Page 10 of 38

1.14. Generalized accuracy metrics 247

Under the ISO/IEC 19795-1 biometric testing and reporting standard, a test must account for "failure to acquire" (FTA) 248
and "failure to enroll" (FTE) events (e.g. elective refusal to make a template, or fatal errors). The way these are treated is 249
application-dependent. 250

For identification, the appropriate metrics reported in FIVE will be generalized to include FTA and FTE events. 251

1.15. Reporting template size 252

Because template size is influential on storage requirements and computational efficiency, this API supports 253
measurement of template size. NIST will report statistics on the actual sizes of templates produced by face recognition 254
implementations submitted to FIVE. NIST may report statistics on runtime memory usage. Template sizes were reported 255
in the FRVT 2013 test4, IREX III test5, and the MBE-STILL 2010 test6. 256

1.16. Reporting computational efficiency 257

As with other tests, NIST will compute and report recognition accuracy. In addition, NIST will also report timing statistics 258
for all core functions of the submitted SDK implementations. This includes feature extraction and 1:N recognition. For an 259
example of how efficiency can be reported, see the final report of the FRVT 2013 test, IREX III test, and the MBE-STILL 260
2010 test. 261

1.17. Exploring the accuracy-speed trade-space 262

NIST will explore the accuracy vs. speed tradeoff for face recognition algorithms running on a fixed platform. NIST will 263
report both accuracy and speed of the implementations tested. While NIST cannot force submission of "fast vs. slow" 264
variants, participants may choose to submit variants on some other axis (e.g. "experimental vs. mature") 265
implementations. NIST encourages “fast-less-accurate vs. slow-more-accurate” with a factor of three between the speed 266
of the fast and slow versions. 267

1.18. Hardware specification 268

NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of 269
computer blades that may be used in the testing. The blades are labeled as Dell M905, M910, M605, and M610. The 270
following list gives some details about the hardware of each blade type: 271

 Dell M605 - Dual Intel Xeon E5405 2 GHz CPUs (4 cores each) 272

 Dell M905 - Quad AMD Opteron 8376HE 2 GHz CPUs (4 cores each) 273

 Dell M610 - Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each) 274

 Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each) 275

Each CPU has 512K cache. The bus runs at 667 Mhz. The main memory is 192 GB Memory as 24 8GB modules. We 276
anticipate that 16 processes can be run without time slicing. 277

The minimum instruction set across all processors used in the evaluation is specified here7. Dependence on instructions 278
not included in the minimum instruction set is prohibited. 279

NIST is requiring use of 64 bit implementations throughout. This will support large memory allocation to support 1:N 280
identification task with image and video frame counts in the millions. For still images, if all templates were to be held in 281
memory, the 192GB capacity implies a limit of ~19KB per template, for a 10 million image enrollment. For video, given 282
the data expectations and the occurrence of faces in the imagery, we anticipate the developers will have sufficient 283

4 See the FRVT 2013 test report: NIST Interagency Report 8009, linked from http://face.nist.gov/frvt
5 See the IREX III test report: NIST Interagency Report 7836, linked from http://iris.nist.gov/irex
6 See the MBE-STILL 2010 test report, NIST Interagency Report 7709, linked from http://face.nist.gov/mbe
7 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht
syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm 3wext 3dnow constant_tsc nonstop_tsc pni cx16 popcnt lahf_lm cmp_legacy svm extapic
cr8_legacy altmovcr8 abm sse4a misalignsse 3dnowprefetch osvw

http://face.nist.gov/frvt
http://iris.nist.gov/irex
http://face.nist.gov/mbe

FIVE

NIST Concept, Evaluation Plan, and API Page 11 of 38

memory for video templates. Note that while the API allows read access of the disk during the 1:N search, the disk is, of 284
course, relatively slow. 285

Some of the section 3 API calls allow the implementation to write persistent data to hard disk. The amount of data shall 286
not exceed 200 kilobytes per enrolled image. NIST will respond to prospective participants' questions on the hardware, 287
by amending this section. 288

1.19. Operating system, compilation, and linking environment 289

The operating system that the submitted implementations shall run on will be released as a downloadable file accessible 290
from http://nigos.nist.gov:8080/evaluations/, which is the 64-bit version of CentOS 7.0 running Linux kernel 3.10.0. 291

For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must run 292
under Linux. 293

NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide their library 294
in a format that is linkable using g++ version 4.8.2. The standard libraries are: 295

/usr/lib64/libstdc++.so.6.0.19 lib64/libc.so.6 -> libc-2.17.so lib64/libm.so.6 -> libm-2.17.so 296

A typical link line might be 297

g++ -I. -Wall -m64 -o fivetest fivetest.cpp -L. –lfive_Enron_A_07 298

The Standard C++ library should be used for development of the SDKs. The prototypes from the API of this document will 299
be written to a file "five.h" which will be included via 300

 #include <five.h>

The header files will be made available to implementers at http://nigos.nist.gov:8080/five. 301

NIST will handle all input of images via the JPEG and PNG libraries, sourced, respectively from http://www.ijg.org/ and see 302
http://libpng.org. 303

All compilation and testing will be performed on x86 platforms. Thus, participants are strongly advised to verify library-304
level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to avoid linkage 305
problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.). 306

Dependencies on external dynamic/shared libraries such as compiler-specific development environment libraries are 307
discouraged. If absolutely necessary, external libraries must be provided to NIST upon prior approval by the Test Liaison. 308

1.20. Software and documentation 309

1.20.1. SDK Library and platform requirements 310

Participants shall provide NIST with binary code only (i.e. no source code). Header files (“.h”) are allowed, but these shall 311
not contain intellectual property of the company nor any material that is otherwise proprietary. It is preferred that the 312
SDK be submitted in the form of a single static library file. However, dynamically linked shared library files are permitted. 313

The core library shall be named according to Table 5. Additional shared object library files may be submitted that support 314
this “core” library file (i.e. the “core” library file may have dependencies implemented in these other libraries). 315

Intel Integrated Performance Primitives (IPP) libraries are permitted if they are delivered as a part of the developer-316
supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries. The use of IPP 317
libraries shall not inhibit the SDK’s ability to run on CPUs that do not support IPP. Please take note that some IPP 318
functions are multithreaded and threaded implementations may complicate comparative timing. 319

Access to any GPUs is not permitted. 320

Table 5 – Implementation library filename convention 321

Form libFIVE_provider_sequence.ending

Underscore
delimited parts of

libFIVE provider sequence ending

http://nigos.nist.gov:8080/evaluations/
http://nigos.nist.gov:8080/five
http://www.ijg.org/
http://libpng.org/

FIVE

NIST Concept, Evaluation Plan, and API Page 12 of 38

the filename

Description First part of the
name, required to
be this.

Single word name of
the main provider
EXAMPLE: Acme

A two digit decimal
identifier to start at 00
and increment by 1
every time any SDK is
sent to NIST. EXAMPLE:
07

Either .so or .a

Example libFIVE_Acme_C_07.a

 322

NIST will report the size of the supplied libraries. 323

1.20.2. Configuration and developer-defined data 324

The implementation under test may be supplied with configuration files and supporting data files. The total size of the 325
SDK, that is all libraries, include files, data files and initialization files shall be less than or equal to 1 073 741 824 bytes = 326
10243 bytes. 327

NIST will report the size of the supplied configuration files. 328

1.20.3. Installation and Usage 329

The SDK must install easily (i.e. one installation step with no participant interaction required) to be tested, and shall be 330
executable on any number of machines without requiring additional machine-specific license control procedures or 331
activation. 332

The SDK shall be installable using simple file copy methods. It shall not require the use of a separate installation program. 333

The SDK shall neither implement nor enforce any usage controls or limits based on licenses, number of executions, 334
presence of temporary files, etc. The submitted implementations shall remain operable with no expiration date. 335

Hardware (e.g. USB) activation dongles are not acceptable. 336

1.20.4. Hard disk space 337

FIVE participants should inform NIST if their implementations require more than 100K of persistent storage, per enrolled 338
image on average. 339

1.20.5. Documentation 340

Participants shall provide complete documentation of the SDK and detail any additional functionality or behavior beyond 341
that specified here. The documentation must define all (non-zero) developer-defined error or warning return codes. 342

1.20.6. Modes of operation 343

Individual SDKs provided shall not include multiple “modes” of operation, or algorithm variations. No switches or options 344
will be tolerated within one library. For example, the use of two different “coders” by a feature extractor must be split 345
across two separate SDK libraries, and two separate submissions. 346

1.21. Runtime behavior 347

1.21.1. Interactive behavior 348

The SDK will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the submitted library shall 349
not use any interactive functions such as graphical user interface (GUI) calls, or any other calls which require terminal 350
interaction e.g. reads from “standard input”. 351

FIVE

NIST Concept, Evaluation Plan, and API Page 13 of 38

1.21.2. Error codes and status messages 352

The SDK will be tested in non-interactive “batch” mode, without terminal support. Thus, the submitted library shall run 353
quietly, i.e. it should not write messages to "standard error" and shall not write to “standard output”. An SDK may write 354
debugging messages to a log file - the name of the file must be declared in documentation. 355

1.21.3. Exception Handling 356

The application should include error/exception handling so that in the case of a fatal error, the return code is still 357
provided to the calling application. 358

1.21.4. External communication 359

Processes running on NIST hosts shall not side-effect the runtime environment in any manner, except for memory 360
allocation and release. Implementations shall not write any data to external resource (e.g. server, file, connection, or 361
other process), nor read from such. If detected, NIST will take appropriate steps, including but not limited to, cessation of 362
evaluation of all implementations from the supplier, notification to the provider, and documentation of the activity in 363
published reports. 364

1.21.5. Stateless behavior 365

All components in this test shall be stateless, except as noted. This applies to face detection, feature extraction and 366
matching. Thus, all functions should give identical output, for a given input, independent of the runtime history. NIST 367
will institute appropriate tests to detect stateful behavior. If detected, NIST will take appropriate steps, including but not 368
limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, and 369
documentation of the activity in published reports. 370

1.22. Threaded computations 371

Table 6 shows the limits on the numbers of threads a face recognition implementation may use. Threading is prohibited 372
for feature extraction and search, because NIST will parallelize the test by dividing the workload across many cores and 373
many machines. For the finalization function, if threading is used, NIST requires the provider to disclose the maximum 374
number of threads to us. 375

Table 6 – Number of threads allowed for each function 376

Function Video

Feature extraction 1

Finalize enrollment (before 1:N) 1 T 16

Identification 1

To expedite testing NIST will run up to P >> 1 processes concurrently. NIST's calling applications are single-threaded. 377

1.23. Time limits 378

The elemental functions of the implementations shall execute under the time constraints of Table 7. These time limits 379
apply to the function call invocations defined in section 3. Assuming the times are random variables, NIST cannot regulate 380
the maximum value, so the time limits are 90-th percentiles. This means that 90% of all operations should take less than 381
the identified duration. 382

The time limits apply per image or video frame. When K images of a person are present or K frames are in a video clip, 383
the time limits shall be increased by a factor K. 384

Table 7 – Processing time limits in milliseconds 385

Function Video-to-Video Video-to-Still Still-to-Video

Feature extraction enrollment 5 * 1500 per video
frame (1 core)

1500 per image (1
core)

5 * 1500 per video
frame (1 core)

Feature extraction for
identification

5 * 1500 per video
frame (1 core)

1500 per image (1
core)

5 * 1500 per video
frame (1 core)

FIVE

NIST Concept, Evaluation Plan, and API Page 14 of 38

For video: the multiple of K=5 is a notional average of the number of persons expected in any given frame. This figure is 386
proportionally unreliable for any given sample. 387

While there is no time limit for the enrollment finalization procedure, NIST will report the execution duration. 388

1.24. Test datasets 389

This section is under development. The data has, in some cases, been estimated from initial small partitions. The 390
completion of this section depends on further work. The information is subject to change. We intend to update this 391
section as fully as possible. 392

NIST is likely to use other datasets, in addition. 393

Table 8 – Main video corpora (others will be used) 394

 Dataset P Dataset T Dataset B Other datasets
- Undisclosed

Collection,
environment

Indoor public space with individuals walking mostly
toward cameras as could occur on a transit terminal

Television footage, indoor and outdoor

Number of
individuals in field
of view

Multiple, usually below 20 many not fully visible but
usually more than 1.

Few, most often 1, occasionally others in
background

View angle Various pitch due to different heights of camera
installation, some yaw also due to subject behavior

Pitch variation present, but yaw angles vary
more due to subject behavior

Video frame size 1920 x 1080 Various Various

Eye to eye distance 10-100 pixels 10-150 pixels 10-120

The above values are guidelines; exceptions will inevitably occur in large datasets.

Camera properties Consumer-grade video Professional-grade video Professional-grade video cameras

Camera motion Fixed geometry, fixed optics Usually camera is still or slowly panning or
zooming

Frames per second 24 Up to 30 Up to 30

Similar composition
to

Compare to the iLids data but with higher spatial
resolution on the face.

Similar to YouTubeFaces in that typically
one subject is present and in the
foreground

Accompanying stills Yes, for video-to-still and still-to-video searches,
high-resolution stills approximating ISO/IEC 19794-5
are available. In addition, off-angle images exist with
many combinations of pitch and yaw. In addition,
less formal “social-media” like stills are available
also. Various galleries will be formed from these
images.

Images for which interocular distance exceeds 240
pixels will be downsized.

Stills usually resemble frames from the
video. ISO/IEC 19794-5 images are not
usually available.

 395
NIST does not know the minimum and maximum numbers of persons appearing in video sequences. Moreover, NIST will 396
apply the algorithms to other databases. The maximum number of frames in a video sequence will be limited by the 397
duration of the sequence. NIST expects to use sequences whose duration extends from a few seconds to a few minutes 398

Some notes regarding the video data: 399

― NIST does not anticipate using interlaced video. 400

― The videos are contiguous in time, without interruptions. 401

― Some sequences exist at much higher frame rates. NIST will examine whether this offers benefit. 402

― Some of the datasets were collected using consumer-grade cameras capturing video in standard formats while others 403
were collected using professional-grade cameras captured in modern proprietary video codecs. 404

FIVE

NIST Concept, Evaluation Plan, and API Page 15 of 38

In some videos, the scenes capture people walking towards the camera. Occasionally, there are people walking in various 405
transverse directions including people walking away from the camera. The cameras have varying pitch angles ranging 406
from 0 degrees (frontal) to higher values. The depth of scene varies between the cameras such that the sizes of the faces 407
vary, with the following: 408

― Eye-to-eye distances range from approximately 10 pixels to 120 pixels 409

― Amount of time a face is fully visible in a scene can vary from approximately 0 to 30 seconds 410

― Some of the captures include non-uniform lighting due to light coming through adjacent windows 411

 412
Please note that the properties stated above may not hold for all datasets that might be employed in FIVE. 413

1.25. Ground truth integrity 414

Some of the test databases will be derived from operational systems. They may contain ground truth errors in which 415

― a single person is present under two different identifiers, or 416

― two persons are present under one identifier, or 417

― in which a face is not present in the image. 418

If these errors are detected, they will be removed. NIST will use aberrant scores (high impostor scores, low genuine 419
scores) to detect such errors. This process will be imperfect, and residual errors are likely. For comparative testing, 420
identical datasets will be used and the presence of errors should give an additive increment to all error rates. For very 421
accurate implementations this will dominate the error rate. NIST intends to attach appropriate caveats to the accuracy 422
results. For prediction of operational performance, the presence of errors gives incorrect estimates of performance. 423

2. Data structures supporting the API 424

2.1. Overview 425

This section describes the API for the face recognition in video applications described in section 1.8. All SDK's submitted 426
to FIVE shall implement the functions required in Section 3. 427

2.2. Requirement 428

FIVE participants shall submit an SDK which implements the relevant C++ prototyped interfaces of clause 3. C++ was 429
chosen in order to make use of some object-oriented features. 430

2.3. File formats and data structures 431

2.3.1. Overview 432

In this test, an individual is represented by K 1 two-dimensional facial images, and by subject and image-specific 433
metadata. 434

2.3.2. Dictionary of terms describing images and MULTIFACEs 435

Images will be accompanied by one of the labels given in Table 9. Face recognition implementations submitted to FIVE 436
should tolerate images of any category. 437

Table 9 – Labels describing types of images 438

 Label as C++ string Meaning Yaw
(degrees)

Pitch
(degrees)

1. "unknown" Either the label is unknown or unassigned.
2. “uncontrolled” Any illumination, pose is unknown and could be frontal

3. “FF” Full frontal 0 0
4. “FD” Face down 0 10 to 40

FIVE

NIST Concept, Evaluation Plan, and API Page 16 of 38

5. “FU” Face up 0 -10 to -40

6. “QL” Quarter left -10 to -45 0

7 “QR” Quarter right 10 to 45 0

8. “HL” Half left -46 to -80 0

9. “HR” Half right 46 to 80 0
10. “PL” Profile left -90 0

11. “PR” Profile right 90 0

12. “QLU” Quarter left up -10 to -45 -10 to -40
13. “QRU” Quarter right up 10 to 45 -10 to -40

14. “HLU” Half left up -46 to -80 -10 to -40
15. “HRU” Half right up 46 to 80 -10 to -40

16. “HLD” Half left down -46 to -80 10 to 40
17. “HRD” Half right down 46 to 80 10 to 40

Figure 2 provides examples of pose angles and their encoding (yaw, pitch) as specified in the ISO/IEC 19794-5 [ISO], with 439

yaw angle defined as the rotation in degrees about the y-axis (vertical axis) and pitch angle defined as the rotation in 440
degrees about the x-axis (horizontal axis). 441

 442

(0,0) (+45,0) (-45,0) (0,-45) (0,+45)

Figure 2 – Examples of pose angles and their encodings (yaw, pitch) 443

NOTE 1: We do not intend to deliberately include non-face images in this test. 444

NOTE 2: MULTIFACEs will contain face images of only one person. 445

 446
A MULTIFACE (see Table 12) will be accompanied by one of the labels given in Table 10. Face recognition 447
implementations submitted to FIVE should tolerate MULTIFACEs of any category. 448

Table 10 – Labels describing types of MULTIFACEs 449

 Label as C++ string Meaning

1. “FRONTAL” All ONEFACEs contain nominally frontal images and are labeled “FF”.
2. “MULTIPOSE” Each ONEFACE is labeled with one of the following:

“FF”, “FD”, “FU”, “QL”, “QR”, “HL”, “HR”, “PL”, “PR”, “QLU”, “QRU”, “HLU”, “HRU”,
“HLD”,“HRD”.

3. “INFORMAL” All ONEFACEs contain informal images that are labeled “uncontrolled”.
4. “UNKNOWN” Each ONEFACE is labeled with one of the labels from Table 9, including possibly

“unknown” or “uncontrolled”.

 450

2.3.3. Data structures for encapsulating multiple still images 451

The standardized formats for facial images are the ISO/IEC 19794-5:2005 and the ANSI/NIST ITL 1-2007 type 10 record. 452
The ISO record can store multiple images of an individual in a standalone binary file. In the ANSI/NIST realm, K images of 453
an individual are usually represented as the concatenation of one Type 1 record + K Type 10 records. The result is usually 454
stored as an EFT file. 455

FIVE

NIST Concept, Evaluation Plan, and API Page 17 of 38

An alternative method of representing K images of an individual is to define a structure containing an image filename and 456
metadata fields. Each file contains a standardized image format, e.g. PNG (lossless) or JPEG (lossy). 457

2.3.4. Class for encapsulating a single face image 458

Table 11 – ONEFACE class 459

 C++ code fragment Remarks
1. class ONEFACE
2. {

private:

3. uint16_t imageWidth; Number of pixels horizontally
4. uint16_t imageHeight; Number of pixels vertically
5. uint16_t imageDepth; Number of bits per pixel. Legal values are 8 and 24.
6. uint8_t format; Flag indicating native format of the image as supplied to NIST

0x01 = JPEG (i.e. compressed data)
0x02 = PNG (i.e. never compressed data)

7. uint8_t *data; Pointer to raster scanned data. Either RGB color or intensity.
If image_depth == 24 this points to 3WH bytes RGBRGBRGB...
If image_depth == 8 this points to WH bytes IIIIIII

8. std::string description; Single description of the image. The allowed values for this string
are given in Table 9.

9. public:

 //getter/setter methods

10. };

2.3.5. Class for encapsulating a set of face images from a single person 460

Table 12 – MULTIFACE class 461

 C++ code fragment Remarks
1. class MULTIFACE

{

private:

 std::vector<ONEFACE> faces;

Vector containing F pre-allocated face images of the same
person. The number of items stored in the vector is
accessible via the vector::size() function.

2. std::string description; Single description of the vector of ONEFACEs. The allowed
values for this string are given in Table 10.

3. public:

 //getter/setter methods

4. };

2.3.6. Dictionary of terms describing ONEVIDEOs 462

A ONEVIDEO will be accompanied by one of the labels given in Table 13, describing the density of people in the video 463
frames. Face recognition implementations submitted to FIVE should tolerate ONEVIDEOs of any category. 464

Table 13 – Labels describing the density of people in the video frames 465

 Label as C++ string Meaning
1. “SINGLE” All of the video frames contain one and only one person. Such video

might arise from a TV interview or speech. An algorithm should
produce one template from the ONEVIDEO.

2. “UNKNOWN” Video frames can contain zero or more people in each frame. Such
video might arise in a surveillance clip. The number of templates to
return would be a random variable.

2.3.7. Class for encapsulating a video sequence 466

Table 14 – ONEVIDEO Class 467

 C++ code fragment Remarks

FIVE

NIST Concept, Evaluation Plan, and API Page 18 of 38

1. class ONEVIDEO
2. {

private:

3. uint16_t frameWidth; Number of pixels horizontally of all frames
4. uint16_t frameHeight; Number of pixels vertically of all frames
5. uint8_t frameDepth; Number of bits per pixel for all frames. Legal values are 8 and 24.
6. uint16_t framesPerSec; The frame rate of the video sequence. If this value is 0, the frames

are sampled irregularly and perhaps infrequently from the parent
video clip (e.g. manually selected frames, or just the I-frames).

7. std::string peopleDensity; Single description of the density of people in the video frames. The
allowed values for this string are given in Table 13.

8. std::vector<const uint8_t*> data; Vector of pointers to data from each frame in the video sequence.
The number of frames (i.e. size of the vector) can be obtained by
calling vector::size(). The i-th entry in data (ie. data[i]) points to
frame_width x frame_height pixels of data for the i-th frame.

9. public:

10. //getter/setter methods

};

11.

2.3.8. Class representing a pair of eye coordinates 468

The data structure for reporting person locations in video appears in Table 15. The coordinates may be useful to NIST for 469
relating spatial location to recognition success during our analysis. 470

Table 15 – EYEPAIR Class 471

 C++ code fragment Remarks
1. class EYEPAIR
2. {

private:

3. bool isSet; If the eye coordinates have been computed and assigned successfully, this value should
be set to true, otherwise it should be set to false.

4. int16_t xLeft;

 int16_t yLeft;
X and Y coordinate of the center of the subject's left eye. Out-of-range values (e.g. x < 0
or x >= width) indicate the implementation believes the eye center is outside the image.

5. int16_t xRight;

 int16_t yRight;
X and Y coordinate of the center of the subject's right eye. Out-of-range values (e.g. x <
0 or x >= width) indicate the implementation believes the eye center is outside the
image.

6. uint16_t frameNum For video: the frame number that corresponds to the video frame from which the eye
coordinates were generated. (ie. the i-th frame from the video sequence). This field
should not be set for eye coordinates for a single still image.

7. public:

 //getter/setter methods

};

8.

2.3.9. Data type for representing a person’s trajectory via eye coordinates from a video sequence 472

Table 16 – PersonTrajectory typedef 473

 C++ code fragment Remarks
1. typedef std::vector<EYEPAIR>

PersonTrajectory;
Vector of EYEPAIR (see 2.3.8) objects for video frames where eyes were
detected. This data structure should store eye coordinates for each video
frame where eyes were detected for a particular person. For video frames
where the person’s eyes were not detected, the SDK shall not add an EYEPAIR
to this data structure.

If a face can be detected, but not the eyes, the implementation should
nevertheless fill this data structure with (x,y)LEFT == (x,y)RIGHT representing some
point on the center of the face.

FIVE

NIST Concept, Evaluation Plan, and API Page 19 of 38

2.3.10. Class for representing a person from a video sequence or an image 474

Table 17 – PERSONREP Class 475

 C++ code fragment Remarks
1. class PERSONREP
2. {

private:

3. PersonTrajectory eyeCoordinates; Data structure for capturing eye coordinates
4. PersonTemplate proprietaryTemplate; PersonTemplate is a wrapper to a uint8_t* for capturing

proprietary template data representing a person from a video
sequence or an image.

5. public:
6. PERSONREP(const uint64_t inSize); The constructor takes a size parameter and allocates memory of

inSize. getPersonTemplatePtr() should be called to access the
newly allocated memory for SDK manipulation. Please note that
this class will take care of all memory allocation and de-allocation
of its own memory. The SDK shall not de-allocate memory
created by this class.

7. void pushBackEyeCoord(const EYEPAIR &eyes); This function should be used to add EYEPAIRs for the video
frames or images where eye coordinates were detected.

8. uint8_t* getPersonTemplatePtr(); This function returns a uint8_t* to the template data.
9. uint64_t getPersonTemplateSize() const; This function returns the size of the template data.
10. //… getter methods, copy constructor,

 //… assignment operator

11. };

2.3.11. Class for result of an identification search 476

All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with the most 477
similar matching entries list first with lowest rank. 478

Table 18 – CANDIDATE Class 479

 C++ code fragment Remarks
1. class CANDIDATE

2. {

private:

3. bool isSet If the candidate is valid, this should be set to true. If the candidate computation failed, this
should be set to false.

4. uint32_t templateId; The Template ID integer from the enrollment database manifest defined in clause 2.3.6.

5. double similarityScore; Measure of similarity between the identification template and the enrolled candidate.
Higher scores mean more likelihood that the samples are of the same person.

An algorithm is free to assign any value to a candidate. The distribution of values will have
an impact on the appearance of a plot of false-negative and false-positive identification
rates.

6. public:
 //getter/setter methods

7. };

2.3.12. Data type for representing a list of results of an identification search 480

Table 19 – CANDIDATELIST typedef 481

 C++ code fragment Remarks
1. typedef std::vector<CANDIDATE> CANDIDATELIST; A vector containing objects of CANDIDATEs. The

CANDIDATE class is defined in section 2.3.11.

 482

FIVE

NIST Concept, Evaluation Plan, and API Page 20 of 38

2.3.13. Class representing return code values 483

Table 20 – ReturnCode class 484

 C++ code fragment Remarks
 class ReturnCode {

public:

1. typedef enum
2. {
3. Success=0, Success
4. MissingConfig=1, The configuration data is missing or unreadable
5. EnrollDirFailed=2, An operation on the enrollment directory failed
6. InitNumData=3, The SDK can’t support the number of images or videos
7. InitBadDesc=4, The image descriptions are unexpected or unusable
8. RefuseInput=5, Elective refusal to process this kind of input (ONEVIDEO or

MULTIFACE)
9. FailExtract=6, Involuntary failure to extract features
10. FailTempl=7, Elective refusal to produce a template
11. FailParse=8, Cannot parse input data
12. FinInputData=9, Cannot locate input data
13. FinTemplFormat=10, One or more template files are in an incorrect format
14. IdBadTempl=11, The input template was defective
15. ImgSizeNotSupported=12, Size of input image/frame not supported
16. Vendor=13 Vendor-defined failure
17. } Status;
18. ReturnCode(const Status inStatus); Constructor that takes an input parameter of a Status enum value.

All of the functions that need to be implemented for the Video API
return an instantiation of a ReturnCode object with a valid status
value passed in as a parameter.

19. Status getStatus() const; Getter method to return status value
20. private:
21. Status status; Member variable for storing status
22. };

2.4. File structures for enrolled template collection 485

For still image enrollment, an SDK converts a MULTIFACE into a template using the 486
ImageEnrollment::generateEnrollmentTemplate() function of section 3.3.5.2. For video enrollment, an SDK converts a 487
ONEVIDEO into one or more templates, using the VideoEnrollment::generateEnrollmentTemplate() of section 3.3.1.2. To 488
support the identification functions, NIST will concatenate enrollment templates into a single large file. This file is called 489
the EDB (for enrollment database). The EDB is a simple binary concatenation of proprietary templates. There is no 490
header. There are no delimiters. The EDB may extend to hundreds of gigabytes in length. 491

This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB. The manifest 492
has the format shown as an example in Table 21. If the EDB contains N templates, the manifest will contain N lines. The 493
fields are space (ASCII decimal 32) delimited. There are three fields, all containing numeric integers. Strictly speaking, the 494
third column is redundant. 495

Table 21 – Enrollment dataset template manifest 496

Field name Template ID Template Length Position of first byte in EDB

Datatype required Unsigned decimal integer Unsigned decimal integer Unsigned decimal integer

Datatype length required 4 bytes 4 bytes 8 bytes

Example lines of a manifest file
appear to the right. Lines 1, 2, 3
and N appear.

90201744 1024 0

163232021 1536 1024

7456433 512 2560

...

FIVE

NIST Concept, Evaluation Plan, and API Page 21 of 38

183838 1024 307200000

 497
The EDB scheme avoids the file system overhead associated with storing millions of individual files. 498

3. API Specification 499

3.1.1. Definitions 500

As shown in Table 22, the video API supports 1:N identification of video-to-video, video-to-still image, and still image-to-501
video. The following hold: 502

 A still image is a picture of one and only one person. One or more such images are presented to the implementation 503
using a MULTIFACE data structure. 504

 A video is a sequence of F ≥ 1 frames containing P ≥ 0 persons. 505

 A frame is 2D still image containing P ≥ 0 persons. 506

 Any person might be present in 0 ≤ f ≤ F frames, and their presence may be non-contiguous (e.g. due to occlusion). 507

 Different videos contain different numbers of frames and people. 508

 A ONEVIDEO container is used to represent a video. It contains a small header and pointers to F frames. 509

 Any person found in a video is represented by proprietary template (feature) data contained with a PERSONREP data 510
structure. A proprietary template contains information from one or more frames. Internally, it might embed multiple 511
traditional still-image templates, or it might integrate feature data by tracking a person across multiple frames. 512

 A PERSONREP structure additionally contains a trajectory indicating the location of the person in each frame. 513
 514
All of the code for the classes needed to implement the video API will be provided to implementers at 515
http://nigos.nist.gov:8080/five. A single sample video has been made available at the same link. The sample video is 516
only approximately representative of the scene and is not an extraction from the actual video data that will be used in the 517
evaluation. It is only intended to illustrate similarities in terms of camera placement relative to the subject and people 518
behavior. It is not intended to represent the optical properties of the actual imaging systems, particularly the spatial 519
sampling rate, nor the compression characteristics. 520

 521

Table 22 – API implementation requirements for FIVE 522

Function Video-to-video Still-to-video Video-to-still

Enroll Videos Videos Stills

Enrollment input datatype ONEVIDEO ONEVIDEO MULTIFACE

Enrollment datatype PERSONREP PERSONREP PERSONREP

Search Video Still Video

Search input datatype ONEVIDEO MULTIFACE ONEVIDEO

Search datatype PERSONREP PERSONREP PERSONREP

Search result CANDIDATELIST CANDIDATELIST CANDIDATELIST

API requirements 3.3.1 + 3.3.2 +
3.3.3 + 3.3.4

3.3.1 + 3.3.2 +
3.3.7 + 3.3.4

3.3.5 + 3.3.6 +
3.3.3 + 3.3.8

3.1.1.1. Video-to-video 523

Video-to-video identification is the process of enrolling N videos and then searching the enrollment database with a 524
search video. During identification, the SDK shall return a set of indices of candidate videos that contain people who 525
appear in the search video. 526

 N templates will be generated from M enrollment videos. If no people appear in the videos, N will be 0. If many 527
people appear in each video, we'd expect N > M. 528

 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 529

 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 530
video. 531

http://nigos.nist.gov:8080/five

FIVE

NIST Concept, Evaluation Plan, and API Page 22 of 38

 Each identification template generated will be searched against the enrollment database of templates generated 532
from the M input videos. 533

 We anticipate that the same person may appear in more than one enrolled video. 534

3.1.1.2. Still image-to-video 535

Still image-to-video identification is the process of enrolling N videos and then searching the enrollment database with a 536
template produced from a MULTIFACE as follows: 537

 N templates will be generated from 1 < M ≤ N enrollment videos. 538

 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 539

 A MULTIFACE (still image) will be converted to an identification template. 540

 The identification template will be searched against the enrollment database of N templates. 541

 We anticipate that the same person may appear in more than one enrolled video. 542

3.1.1.3. Video-to-still image 543

Video-to-still image identification is the process of enrolling N MULTIFACEs (see Table 12) and then searching the 544
enrollment database with templates from persons found in a video as follows 545

 N templates will be generated from N still-image MULTIFACEs. 546

 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 547

 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 548
video. 549

 Each of the S identification templates will be searched separately against the enrollment database of N templates. 550

3.2. 1:N Identification 551

3.2.1. Overview 552

The 1:N application proceeds in two phases, enrollment and identification. The identification phase includes separate 553
pre-search feature extraction stage, and a search stage. 554

The design reflects the following testing objectives for 1:N implementations. 555

 support distributed enrollment on multiple machines, with multiple processes running in parallel

 allow recovery after a fatal exception, and measure the number of occurrences

 allow NIST to copy enrollment data onto many machines to support parallel testing

 respect the black-box nature of biometric templates

 extend complete freedom to the provider to use arbitrary algorithms

 support measurement of duration of core function calls

 support measurement of template size

Table 23 – Procedural overview of the identification test 556

P
h

as
e

Name Description Performance Metrics to be reported
by NIST

FIVE

NIST Concept, Evaluation Plan, and API Page 23 of 38

En
ro

llm
en

t
E1 Initialization For still image enrollment, give the implementation advance notice

of the number of individuals and images that will be enrolled.

Give the implementation the name of a directory where any
provider-supplied configuration data will have been placed by NIST.
This location will otherwise be empty.

The implementation is permitted read-write-delete access to the
enrollment directory during this phase. The implementation is
permitted read-only access to the configuration directory.

After enrollment, NIST may rename and relocate the enrollment
directory - the implementation should not depend on the name of
the enrollment directory.

E2 Parallel
Enrollment

For still image enrollment, for each of N individuals, pass multiple
images to the implementation for conversion to a combined
template. For video enrollment, for each of M video clips, pass
multiple video frames to the implementation for generation of N
templates, based on the number of people detected in the videos.
The implementation will return a template to the calling application.

The implementation is permitted read-only access to the enrollment
directory during this phase. NIST's calling application will be
responsible for storing all templates as binary files. These will not be
available to the implementation during this enrollment phase.

Multiple instances of the calling application may run simultaneously
or sequentially. These may be executing on different computers.
For still image enrollment, the same person will not be enrolled
twice.

Statistics of the times needed to
enroll an individual or video clip.

Statistics of the sizes of created
templates.

The incidence of failed template
creations.

E3 Finalization Permanently finalize the enrollment directory. This supports, for
example, dis-interleaving of internal feature representations, writing
of a manifest, indexing, tree construction, computation of statistical
information over the enrollment dataset, and adaptation of the
representation.

The implementation is permitted read-write-delete access to the
enrollment directory during this phase.

For still image enrollment, size of
the enrollment database as a
function of population size N and
the number of images.

Duration of this operation. The time
needed to execute this function
shall be reported with the preceding
enrollment times.

P
re

-s
ea

rc
h

S1 Initialization Tell the implementation the location of an enrollment directory. The
implementation could look at the enrollment data.

The implementation is permitted read-only access to the enrollment
directory during this phase.

Statistics of the time needed for this
operation.

S2 Template
preparation

For each probe, create a template from a set of input images or one
or more templates from a set of video clips. This operation will
generally be conducted in a separate process invocation to step S2.

The implementation is permitted no access to the enrollment
directory during this phase.

The result of this step is a search template.

Statistics of the time needed for this
operation.

Statistics of the size of the search
template(s).

Se
ar

ch

S3 Initialization Tell the implementation the location of an enrollment directory. The
implementation should read all or some of the enrolled data into
main memory, so that searches can commence.

The implementation is permitted read-only access to the enrollment
directory during this phase.

Statistics of the time needed for this
operation.

S4 Search A template or multiple templates is searched against the enrollment
database.

The implementation is permitted read-only access to the enrollment
directory during this phase.

Statistics of the time needed for this
operation.

Accuracy metrics - Type I + II error
rates.

FIVE

NIST Concept, Evaluation Plan, and API Page 24 of 38

Failure rates.

3.3. Interfaces 557

3.3.1. The VideoEnrollment Interface 558

The abstract class VideoEnrollment must be implemented by the SDK developer in a class named exactly 559
SdkVideoEnrollment. The processing that takes place during each phase of the test is done via calls to the methods 560
declared in the interface as pure virtual, and therefore is to be implemented by the SDK. The test driver will call these 561
methods, handling all return values. 562

 C++ code fragment Remarks
1. class VideoEnrollment
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir,

 const uint32_t numVideos) = 0 ;

Initialize the enrollment session.

4. virtual ReturnCode generateEnrollmentTemplate(

 const ONEVIDEO &inputVideo,

 vector<PERSONREP> &enrollTemplates) = 0;

Generate enrollment template(s) for the persons detected in
the input video. This function takes a ONEVIDEO (see 2.3.6)
as input and populates a vector of PERSONREP (see 2.3.10)
with the number of persons detected from the video
sequence. The implementation could call vector::push_back
to insert into the vector.

5. // Destructor
6. };

3.3.1.1. Initialization of the video enrollment session 563

Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization below for video-564
to-video and still image-to-video. 565

Table 24 – VideoEnrollment::initialize 566

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir, Input

const uint32_t numVideos); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times

by the NIST application immediately before any M 1 calls to generateEnrollmentTemplate. Caution: The
implementation should tolerate execution of P > 1 processes on the one or more machines each of which may be
reading and writing to this same enrollment directory in parallel. File locking or process-specific temporary
filenames would be needed to safely write content in the enrollDir.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or run-time
data files.

enrollDir The directory will be initially empty, but may have been initialized and populated by separate
invocations of the enrollment process. When this function is called, the SDK may populate this
folder in any manner it sees fit. Permissions will be read-write-delete.

numVideos The total number of videos that will be passed to the SDK for enrollment.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

InitNumData The SDK cannot support the number of videos.

Vendor Vendor-defined failure

FIVE

NIST Concept, Evaluation Plan, and API Page 25 of 38

3.3.1.2. Video enrollment 567

A ONEVIDEO is converted to enrollment template(s) for each person detected in the ONEVIDEO using the function below. 568

Table 25 – VideoEnrollment::generateEnrollmentTemplate 569

Prototypes ReturnCode generateEnrollmentTemplate(

const ONEVIDEO &inputVideo, Input

std::vector<PERSONREP> &enrollTemplates); Output

Description This function takes a ONEVIDEO, and outputs a vector of PERSONREP objects. If the function executes correctly (i.e.
returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST application
will concatenate the templates and pass the result to the enrollment finalization function. For a video in which no
persons appear, a valid output is an empty vector (i.e. size() == 0).

If the function gives a non-zero exit status:

 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise

 the test driver will ignore the output template (the template may have any size including zero)

 the event will be counted as a failure to enroll. Such an event means that this person can never be identified
correctly.

IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the
enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in
the template, or created from the templates during the enrollment finalization function.

Input
Parameters

inputVideo An instance of a Table 14 class.

Output
Parameters

enrollTemplates For each person detected in the ONEVIDEO, the function shall identify the person’s
estimated eye centers for each video frame where the person’s eye coordinates can be
calculated. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates
variable, which is a vector of EYEPAIR objects. The frame number from the video of where
the eye coordinates were detected shall be captured in the EYEPAIR.frameNum variable for
each pair of eye coordinates. In the event the eye centers cannot be calculated (ie. the
person becomes out of sight for a few frames in the video), the SDK shall not store an
EYEPAIR for those frames.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of ONEVIDEO

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

ImgSizeNotSupported Input image/frame size too small or large

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST with
the submission of the implementation under test.

3.3.2. The VideoFinalize Interface 570

The abstract class VideoFinalize must be implemented by the SDK developer in a class named exactly SdkVideoFinalize. 571
The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 572
manifest have been stored. These are described in section 2.3.6. The enrollment directory permissions will be read + 573
write. 574

 C++ code fragment Remarks
1. class VideoFinalize
2. {

public:

3. virtual ReturnCode finalize(

 const string &enrollDir,

 const string &edbName,

 const string &edbManifest) = 0;

This function supports post-enrollment developer-optional book-
keeping operations and statistical processing. The function will
generally be called in a separate process after all the enrollment
processes are complete.

4. // Destructor

FIVE

NIST Concept, Evaluation Plan, and API Page 26 of 38

5. };

3.3.2.1. Finalize video enrollment 575

After all templates have been created, the function of Table 26 will be called. This freezes the enrollment data. After this 576
call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 577
phases. 578

The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 579
data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 580
No output is expected from this function, except a return code. 581

Table 26 – VideoFinalize::finalize 582

Prototypes ReturnCode finalize (

const string &enrollDir, Input

const string &edbName, Input

const string &edbManifest); Input

Description This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been
stored. These are described in section 2.3.6. The enrollment directory permissions will be read + write.

The function supports post-enrollment developer-optional book-keeping operations and statistical processing. The
function will generally be called in a separate process after all the enrollment processes are complete.

This function should be tolerant of being called two or more times. Second and third invocations should probably
do nothing.

Input
Parameters

enrollDir The top-level directory in which enrollment data was placed. This variable allows an
implementation to locate any private initialization data it elected to place in the directory.

edbName The name of a single file containing concatenated templates, i.e. the EDB of section 2.3.6.
While the file will have read-write-delete permission, the SDK should only alter the file if it
preserves the necessary content, in other files for example.
The file may be opened directly. It is not necessary to prepend a directory name.

edbManifest The name of a single file containing the EDB manifest of section 2.3.6.
The file may be opened directly. It is not necessary to prepend a directory name.

Output
Parameters

None

ReturnCode Success Success

FinInputData Cannot locate the input data - the input files or names seem incorrect.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

FinTemplFormat One or more template files are in an incorrect format.

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.3.3. The VideoFeatureExtraction Interface 583

The abstract class VideoFeatureExtraction must be implemented by the SDK developer in a class named exactly 584
SdkVideoFeatureExtraction. 585

 C++ code fragment Remarks
1. class VideoFeatureExtraction
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the feature extraction session.

FIVE

NIST Concept, Evaluation Plan, and API Page 27 of 38

4. virtual ReturnCode generateIdTemplate(

 const ONEVIDEO &inputVideo,

 vector<PERSONREP> &idTemplates) = 0;

Generate identification template(s) for the persons
detected in the input video. This function takes a
ONEVIDEO (see 2.3.6) as input and populates a vector
of PERSONREP (see 2.3.10) with the number of
persons detected from the video sequence. The
implementation could call vector::push_back to insert
into the vector.

5. // Destructor
6. };

3.3.3.1. Video feature extraction initialization 586

Before one or more ONEVIDEOs are sent to the identification feature extraction function, the test harness will call the 587
initialization function below. 588

Table 27 – VideoFeatureExtraction::initialize 589

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called once by the

NIST application immediately before any M 1 calls to generateIdTemplate.

The implementation has read-only access to enrollDir (containing prior enrollment data) and to configDir.

Input
Parameters

configDir A read-only directory containing any developer-supplied configuration parameters
or run-time data files.

 enrollDir The read-only top-level directory in which enrollment data was placed and then
finalized by the implementation. The implementation can parameterize subsequent
template production on the basis of the enrolled dataset.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

3.3.3.2. Video feature extraction 590

A ONEVIDEO is converted to one or more identification templates using the function below. The result may be stored by 591
NIST, or used immediately. The SDK shall not attempt to store any data. 592

Table 28 – VideoFeatureExtraction::generateIdTemplate 593

Prototypes ReturnCode generateIdTemplate(

const ONEVIDEO &inputVideo, Input

std::vector<PERSONREP> &idTemplates); Output

Description This function takes a ONEVIDEO (see 2.3.6) as input and populates a vector of PERSONREP (see 2.3.10) with the
number of persons detected from the video sequence. The implementation could call vector::push_back to insert
into the vector.

If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template
to permanent storage, or may keep it only in memory (the implementation does not need to know). If the function
returns a non-zero exit status, the output template will be not be used in subsequent search operations.

The function shall not have access to the enrollment data, nor shall it attempt access.

Input
Parameters

InputVideo An instance of a section 2.3.6 class. Implementations must alter their behavior according to
the people detected in the video sequence.

Output
Parameters

IdTemplates For each person detected in the video, the function shall create a PERSONREP (see section
2.3.10) object, populate it with a template and eye coordinates for each frame where eyes

FIVE

NIST Concept, Evaluation Plan, and API Page 28 of 38

were detected, and add it to the vector.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of ONEVIDEO

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

ImgSizeNotSupported Input image/frame size too small or large

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.3.4. The VideoSearch Interface 594

The abstract class VideoSearch must be implemented by the SDK developer in a class named exactly SdkVideoSearch. 595

 C++ code fragment Remarks
1. class VideoSearch
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the search session.

4. virtual ReturnCode identifyVideo(

 const PERSONREP &idVideoTemplate,

 const uint32_t candListLength,

 CANDIDATELIST &candList) = 0;

For video-to-video identification

This function searches a template generated from a
ONEVIDEO against the enrollment set, and outputs a
vector containing candListLength objects of Candidates
(see section 2.3.12).

5. virtual ReturnCode identifyImage(

 const PERSONREP &idImageTemplate,

 const uint32_t candListLength,

 CANDIDATELIST &candList) = 0;

For still-to-video identification

This function searches a template generated from a
MULTIFACE against the enrollment set, and outputs a
vector containing candListLength objects of Candidates.

6. // Destructor
7. };

3.3.4.1. Video identification initialization 596

The function below will be called once prior to one or more calls of the searching function of Table 30. The function might 597
set static internal variables so that the enrollment database is available to the subsequent identification searches. 598

Table 29 – VideoSearch::initialize 599

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the
VideoFinalize::finalize function.

Input
Parameters

configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

enrollDir The read-only top-level directory in which enrollment data was placed.

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

FIVE

NIST Concept, Evaluation Plan, and API Page 29 of 38

3.3.4.2. Video identification search 600

The function below compares a proprietary identification template against the enrollment data and returns a candidate 601
list. 602

Table 30 – VideoSearch::identifyVideo and VideoSearch::identifyImage 603

Prototype ReturnCode identifyVideo(Searches a template generated from a ONEVIDEO
against the enrollment set (video-to-video)

 const PERSONREP &idVideoTemplate, Input

 const uint32_t candListLength, Input

 CANDIDATELIST &candList); Output

 ReturnCode identifyImage(Searches a template generated from a MULTIFACE
against the enrollment set (still-to-video)

const PERSONREP &idImageTemplate, Input

const uint32_t candListLength, Input

CANDIDATELIST &candList); Output

Description

This function searches an identification template against the enrollment set, and outputs a vector containing
candListLength Candidates (see section 2.3.12). Each candidate shall be populated by the implementation and
added to candList. Note that candList will be an empty vector when passed into this function. The candidates shall
appear in descending order of similarity score - i.e. most similar entries appear first.

Input
Parameters

idTemplate A template from generateIdTemplate() - If the value returned by that function was non-zero the
contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.

candListLength The number of candidates the search should return

Output
Parameters

candList A vector containing candListLength objects of Candidates. The datatype is defined in section
2.3.12. Each candidate shall be populated by the implementation and added to this vector. The
candidates shall appear in descending order of similarity score - i.e. most similar entries appear
first.

ReturnCode Success Success

IdBadTempl The input template was defective.

Vendor Vendor-defined failure

3.3.5. The ImageEnrollment Interface 604

The abstract class ImageEnrollment must be implemented by the SDK developer in a class named exactly 605
SdkImageEnrollment. 606

 C++ code fragment Remarks
1. class ImageEnrollment
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir,

 const uint32_t numPersons,

 const uint32_t numImages,

 const vector<string> &descriptions) = 0 ;

Initialize the enrollment session.

4. virtual ReturnCode generateEnrollmentTemplate(

 const MULTIFACE &inputFaces,

 PERSONREP &outputTemplate) = 0;

This function takes a MULTIFACE (see
2.3.3) as input and outputs a proprietary
template represented by a PERSONREP
(see 2.3.10).

For each input image in the MULTIFACE,
the function shall return the estimated
eye centers by setting
PERSONREP.eyeCoordinates.

5. // Destructor
6. };

FIVE

NIST Concept, Evaluation Plan, and API Page 30 of 38

3.3.5.1. Initialization of the image enrollment session 607

Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization below for video-608
to-still. 609

Table 31 – ImageEnrollment::initialize 610

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir, Input

const uint32_t numPersons, Input

const uint32_t numImages, Input

const std::vector<string> &descriptions); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called N=1

times by the NIST application immediately before any M 1 calls to generateEnrollmentTemplate. Caution:
The implementation should tolerate execution of P > 1 processes on the one or more machines each of which
may be reading and writing to this same enrollment directory in parallel. File locking or process-specific
temporary filenames would be needed to safely write content in the enrollDir.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or run-
time data files.

 enrollDir The directory will be initially empty, but may have been initialized and populated by separate
invocations of the enrollment process. When this function is called, the SDK may populate
this folder in any manner it sees fit. Permissions will be read-write-delete.

 numPersons The number of persons who will be enrolled.

numImages The total number of images that will be enrolled, summed over all identities.

descriptions A lexicon of labels one of which will be assigned to each enrollment image. See Table 9 for
valid values.
NOTE: The identification search images may or may not be labeled. An identification image
may carry a label not in this set of labels. The number of items stored in the vector is
accessible via the vector::size() function.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

InitNumData The SDK cannot support the number of videos.

InitBadDesc The descriptions are unexpected, or unusable.

Vendor Vendor-defined failure

3.3.5.2. Image enrollment 611

A MULTIFACE (see Table 12) is converted to a single enrollment template using the function below. 612

Table 32 – ImageEnrollment::generateEnrollmentTemplate 613

Prototypes ReturnCode generateEnrollmentTemplate(

const MULTIFACE &inputFaces, Input

PERSONREP &outputTemplate); Output

Description This function takes a MULTIFACE, and outputs a proprietary template in the form of a PERSONREP object. If the
function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store
the template. The NIST application will concatenate the templates and pass the result to the enrollment
finalization function.

If the function gives a non-zero exit status:

 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise

 the test driver will ignore the output template (the template may have any size including zero)

 the event will be counted as a failure to enroll. Such an event means that this person can never be identified

FIVE

NIST Concept, Evaluation Plan, and API Page 31 of 38

correctly.

IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the
enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in
the template, or created from the templates during the enrollment finalization function.

Input
Parameters

inputFaces

An instance of a Table 12 structure.

Output
Parameters

outputTemplate An instance of a section 2.3.10 class, which stores proprietary template data and eye
coordinates. The function shall identify the person’s estimated eye centers for each image
in the MULTIFACE. The eye coordinates shall be captured in the
PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. In the event
the eye centers cannot be calculated, the SDK shall store an EYEPAIR and set EYEPAIR.isSet
to false to indicate there was a failure in generating eye coordinates. In other words, for N
images in the MULTIFACE.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of MULTIFACE

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

ImgSizeNotSupported Input image/frame size too small or large

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.3.6. The ImageFinalize Interface 614

The abstract class ImageFinalize must be implemented by the SDK developer in a class named exactly SdkImageFinalize. 615
The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 616
manifest have been stored. These are described in section 2.3.6. The enrollment directory permissions will be read + 617
write. 618

 C++ code fragment Remarks
1. class ImageFinalize
2. {

public:

3. virtual ReturnCode finalize(

 const string &enrollDir,

 const string &edbName,

 const string &edbManifest) = 0;

This function supports post-enrollment developer-optional
book-keeping operations and statistical processing. The
function will generally be called in a separate process after all
the enrollment processes are complete.

4. // Destructor
5. };

3.3.6.1. Finalize image enrollment 619

After all templates have been created, the function of Table 33 will be called. This freezes the enrollment data. After this 620
call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 621
phases. 622

The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 623
data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 624
No output is expected from this function, except a return code. 625

Table 33 – ImageFinalize::finalize 626

Prototypes ReturnCode finalize(

const string &enrollDir, Input

const string &edbName, Input

const string &edbManifest); Input

Description This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have

FIVE

NIST Concept, Evaluation Plan, and API Page 32 of 38

been stored. These are described in section 2.3.6. The enrollment directory permissions will be read + write.

The function supports post-enrollment developer-optional book-keeping operations and statistical processing.
The function will generally be called in a separate process after all the enrollment processes are complete.

This function should be tolerant of being called two or more times. Second and third invocations should

probably do nothing.

Input
Parameters

enrollDir The top-level directory in which enrollment data was placed. This variable allows an
implementation to locate any private initialization data it elected to place in the
directory.

edbName The name of a single file containing concatenated templates, i.e. the EDB of section
2.3.6.
While the file will have read-write-delete permission, the SDK should only alter the file if
it preserves the necessary content, in other files for example.
The file may be opened directly. It is not necessary to prepend a directory name.

edbManifest The name of a single file containing the EDB manifest of section 2.3.6.
The file may be opened directly. It is not necessary to prepend a directory name.

Output
Parameters

None

ReturnCode Success Success

FinInputData Cannot locate the input data - the input files or names seem incorrect.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

FinTemplFormat One or more template files are in an incorrect format.

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.3.7. The ImageFeatureExtraction Interface 627

The abstract class ImageFeatureExtraction must be implemented by the SDK developer in a class named exactly 628
SdkImageFeatureExtraction. 629

 C++ code fragment Remarks
1. class ImageFeatureExtraction
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the feature extraction session.

4. virtual ReturnCode generateIdTemplate(

 const MULTIFACE &inputFaces,

 PERSONREP &outputTemplate) = 0;

This function takes a MULTIFACE (see 2.3.3) as
input and outputs a proprietary template
represented by a PERSONREP (see 2.3.10).

For each input image in the MULTIFACE, the
function shall return the estimated eye centers by
setting PERSONREP.eyeCoordinates.

5. // Destructor
6. };

3.3.7.1. Image feature extraction initialization 630

Before one or more MULTIFACEs are sent to the identification feature extraction function, the test harness will call the 631
initialization function below. 632

Table 34 – ImageFeatureExtraction::initialize 633

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description This function initializes the SDK under test and sets all needed parameters. This function will be called once by

FIVE

NIST Concept, Evaluation Plan, and API Page 33 of 38

 the NIST application immediately before M 1 calls to generateIdTemplate. The implementation has read-
only access to enrollDir (containing prior enrollment data) and to configDir.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters
or run-time data files.

 enrollDir The read-only top-level directory in which enrollment data was placed and then
finalized by the implementation. The implementation can parameterize subsequent
template production on the basis of the enrolled dataset.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

3.3.7.2. Image feature extraction 634

A MULTIFACE is converted to one identification template using the function below. The result may be stored by NIST, or 635
used immediately. The SDK shall not attempt to store any data. 636

Table 35 – ImageFeatureExtraction::generateIdTemplate 637

Prototypes ReturnCode generateIdTemplate(

const MULTIFACE &inputFaces, Input

PERSONREP &outputTemplate); Output

Description This function takes a MULTIFACE (see 2.3.3) as input and populates a PERSONREP (see 2.3.10) with a proprietary
template and eye coordinates.

If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template
to permanent storage, or may keep it only in memory (the developer implementation does not need to know). If the
function returns a non-zero exit status, the output template will be not be used in subsequent search operations.

The function shall not have access to the enrollment data, nor shall it attempt access.

Input
Parameters

inputFaces

An instance of a Table 12 structure.

Output
Parameters

outputTemplate An instance of a section 2.3.10 class, which stores proprietary template data and eye
coordinates. The function shall identify the person’s estimated eye centers for each image
in the MULTIFACE. The eye coordinates shall be captured in the
PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. In the event
the eye centers cannot be calculated, the SDK shall store an EYEPAIR and set EYEPAIR.isSet
to false to indicate there was a failure in generating eye coordinates. In other words, for N
images in the MULTIFACE.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of MULTIFACE

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

ImgSizeNotSupported Input image/frame size too small or large

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.3.8. The ImageSearch Interface 638

The abstract class ImageSearch must be implemented by the SDK developer in a class named exactly SdkImageSearch. 639

 C++ code fragment Remarks
1. class VideoFeatureExtraction
2. {

public:

FIVE

NIST Concept, Evaluation Plan, and API Page 34 of 38

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the search session.

4. virtual ReturnCode identifyVideo(

 const PERSONREP &idTemplate,

 const uint32_t candListLength,

 CANDIDATELIST &candList) = 0;

For video-to-still identification

This function searches a template generated from a
ONEVIDEO against the enrollment set, and outputs a
vector containing candListLength objects of Candidates
(see section 2.3.12). Each candidate shall be populated
by the implementation and added to candList. The
candidates shall appear in descending order of similarity
score - i.e. most similar entries appear first.

5. // Destructor
6. };

3.3.8.1. Image identification initialization 640

The function below will be called once prior to one or more calls of the searching function of Table 37. The function might 641
set static internal variables so that the enrollment database is available to the subsequent identification searches. 642

Table 36 – ImageSearch::initialize 643

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by
the ImageFinalize::finalize function.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or run-time
data files.

enrollDir The read-only top-level directory in which enrollment data was placed.

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

3.3.8.2. Image identification search 644

The function below performs a video-to-still identification and compares a proprietary identification template generated 645
from a video against the enrollment data and returns a candidate list. 646

Table 37 – ImageSearch::identifyVideo 647

Prototype ReturnCode identifyVideo(Searches a template generated from a ONEVIDEO against the enrollment
set (video-to-still)

 const PERSONREP &idVideoTemplate, Input

 const uint32_t candListLength, Input

 CANDIDATELIST &candList); Output

Description

This function searches an identification template against the enrollment set, and outputs a vector containing
candListLength objects of Candidates (see section 2.3.12). Each candidate shall be populated by the implementation
and added to candList. Note that candList will be an empty vector when passed into this function. The candidates
shall appear in descending order of similarity score - i.e. most similar entries appear first.

Input Parameters idTemplate A template from VideoFeatureExtraction::generateIdTemplate() - If the value
returned by that function was non-zero the contents of idTemplate will not be
used and this function (i.e. identifyVideo) will not be called.

candListLength The number of candidates the search should return

Output
Parameters

candList A vector containing candListLength objects of Candidates. The datatype is defined
in section 2.3.12. Each candidate shall be populated by the implementation and

FIVE

NIST Concept, Evaluation Plan, and API Page 35 of 38

added to this vector. The candidates shall appear in descending order of similarity
score - i.e. most similar entries appear first.

ReturnCode Success Success

IdBadTempl The input template was defective.

Vendor Vendor-defined failure

NOTE: Ordinarily the calling application will set the input candidate list length to operationally typical values, say 0 L 648
200, and L << N. However, there is interest in the presence of mates much further down the candidate list. We may 649
therefore extend the candidate list length such that L approaches N. 650

FIVE

NIST Concept, Evaluation Plan, and API Page 36 of 38

4. References 651

AN27 NIST Special Publication 500-271: American National Standard for Information Systems — Data Format for the Interchange
of Fingerprint, Facial, & Other Biometric Information – Part 1. (ANSI/NIST ITL 1-2007). Approved April 20, 2007.

FRVT 2002 Face Recognition Vendor Test 2002: Evaluation Report, NIST Interagency Report 6965, P. Jonathon Phillips, Patrick Grother,
Ross J. Micheals, Duane M. Blackburn, Elham Tabassi, Mike Bone

FRVT 2002b Face Recognition Vendor Test 2002: Supplemental Report, NIST Interagency Report 7083, Patrick Grother

FRVT 2006 P. Jonathon Phillips, W. Todd Scruggs, Alice J. O’Toole, Patrick J. Flynn, Kevin W. Bowyer, Cathy L. Schott, and Matthew
Sharpe. "FRVT 2006 and ICE 2006 Large-Scale Results." NISTIR 7408, March 2007.

FRVT 2013 P. Grother and M. Ngan, Face Recognition Vendor Test (FRVT), Performance of Face Identification Algorithms, NIST
Interagency Report 8009, Released May 26, 2014. http://face.nist.gov/frvt

IREX III P. Grother, G.W. Quinn, J. Matey, M. Ngan, W. Salamon, G. Fiumara, C. Watson, Iris Exchange III, Performance of Iris
Identification Algorithms, NIST Interagency Report 7836, Released April 9, 2012. http://iris.nist.gov/irex

ISO

STD05

ISO/IEC 19794-5:2005 — Information technology — Biometric data interchange formats — Part 5: Face image data. The
standard was published in 2005, and can be purchased from ANSI at http://webstore.ansi.org/

Multipart standard of "Biometric data interchange formats". This standard was published in 2005. It was amended twice to
include guidance to photographers, and then to include 3D information. Two corrigenda were published. All these changes
and new material is currently being incorporated in revision of the standard. Publication is likely in early 2011. The
documentary history is as follows.

ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image data. First edition:
2005-06-15.

International Standard ISO/IEC 19794-5:2005 Technical Corrigendum 1: Published 2008-07-01

International Standard ISO/IEC 19794-5:2005 Technical Corrigendum 2: Published 2008-07-01

Information technology — Biometric data interchange formats — Part 5: Face image data AMENDMENT 1: Conditions for
taking photographs for face image data. Published 2007-12-15

Information technology — Biometric data interchange formats — Part 5: Face image data AMENDMENT 2: Three
dimensional image data.

JTC 1/SC37/N3303. FCD text of the second edition. Contact pgrother AT nist DOT gov for more information.

MBE P. Grother, G .W. Quinn, and P. J. Phillips, Multiple-Biometric Evaluation (MBE) 2010, Report on the Evaluation of 2D Still
Image Face Recognition Algorithms, NIST Interagency Report 7709, Released June 22, 2010. Revised August 23, 2010.

http://face.nist.gov/mbe

MINEX P. Grother et al., Performance and Interoperability of the INCITS 378 Template, NIST IR 7296
http://fingerprint.nist.gov/minex04/minex_report.pdf

MOC P. Grother and W. Salamon, MINEX II - An Assessment of ISO/IEC 7816 Card-Based Match-on-Card Capabilities

http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf

PERFSTD

INTEROP

ISO/IEC 19795-4 — Biometric Performance Testing and Reporting — Part 4: Interoperability Performance Testing. Posted
as document 37N2370. The standard was published in 2007. It can be purchased from ANSI at http://webstore.ansi.org/.

 652

http://face.nist.gov/frvt
http://iris.nist.gov/irex
http://webstore.ansi.org/
http://face.nist.gov/mbe
http://fingerprint.nist.gov/minex04/minex_report.pdf
http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf
http://isotc.iso.org/livelink/livelink/6993846/JTC001-SC37-N-2370.pdf?func=doc.Fetch&nodeid=6993846
http://webstore.ansi.org/

FIVE

NIST Concept, Evaluation Plan, and API Page 37 of 38

Annex A 653

Submission of Implementations to the FIVE 654

A.1 Submission of implementations to NIST 655

NIST requires that all software, data and configuration files submitted by the participants be signed and encrypted. 656
Signing is done with the participant's private key, and encryption is done with the NIST public key. The detailed 657
commands for signing and encrypting are given here: http://www.nist.gov/itl/iad/ig/encrypt.cfm 658

NIST will validate all submitted materials using the participant's public key, and the authenticity of that key will be verified 659
using the key fingerprint. This fingerprint must be submitted to NIST by writing it on the signed participation agreement. 660

By encrypting the submissions, we ensure privacy; by signing the submission, we ensure authenticity (the software 661
actually belongs to the submitter). NIST will reject any submission that is not signed and encrypted. NIST accepts no 662
responsibility for anything that is transmitted to NIST that is not signed and encrypted with the NIST public key. 663

A.2 How to participate 664

Those wishing to participate in FIVE testing must do all of the following, on the schedule listed on Page 2. 665

― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 666
http://www.nist.gov/itl/iad/ig/encrypt.cfm 667

― Send a signed and fully completed copy of the Application to Participate in the Face In Video Evaluation (FIVE). This is 668
available at http://www.nist.gov/itl/iad/ig/five.cfm. This must identify, and include signatures from, the Responsible 669
Parties as defined in the application. The properly signed FIVE Application to Participate shall be sent to NIST as a 670
PDF. 671

― Provide an SDK (Software Development Kit) library which complies with the API (Application Programmer Interface) 672
specified in this document. 673

 Encrypted data and SDKs below 20MB can be emailed to NIST at five@nist.gov 674

 Encrypted data and SDKS above 20MB shall be 675

EITHER 676

 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 677
and then rename to include the filename extension need for passage through the NIST firewall. 678

 you% split –a 3 –d –b 9000000 libFIVE_enron_A_02.tgz.gpg 679

 you% ls -1 x??? | xargs –iQ mv Q libFIVE_enron_A_02_Q.tgz.gpg 680

 Email each part in a separate email. Upon receipt NIST will 681

 nist% cat FIVE2012_enron_A02_*.tgz.gpg > libFIVE_enron_A_02.tgz.gpg 682

OR 683

 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver8, 684

OR 685

 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 686

FIVE Test Liaison (A203)
100 Bureau Drive
A203/Tech225/Stop 8940
NIST
Gaithersburg, MD 20899-8940
USA

In cases where a courier needs a phone number, please
use NIST shipping and handling on: 301 -- 975 -- 6296.

8 NIST will not register, or establish any kind of membership, on the provided website.

http://www.nist.gov/itl/iad/ig/encrypt.cfm
http://www.nist.gov/itl/iad/ig/encrypt.cfm
http://www.nist.gov/itl/iad/ig/five.cfm
mailto:five@nist.gov

FIVE

NIST Concept, Evaluation Plan, and API Page 38 of 38

A.3 Implementation validation 687

Registered Participants will be provided with a small validation dataset and test program available on the website 688

http://www.nist.gov/itl/iad/ig/five.cfm shortly after the final evaluation plan is released. 689

The validation test programs shall be compiled by the provider. The output of these programs shall be submitted to NIST. 690

Prior to submission of the SDK and validation data, the Participant must verify that their software executes on the 691
validation images, and produces correct similarity scores and templates. 692

Software submitted shall implement the FIVE API Specification as detailed in the body of this document. 693

Upon receipt of the SDK and validation output, NIST will attempt to reproduce the same output by executing the SDK on 694
the validation imagery, using a NIST computer. In the event of disagreement in the output, or other difficulties, the 695
Participant will be notified. 696

http://www.nist.gov/itl/iad/ig/five.cfm

	Structure Bookmarks
	Part
	Figure
	Face In Video Evaluation (FIVE) Concept, Evaluation Plan, and API Version 0.4
	Patrick Grother and Mei Ngan
	Image Group Information Access Division Information Technology Laboratory
	October 3, 2014
	Figure
	 15
	 16
	 17
	Timeline of the FIVE Evaluation 18
	Table
	TR
	TD
	Span
	Phase

	TD
	Span
	Date

	TD
	Span
	External actions, deadlines

	Span

	Phase 0
	Phase 0
	Phase 0

	2014-07-15
	2014-07-15

	Web site up, announce schedule
	Web site up, announce schedule

	Span

	TR
	2014-08-15
	2014-08-15

	First draft Evaluation Plan and API
	First draft Evaluation Plan and API

	Span

	TR
	2014-08-31
	2014-08-31

	Public comments on first drafts due
	Public comments on first drafts due

	Span

	TR
	2014-10-01
	2014-10-01

	Second draft Evaluation Plan and API
	Second draft Evaluation Plan and API

	Span

	TR
	2014-10-15
	2014-10-15

	Public comments on second drafts due
	Public comments on second drafts due

	Span

	TR
	2014-10-30
	2014-10-30

	Third draft Evaluation Plan and API. Draft five.h available.
	Third draft Evaluation Plan and API. Draft five.h available.

	Span

	TR
	2014-11-07
	2014-11-07

	Public comments on third drafts due
	Public comments on third drafts due

	Span

	TR
	2014-11-10
	2014-11-10

	Final Evaluation Plan and API available. Final five.h available
	Final Evaluation Plan and API available. Final five.h available

	Span

	TR
	2014-11-10
	2014-11-10

	FIVE validation package available
	FIVE validation package available

	Span

	TR
	2014-11-17
	2014-11-17

	Updates to FIVE validation package as necessary
	Updates to FIVE validation package as necessary

	Span

	TR
	TD
	Span
	Phase 1

	TD
	Span
	2014-11-17

	TD
	Span
	Opening of Phase 1 submission period

	Span

	TR
	TD
	Span
	

	TD
	Span
	2015-02-08

	TD
	Span
	Deadline for submission for inclusion of results in first interim report card

	Span

	TR
	TD
	Span
	2015-03-28

	TD
	Span
	First interim report card released to submitting participants

	Span

	TR
	TD
	Span
	Phase 2

	TD
	Span
	2015-04-01

	TD
	Span
	Opening of Phase 2 submission period

	Span

	TR
	TD
	Span
	2015-06-05

	TD
	Span
	Deadline for submission for inclusion of results in second interim report card.

	Span

	TR
	TD
	Span
	2015-07-30

	TD
	Span
	Second interim report card released to submitting participants

	Span

	TR
	TD
	Span
	Phase 3

	TD
	Span
	2015-08-01

	TD
	Span
	Opening of Phase 3

	Span

	TR
	TD
	Span
	2015-10-05

	TD
	Span
	Deadline for submission of algorithms to Phase 3

	Span

	 19
	 20
	November 2014
	November 2014
	November 2014
	November 2014
	Su Mo Tu We Th Fr Sa
	 1
	 2 3 4 5 6 7 8
	 9 10 11 12 13 14 15
	16 17 18 19 20 21 22
	23 24 25 26 27 28 29
	30

	 December 2014
	 December 2014
	Su Mo Tu We Th Fr Sa
	 1 2 3 4 5 6
	 7 8 9 10 11 12 13
	14 15 16 17 18 19 20
	21 22 23 24 25 26 27
	28 29 30 31
	

	January 2015
	January 2015
	Su Mo Tu We Th Fr Sa
	 1 2 3
	 4 5 6 7 8 9 10
	11 12 13 14 15 16 17
	18 19 20 21 22 23 24
	25 26 27 28 29 30 31

	February 2015
	February 2015
	Su Mo Tu We Th Fr Sa
	 1 2 3 4 5 6 7
	 8 9 10 11 12 13 14
	15 16 17 18 19 20 21
	22 23 24 25 26 27 28

	 March 2015
	 March 2015
	Su Mo Tu We Th Fr Sa
	 1 2 3 4 5 6 7
	 8 9 10 11 12 13 14
	15 16 17 18 19 20 21
	22 23 24 25 26 27 28
	29 30 31
	

	April 2015
	April 2015
	Su Mo Tu We Th Fr Sa
	 1 2 3 4
	 5 6 7 8 9 10 11
	12 13 14 15 16 17 18
	19 20 21 22 23 24 25
	26 27 28 29 30
	

	Span

	May 2015
	May 2015
	May 2015
	Su Mo Tu We Th Fr Sa
	 1 2
	 3 4 5 6 7 8 9
	10 11 12 13 14 15 16
	17 18 19 20 21 22 23
	24 25 26 27 28 29 30
	31

	June 2015
	June 2015
	Su Mo Tu We Th Fr Sa
	 1 2 3 4 5 6
	 7 8 9 10 11 12 13
	14 15 16 17 18 19 20
	21 22 23 24 25 26 27
	28 29 30

	July 2015
	July 2015
	Su Mo Tu We Th Fr Sa
	 1 2 3 4
	 5 6 7 8 9 10 11
	12 13 14 15 16 17 18
	19 20 21 22 23 24 25
	26 27 28 29 30 31

	August 2015
	August 2015
	Su Mo Tu We Th Fr Sa
	 1
	 2 3 4 5 6 7 8
	 9 10 11 12 13 14 15
	16 17 18 19 20 21 22
	23 24 25 26 27 28 29
	30 31

	September 2015
	September 2015
	Su Mo Tu We Th Fr Sa
	 1 2 3 4 5
	 6 7 8 9 10 11 12
	13 14 15 16 17 18 19
	20 21 22 23 24 25 26
	27 28 29 30

	
	

	Span

	 21
	Major API Changes since FRVT 2013 Class V 22
	The header/source files for the API will be made available to implementers at
	The header/source files for the API will be made available to implementers at
	http://nigos.nist.gov:8080/five
	http://nigos.nist.gov:8080/five

	. 23

	― The structures ONEFACE (see
	― The structures ONEFACE (see
	― The structures ONEFACE (see
	― The structures ONEFACE (see
	Table 11
	Table 11

) and MULTIFACE (see
	Table 12
	Table 12

) have been changed to classes. 24

	― The MULTIFACE class contains a new “description” member variable and valid values are specified in
	― The MULTIFACE class contains a new “description” member variable and valid values are specified in
	― The MULTIFACE class contains a new “description” member variable and valid values are specified in
	Table 10
	Table 10

	. 25

	― The labels for describing types of still images have been updated (see
	― The labels for describing types of still images have been updated (see
	― The labels for describing types of still images have been updated (see
	Table 9
	Table 9

). 26

	― The ONEVIDEO (see
	― The ONEVIDEO (see
	― The ONEVIDEO (see
	Table 14
	Table 14

) class contains a new “peopleDensity” member variable and valid values are specified in 27
	Table 13
	Table 13

	. 28

	29
	Table of Contents 30
	Table of Contents 30
	1. FIVE ...
	1. FIVE ...
	6
	 31

	1.1. Scope ...
	1.1. Scope ...
	6
	 32

	1.2. Audience ..
	1.2. Audience ..
	6
	 33

	1.3. Market drivers ...
	1.3. Market drivers ...
	7
	 34

	1.4. Offline testing ..
	1.4. Offline testing ..
	7
	 35

	1.5. Phased testing ...
	1.5. Phased testing ...
	7
	 36

	1.6. Interim reports ..
	1.6. Interim reports ..
	7
	 37

	1.7. Final reports ...
	1.7. Final reports ...
	7
	 38

	1.8. Application scenarios ...
	1.8. Application scenarios ...
	8
	 39

	1.9. Image source labels ...
	1.9. Image source labels ...
	8
	 40

	1.10. Rules for participation ...
	1.10. Rules for participation ...
	8
	 41

	1.11. Number and schedule of submissions ...
	1.11. Number and schedule of submissions ...
	8
	 42

	1.12. Use of multiple images per person ..
	1.12. Use of multiple images per person ..
	9
	 43

	1.13. Core accuracy metrics ...
	1.13. Core accuracy metrics ...
	9
	 44

	1.14. Generalized accuracy metrics ..
	1.14. Generalized accuracy metrics ..
	10
	 45

	1.15. Reporting template size...
	1.15. Reporting template size...
	10
	 46

	1.16. Reporting computational efficiency ..
	1.16. Reporting computational efficiency ..
	10
	 47

	1.17. Exploring the accuracy-speed trade-space ..
	1.17. Exploring the accuracy-speed trade-space ..
	10
	 48

	1.18. Hardware specification ..
	1.18. Hardware specification ..
	10
	 49

	1.19. Operating system, compilation, and linking environment ..
	1.19. Operating system, compilation, and linking environment ..
	11
	 50

	1.20. Software and documentation ..
	1.20. Software and documentation ..
	11
	 51

	1.21. Runtime behavior ..
	1.21. Runtime behavior ..
	12
	 52

	1.22. Threaded computations ..
	1.22. Threaded computations ..
	13
	 53

	1.23. Time limits ...
	1.23. Time limits ...
	13
	 54

	1.24. Test datasets ..
	1.24. Test datasets ..
	14
	 55

	1.25. Ground truth integrity ...
	1.25. Ground truth integrity ...
	15
	 56

	2. Data structures supporting the API ..
	2. Data structures supporting the API ..
	15
	 57

	2.1. Overview ..
	2.1. Overview ..
	15
	 58

	2.2. Requirement ..
	2.2. Requirement ..
	15
	 59

	2.3. File formats and data structures ...
	2.3. File formats and data structures ...
	15
	 60

	2.4. File structures for enrolled template collection ..
	2.4. File structures for enrolled template collection ..
	20
	 61

	3. API Specification ...
	3. API Specification ...
	21
	 62

	3.2. 1:N Identification ...
	3.2. 1:N Identification ...
	22
	 63

	3.3. Interfaces ...
	3.3. Interfaces ...
	24
	 64

	4. References ..
	4. References ..
	36
	 65

	Annex A Submission of Implementations to the FIVE ..
	Annex A Submission of Implementations to the FIVE ..
	37
	 66

	A.1 Submission of implementations to NIST ..
	A.1 Submission of implementations to NIST ..
	37
	 67

	A.2 How to participate..
	A.2 How to participate..
	37
	 68

	A.3 Implementation validation ...
	A.3 Implementation validation ...
	38
	 69

	 70
	List of Figures 71
	Figure 1 – Organization and documentation of the FIVE ...
	Figure 1 – Organization and documentation of the FIVE ...
	6
	 72

	Figure 2 – Examples of pose angles and their encodings (yaw, pitch) ...
	Figure 2 – Examples of pose angles and their encodings (yaw, pitch) ...
	16
	 73

	 74
	List of Tables 75
	Table 1 – Abbreviations ..
	Table 1 – Abbreviations ..
	5
	 76

	Table 2 – Subtests supported under the FIVE activity ..
	Table 2 – Subtests supported under the FIVE activity ..
	8
	 77

	Table 3 – Cumulative total number of algorithms ...
	Table 3 – Cumulative total number of algorithms ...
	8
	 78

	Table 4 – Summary of accuracy metrics ...
	Table 4 – Summary of accuracy metrics ...
	9
	 79

	Table 5 – Implementation library filename convention ...
	Table 5 – Implementation library filename convention ...
	11
	 80

	Table 6 – Number of threads allowed for each function ...
	Table 6 – Number of threads allowed for each function ...
	13
	 81

	Table 7 – Processing time limits in milliseconds ..
	Table 7 – Processing time limits in milliseconds ..
	Table 7 – Processing time limits in milliseconds ..
	13
	 82

	Table 8 – Main video corpora (others will be used) ...
	Table 8 – Main video corpora (others will be used) ...
	14
	 83

	Table 10 – Labels describing types of images...
	Table 10 – Labels describing types of images...
	15
	 84

	Table 11 – Labels describing types of MULTIFACEs ..
	Table 11 – Labels describing types of MULTIFACEs ..
	16
	 85

	Table 12 – ONEFACE class ..
	Table 12 – ONEFACE class ..
	17
	 86

	Table 13 – MULTIFACE class ...
	Table 13 – MULTIFACE class ...
	17
	 87

	Table 14 – Labels describing the density of people in the video frames ...
	Table 14 – Labels describing the density of people in the video frames ...
	17
	 88

	Table 15 – ONEVIDEO Class ..
	Table 15 – ONEVIDEO Class ..
	17
	 89

	Table 16 – EYEPAIR Class ..
	Table 16 – EYEPAIR Class ..
	18
	 90

	Table 17 – PersonTrajectory typedef ...
	Table 17 – PersonTrajectory typedef ...
	18
	 91

	Table 18 – PERSONREP Class ..
	Table 18 – PERSONREP Class ..
	19
	 92

	Table 19 – CANDIDATE Class ..
	Table 19 – CANDIDATE Class ..
	19
	 93

	Table 20 – CANDIDATELIST typedef ...
	Table 20 – CANDIDATELIST typedef ...
	19
	 94

	Table 21 – ReturnCode class ..
	Table 21 – ReturnCode class ..
	20
	 95

	Table 22 – Enrollment dataset template manifest ...
	Table 22 – Enrollment dataset template manifest ...
	20
	 96

	Table 23 – API implementation requirements for FIVE ..
	Table 23 – API implementation requirements for FIVE ..
	21
	 97

	Table 24 – Procedural overview of the identification test ...
	Table 24 – Procedural overview of the identification test ...
	22
	 98

	Table 25 – VideoEnrollment::initialize ...
	Table 25 – VideoEnrollment::initialize ...
	24
	 99

	Table 26 – VideoEnrollment::generateEnrollmentTemplate ...
	Table 26 – VideoEnrollment::generateEnrollmentTemplate ...
	25
	 100

	Table 27 – VideoFinalize::finalize ...
	Table 27 – VideoFinalize::finalize ...
	26
	 101

	Table 28 – VideoFeatureExtraction::initialize ..
	Table 28 – VideoFeatureExtraction::initialize ..
	27
	 102

	Table 29 – VideoFeatureExtraction::generateIdTemplate ...
	Table 29 – VideoFeatureExtraction::generateIdTemplate ...
	27
	 103

	Table 30 – VideoSearch::initialize ..
	Table 30 – VideoSearch::initialize ..
	28
	 104

	Table 31 – VideoSearch::identifyVideo and VideoSearch::identifyImage ..
	Table 31 – VideoSearch::identifyVideo and VideoSearch::identifyImage ..
	29
	 105

	Table 32 – ImageEnrollment::initialize ...
	Table 32 – ImageEnrollment::initialize ...
	30
	 106

	Table 33 – ImageEnrollment::generateEnrollmentTemplate ...
	Table 33 – ImageEnrollment::generateEnrollmentTemplate ...
	30
	 107

	Table 34 – ImageFinalize::finalize ...
	Table 34 – ImageFinalize::finalize ...
	31
	 108

	Table 35 – ImageFeatureExtraction::initialize ..
	Table 35 – ImageFeatureExtraction::initialize ..
	32
	 109

	Table 36 – ImageFeatureExtraction::generateIdTemplate ..
	Table 36 – ImageFeatureExtraction::generateIdTemplate ..
	33
	 110

	Table 37 – ImageSearch::initialize ..
	Table 37 – ImageSearch::initialize ..
	34
	 111

	Table 38 – ImageSearch::identifyVideo ..
	Table 38 – ImageSearch::identifyVideo ..
	34
	 112

	 113

	114
	Acknowledgements 115
	― The authors are grateful to the experts who made extensive comments on the first version of this document. 116
	― The authors are grateful to the experts who made extensive comments on the first version of this document. 116
	― The authors are grateful to the experts who made extensive comments on the first version of this document. 116

	Project History 117
	― 2012 – 2014 – The FRVT 2013 program included a video track (class V) that evaluated face recognition from video. 118 The FIVE program supersedes the FRVT work but proceeds in an almost identical manner. 119
	― 2012 – 2014 – The FRVT 2013 program included a video track (class V) that evaluated face recognition from video. 118 The FIVE program supersedes the FRVT work but proceeds in an almost identical manner. 119
	― 2012 – 2014 – The FRVT 2013 program included a video track (class V) that evaluated face recognition from video. 118 The FIVE program supersedes the FRVT work but proceeds in an almost identical manner. 119

	― August 15, 2014 - Release of first public draft of the Face In Video Evaluation (FIVE) – Concept, Evaluation Plan and 120 API v0.1. 121
	― August 15, 2014 - Release of first public draft of the Face In Video Evaluation (FIVE) – Concept, Evaluation Plan and 120 API v0.1. 121

	Terms and definitions 122
	The abbreviations and acronyms of
	The abbreviations and acronyms of
	Table 1
	Table 1

	 are used in many parts of this document. 123

	Table 1 – Abbreviations 124
	FNIR
	FNIR
	FNIR
	FNIR

	False negative identification rate
	False negative identification rate

	Span

	FPIR
	FPIR
	FPIR

	False positive identification rate
	False positive identification rate

	Span

	FIVE
	FIVE
	FIVE

	NIST’s Face In Video Evaluation program
	NIST’s Face In Video Evaluation program

	Span

	FRVT
	FRVT
	FRVT

	NIST’s Face Recognition Vendor Test program
	NIST’s Face Recognition Vendor Test program

	Span

	FTA
	FTA
	FTA

	Failure to acquire a search sample
	Failure to acquire a search sample

	Span

	FTE
	FTE
	FTE

	Failure to extract features from an enrollment image
	Failure to extract features from an enrollment image

	Span

	DET
	DET
	DET

	Detection error tradeoff characteristic: For identification this is a plot of FNIR vs. FPIR.
	Detection error tradeoff characteristic: For identification this is a plot of FNIR vs. FPIR.

	Span

	INCITS
	INCITS
	INCITS

	InterNational Committee on Information Technology Standards
	InterNational Committee on Information Technology Standards

	Span

	ISO/IEC 19794
	ISO/IEC 19794
	ISO/IEC 19794

	ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image data. First edition: 2005-06-15. (See Bibliography entry).
	ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image data. First edition: 2005-06-15. (See Bibliography entry).

	Span

	MBE
	MBE
	MBE

	NIST's Multiple Biometric Evaluation program
	NIST's Multiple Biometric Evaluation program

	Span

	NIST
	NIST
	NIST

	National Institute of Standards and Technology
	National Institute of Standards and Technology

	Span

	SDK
	SDK
	SDK

	The term Software Development Kit refers to any library software submitted to NIST. This is used synonymously with the terms "implementation" and "implementation under test".
	The term Software Development Kit refers to any library software submitted to NIST. This is used synonymously with the terms "implementation" and "implementation under test".

	Span

	125
	1. FIVE 126
	1.1. Scope 127
	The Face In Video Evaluation (FIVE) is being conducted to assess the capability of face recognition algorithms to correctly 128 identify or ignore persons appearing in video sequences – i.e. the open-set identification problem. Both comparative and 129 absolute accuracy measures are of interest, given the goals to determine which algorithms are most effective and 130 whether any are viable for the following primary operational use-cases: 131
	 132
	1. High volume screening of persons in the crowded spaces (e.g. an airport) 133
	1. High volume screening of persons in the crowded spaces (e.g. an airport) 133
	1. High volume screening of persons in the crowded spaces (e.g. an airport) 133

	2. Low volume forensic examination of footage from a crime scene (e.g. a convenience store) 134
	2. Low volume forensic examination of footage from a crime scene (e.g. a convenience store) 134

	3. Persons in business meetings (e.g. for video-conferencing) 135
	3. Persons in business meetings (e.g. for video-conferencing) 135

	4. Persons appearing in television footage 136
	4. Persons appearing in television footage 136

	 137
	These applications differ in their tolerance of false positives, whether a human examiner will review outputs, the prior 138 probabilities of mate vs. non-mate presence, and the cost of recognition errors. 139
	 140
	Out of scope: Areas that are out of scope for this evaluation and will not be studied include: gait, iris and voice 141 recognition; recognition across multiple views (e.g. via stereoscopic techniques); tracking across sequential cameras (re-142 identification); anomaly detection; detection of evasion. 143
	 144
	This document establishes a concept of operations and an application programming interface (API) for evaluation of face 145 recognition in video implementations submitted to NIST's Face In Video Evaluation. See 146
	This document establishes a concept of operations and an application programming interface (API) for evaluation of face 145 recognition in video implementations submitted to NIST's Face In Video Evaluation. See 146
	http://www.nist.gov/itl/iad/ig/five.cfm
	http://www.nist.gov/itl/iad/ig/five.cfm

	 for all FIVE documentation. 147

	 148
	 Face In Video Evaluation (FIVE) 1:N identification Video-to-video Still-to-video Video-to-still API and Concept of Operations are defined in this document
	Figure 1 – Organization and documentation of the FIVE 149
	1.2. Audience 150
	Universities and commercial entities with capabilities in detection and identification of faces in video sequences are 151 invited to participate in the FIVE Video test. 152
	Organizations will need to implement the API defined in this document. Participation is open worldwide. There is no 153 charge for participation. While NIST intends to evaluate technologies that could be readily made operational, the test is 154 also open to experimental, prototype and other technologies. 155
	1.3. Market drivers 156
	This test is intended to support a plural marketplace of face recognition in video systems. There is considerable interest 157 in the potential use of face recognition for identification of persons in videos. 158
	1.4. Offline testing 159
	While this set of tests is intended as much as possible to mimic operational reality, this remains an offline test executed 160 on databases of images. The intent is to assess the core algorithmic capability of face recognition in video algorithms. This 161 test will be conducted purely offline - it does not include a live human-presents-to-camera component. Offline testing is 162 attractive because it allows uniform, fair, repeatable, and efficient evaluation of the underlying technologies. Testing of 1
	1.5. Phased testing 165
	To support research and development efforts, this testing activity will embed multiple rounds of testing. These test 166 rounds are intended to support improved performance. Once the test commences, NIST will evaluate implementations 167 on a first-come-first-served basis and will return results to providers as expeditiously as possible. Providers may submit 168 revised SDKs to NIST only after NIST provides results for the prior SDK and invites further submission. The frequency with 169 which a provider
	For the schedule and number of SDKs of each class that may be submitted, see sections
	For the schedule and number of SDKs of each class that may be submitted, see sections
	1.10
	1.10

	 and
	1.11
	1.11

	. 172

	1.6. Interim reports 173
	The performance of each SDK will be reported in a "score-card". This will be provided to the participant. While the score 174 cards may be used by the provider for arbitrary purposes, they are intended to facilitate development. Score cards will 175
	 be machine generated (i.e. scripted), 176
	 be machine generated (i.e. scripted), 176
	 be machine generated (i.e. scripted), 176

	 be provided to participants with identification of their implementation, 177
	 be provided to participants with identification of their implementation, 177

	 include timing, accuracy and other performance results, 178
	 include timing, accuracy and other performance results, 178

	 include results from other implementations, but will not identify the other providers, 179
	 include results from other implementations, but will not identify the other providers, 179

	 be expanded and modified as revised implementations are tested, and as analyses are implemented, 180
	 be expanded and modified as revised implementations are tested, and as analyses are implemented, 180

	 be generated and released asynchronously with SDK submissions, 181
	 be generated and released asynchronously with SDK submissions, 181

	 be produced independently of the other status of other providers’ implementations, 182
	 be produced independently of the other status of other providers’ implementations, 182

	 be regenerated on-the-fly, usually whenever any implementation completes testing, or when new analysis is added. 183
	 be regenerated on-the-fly, usually whenever any implementation completes testing, or when new analysis is added. 183

	NIST does not intend to release these interim test reports publicly. NIST may release such information to the U.S. 184 Government test sponsors. While these reports are not intended to be made public, NIST can only request that agencies 185 not release this content. 186
	1.7. Final reports 187
	NIST will publish one or more final public reports. NIST may also 188
	 publish additional supplementary reports (typically as numbered NIST Interagency Reports), 189
	 publish additional supplementary reports (typically as numbered NIST Interagency Reports), 189
	 publish additional supplementary reports (typically as numbered NIST Interagency Reports), 189

	 publish in other academic journals, 190
	 publish in other academic journals, 190

	 present results at conferences and workshops (typically PowerPoint). 191
	 present results at conferences and workshops (typically PowerPoint). 191

	Our intention is that the final test reports will publish results for the best-performing implementation from each 192 participant. Because “best” is ill-defined (accuracy vs. time vs. template size, for example), the published reports may 193 include results for other implementations. The intention is to report results for the most capable implementations (see 194 section
	Our intention is that the final test reports will publish results for the best-performing implementation from each 192 participant. Because “best” is ill-defined (accuracy vs. time vs. template size, for example), the published reports may 193 include results for other implementations. The intention is to report results for the most capable implementations (see 194 section
	1.13
	1.13

	, on metrics). Other results may be included (e.g. in appendices) to show, for example, examples of progress 195 or tradeoffs. IMPORTANT: Results will be attributed to the providers. 196

	1.8. Application scenarios 197
	This test will include one-to-many identification tests for video sequences. As described in
	This test will include one-to-many identification tests for video sequences. As described in
	Table 2
	Table 2

	, the test is intended to 198 represent identification applications for face recognition in video. 199

	Table 2 – Subtests supported under the FIVE activity 200
	#
	#
	#
	#

	TD
	Span
	

	TD
	Span
	Video-to-Video

	TD
	Span
	Video-to-Still

	TD
	Span
	Still-to-Video

	Span

	1.
	1.
	1.

	Aspect
	Aspect

	1:N identification of video-to-video
	1:N identification of video-to-video

	1:N identification of video-to-still
	1:N identification of video-to-still

	1:N identification of still-to-video
	1:N identification of still-to-video

	Span

	2.
	2.
	2.

	Enrollment dataset
	Enrollment dataset

	N enrolled video sequences
	N enrolled video sequences

	N enrolled stills
	N enrolled stills

	N enrolled video sequences
	N enrolled video sequences

	Span

	3.
	3.
	3.

	Prior NIST test references
	Prior NIST test references

	Equivalent to 1 to N matching in [FRVT 2013]
	Equivalent to 1 to N matching in [FRVT 2013]

	Span

	4.
	4.
	4.

	Example application
	Example application

	Open-set identification against a central database, e.g. a search of a wanted criminal through a live-video surveillance system at an airport who may attempt to flee the country
	Open-set identification against a central database, e.g. a search of a wanted criminal through a live-video surveillance system at an airport who may attempt to flee the country

	Span

	5.
	5.
	5.

	Score or feature space normalization support
	Score or feature space normalization support

	Any score or feature based statistical normalization techniques-are applied against enrollment database
	Any score or feature based statistical normalization techniques-are applied against enrollment database

	Span

	6.
	6.
	6.

	Intended number of subjects
	Intended number of subjects

	Expected O(102) - O(104)
	Expected O(102) - O(104)

	Span

	7.
	7.
	7.

	Number of images per individual
	Number of images per individual

	N/A
	N/A

	Variable, see section
	Variable, see section
	Variable, see section
	1.12
	1.12

	.

	Variable, see section
	Variable, see section
	Variable, see section
	1.12
	1.12

	.

	Span

	1.9. Image source labels 201
	NIST may mix images from different sources in an enrollment set. For example, NIST could combine frontal images and 202 images with varying poses into a single enrollment dataset. For this reason, in the data structure defined in clause
	NIST may mix images from different sources in an enrollment set. For example, NIST could combine frontal images and 202 images with varying poses into a single enrollment dataset. For this reason, in the data structure defined in clause
	2.3.3
	2.3.3

	, 203 each image is accompanied by a "label" which identifies the set-membership images. Legal values for labels are in clause 204
	2.3.2
	2.3.2

	. 205

	1.10. Rules for participation 206
	A participant must properly follow, complete and submit a participation agreement (see Annex A). This must be done 207 once, not before November 17, 2014. It is not necessary to do this for each submitted SDK. All submitted SDKs must 208 meet the API requirements as detailed in section
	A participant must properly follow, complete and submit a participation agreement (see Annex A). This must be done 207 once, not before November 17, 2014. It is not necessary to do this for each submitted SDK. All submitted SDKs must 208 meet the API requirements as detailed in section
	3
	3

	. 209

	1.11. Number and schedule of submissions 210
	The test is conducted in three phases, as scheduled on page
	The test is conducted in three phases, as scheduled on page
	2
	2

	. The maximum total (i.e. cumulative) number of 211 submissions is regulated in
	Table 3
	Table 3

	. 212

	Table 3 – Cumulative total number of algorithms 213
	Table
	TR
	TD
	Span
	#

	TD
	Span
	Phase 1

	TD
	Span
	Total over Phases 1 + 2

	TD
	Span
	Total over Phases 1 + 2 + 3

	Span

	Cumulative total number of submissions
	Cumulative total number of submissions
	Cumulative total number of submissions

	2
	2

	3
	3

	5 if at least 1 was successfully executed by end Phase 2
	5 if at least 1 was successfully executed by end Phase 2
	2 if zero had been successfully executed by end Phase 2

	Span

	The numbers above may be increased as resources allow. 214
	NIST cannot conduct surveys over runtime parameters because NIST must limit the extent to which participants are able 215 to train on the test data. 216
	1.12. Use of multiple images per person 217
	Some of the proposed datasets includes K > 2 images per person for some persons. For video-to-still recognition in this 218 test, NIST will enroll K 1 images under each identity. For still-to-video, the probe will consist of K 1 images. Normally 219 the probe will consist of a single image, but NIST may examine the case that it could consist of multiple images. The 220 method by which the face recognition implementation exploits multiple images is not regulated: The test seeks to 221 evaluate devel
	This document defines a template to be the result of applying feature extraction to a set of K 1 images or K 1 video 224 frames. That is, a template contains the features extracted from one or more images or video frames, not generally just 225 one. An SDK might internally fuse K feature sets into a single representation or maintain them separately - In any case the 226 resulting proprietary template is contained in a contiguous block of data. All identification functions operate on such 227 multi-im
	The number of images per person will depend on the application area: 229
	― In civil identity credentialing (e.g. passports, driving licenses) the images will be acquired approximately uniformly 230 over time (e.g. five years for a Canadian passport). While the distribution of dates for such images of a person might 231 be assumed uniform, a number of factors might undermine this assumption1. 232
	― In civil identity credentialing (e.g. passports, driving licenses) the images will be acquired approximately uniformly 230 over time (e.g. five years for a Canadian passport). While the distribution of dates for such images of a person might 231 be assumed uniform, a number of factors might undermine this assumption1. 232
	― In civil identity credentialing (e.g. passports, driving licenses) the images will be acquired approximately uniformly 230 over time (e.g. five years for a Canadian passport). While the distribution of dates for such images of a person might 231 be assumed uniform, a number of factors might undermine this assumption1. 232

	― In criminal applications the number of images would depend on the number of arrests2. The distribution of dates for 233 arrest records for a person (i.e. the recidivism distribution) has been modeled using the exponential distribution, but 234 is recognized to be more complicated. NIST currently estimates that the number of images will never exceed 100. 235
	― In criminal applications the number of images would depend on the number of arrests2. The distribution of dates for 233 arrest records for a person (i.e. the recidivism distribution) has been modeled using the exponential distribution, but 234 is recognized to be more complicated. NIST currently estimates that the number of images will never exceed 100. 235

	1 For example, a person might skip applying for a passport for one cycle (letting it expire). In addition, a person might submit identical images (from the same photography session) to consecutive passport applications at five year intervals.
	1 For example, a person might skip applying for a passport for one cycle (letting it expire). In addition, a person might submit identical images (from the same photography session) to consecutive passport applications at five year intervals.
	2 A number of distributions have been considered to model recidivism, see ``Random parameter stochastic process models of criminal careers.'' In Blumstein, Cohen, Roth & Visher (Eds.), Criminal Careers and Career Criminals, Washington, D.C.: National Academy of Sciences Press, 1986.
	3 Threshold and rank limits are established operationally to limit human labor requirements: One the one side, in a low volume forensic application e.g. investigation of video collected in a convenience store hold-up, or in looking at videos of passengers dis-embarking flights to document an asylum claim, an examiner might be willing to adjudicate R >> 1 candidates with threshold, T = 0. At the other end, a high volume watch-list application in which crowded airport concourses are surveilled for bad actors

	1.13. Core accuracy metrics 236
	For identification testing, the test will target open-universe applications such as benefits-fraud and watch-lists. It will not 237 address the closed-set task because it is operationally uncommon. 238
	While some one-to-many applications operate with purely rank-based metrics, this test will primarily target score-based 239 identification metrics. Metrics are defined in
	While some one-to-many applications operate with purely rank-based metrics, this test will primarily target score-based 239 identification metrics. Metrics are defined in
	Table 4
	Table 4

	. The analysis will survey over various rank and thresholds3. Plots of 240 the two error rates, parametric on threshold, will be the primary reporting mechanism. 241

	Table 4 – Summary of accuracy metrics 242
	Table
	TR
	TD
	Span
	Application

	TD
	Span
	Metric

	Span

	1:N Identification (Video-to-Still)
	1:N Identification (Video-to-Still)
	1:N Identification (Video-to-Still)

	FPIR
	FPIR

	=
	=

	The rate at which unknown subjects are incorrectly associated with any of N enrolled identities. The association will be parameterized on a continuous threshold T.
	The rate at which unknown subjects are incorrectly associated with any of N enrolled identities. The association will be parameterized on a continuous threshold T.

	Span

	TR
	FNIR
	FNIR

	=
	=

	The rate at which known subjects are incorrectly not associated with the correct enrolled identities. The association will be parameterized on a continuous threshold T, and a candidate rank, R.
	The rate at which known subjects are incorrectly not associated with the correct enrolled identities. The association will be parameterized on a continuous threshold T, and a candidate rank, R.

	Span

	 243
	FPIR will be estimated using probe images or video clips for which there is no enrolled mate. The stability of FPIR at a 244 fixed threshold under changes to image properties or demographics will be reported. 245
	NIST will extend the analysis in other areas, with other metrics, and in response to the experimental data and results. 246
	1.14. Generalized accuracy metrics 247
	Under the ISO/IEC 19795-1 biometric testing and reporting standard, a test must account for "failure to acquire" (FTA) 248 and "failure to enroll" (FTE) events (e.g. elective refusal to make a template, or fatal errors). The way these are treated is 249 application-dependent. 250
	For identification, the appropriate metrics reported in FIVE will be generalized to include FTA and FTE events. 251
	1.15. Reporting template size 252
	Because template size is influential on storage requirements and computational efficiency, this API supports 253 measurement of template size. NIST will report statistics on the actual sizes of templates produced by face recognition 254 implementations submitted to FIVE. NIST may report statistics on runtime memory usage. Template sizes were reported 255 in the FRVT 2013 test4, IREX III test5, and the MBE-STILL 2010 test6. 256
	4 See the FRVT 2013 test report: NIST Interagency Report 8009, linked from
	4 See the FRVT 2013 test report: NIST Interagency Report 8009, linked from
	4 See the FRVT 2013 test report: NIST Interagency Report 8009, linked from
	http://face.nist.gov/frvt
	http://face.nist.gov/frvt

	

	5 See the IREX III test report: NIST Interagency Report 7836, linked from
	5 See the IREX III test report: NIST Interagency Report 7836, linked from
	http://iris.nist.gov/irex
	http://iris.nist.gov/irex

	

	6 See the MBE-STILL 2010 test report, NIST Interagency Report 7709, linked from
	6 See the MBE-STILL 2010 test report, NIST Interagency Report 7709, linked from
	http://face.nist.gov/mbe
	http://face.nist.gov/mbe

	

	7 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm 3wext 3dnow constant_tsc nonstop_tsc pni cx16 popcnt lahf_lm cmp_legacy svm extapic cr8_legacy altmovcr8 abm sse4a misalignsse 3dnowprefetch osvw

	1.16. Reporting computational efficiency 257
	As with other tests, NIST will compute and report recognition accuracy. In addition, NIST will also report timing statistics 258 for all core functions of the submitted SDK implementations. This includes feature extraction and 1:N recognition. For an 259 example of how efficiency can be reported, see the final report of the FRVT 2013 test, IREX III test, and the MBE-STILL 260 2010 test. 261
	1.17. Exploring the accuracy-speed trade-space 262
	NIST will explore the accuracy vs. speed tradeoff for face recognition algorithms running on a fixed platform. NIST will 263 report both accuracy and speed of the implementations tested. While NIST cannot force submission of "fast vs. slow" 264 variants, participants may choose to submit variants on some other axis (e.g. "experimental vs. mature") 265 implementations. NIST encourages “fast-less-accurate vs. slow-more-accurate” with a factor of three between the speed 266 of the fast and slow versions. 26
	1.18. Hardware specification 268
	NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of 269 computer blades that may be used in the testing. The blades are labeled as Dell M905, M910, M605, and M610. The 270 following list gives some details about the hardware of each blade type: 271
	 Dell M605 - Dual Intel Xeon E5405 2 GHz CPUs (4 cores each) 272
	 Dell M605 - Dual Intel Xeon E5405 2 GHz CPUs (4 cores each) 272
	 Dell M605 - Dual Intel Xeon E5405 2 GHz CPUs (4 cores each) 272

	 Dell M905 - Quad AMD Opteron 8376HE 2 GHz CPUs (4 cores each) 273
	 Dell M905 - Quad AMD Opteron 8376HE 2 GHz CPUs (4 cores each) 273

	 Dell M610 - Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each) 274
	 Dell M610 - Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each) 274

	 Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each) 275
	 Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each) 275

	Each CPU has 512K cache. The bus runs at 667 Mhz. The main memory is 192 GB Memory as 24 8GB modules. We 276 anticipate that 16 processes can be run without time slicing. 277
	The minimum instruction set across all processors used in the evaluation is specified here7. Dependence on instructions 278 not included in the minimum instruction set is prohibited. 279
	NIST is requiring use of 64 bit implementations throughout. This will support large memory allocation to support 1:N 280 identification task with image and video frame counts in the millions. For still images, if all templates were to be held in 281 memory, the 192GB capacity implies a limit of ~19KB per template, for a 10 million image enrollment. For video, given 282 the data expectations and the occurrence of faces in the imagery, we anticipate the developers will have sufficient 283
	memory for video templates. Note that while the API allows read access of the disk during the 1:N search, the disk is, of 284 course, relatively slow. 285
	Some of the section
	Some of the section
	3
	3

	 API calls allow the implementation to write persistent data to hard disk. The amount of data shall 286 not exceed 200 kilobytes per enrolled image. NIST will respond to prospective participants' questions on the hardware, 287 by amending this section. 288

	1.19. Operating system, compilation, and linking environment 289
	The operating system that the submitted implementations shall run on will be released as a downloadable file accessible 290 from
	The operating system that the submitted implementations shall run on will be released as a downloadable file accessible 290 from
	http://nigos.nist.gov:8080/evaluations/
	http://nigos.nist.gov:8080/evaluations/

	, which is the 64-bit version of CentOS 7.0 running Linux kernel 3.10.0. 291

	For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must run 292 under Linux. 293
	NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide their library 294 in a format that is linkable using g++ version 4.8.2. The standard libraries are: 295
	/usr/lib64/libstdc++.so.6.0.19 lib64/libc.so.6 -> libc-2.17.so lib64/libm.so.6 -> libm-2.17.so 296
	A typical link line might be 297
	g++ -I. -Wall -m64 -o fivetest fivetest.cpp -L. –lfive_Enron_A_07 298
	The Standard C++ library should be used for development of the SDKs. The prototypes from the API of this document will 299 be written to a file "five.h" which will be included via 300
	 #include <five.h>
	 #include <five.h>
	 #include <five.h>
	 #include <five.h>

	Span

	The header files will be made available to implementers at
	The header files will be made available to implementers at
	http://nigos.nist.gov:8080/five
	http://nigos.nist.gov:8080/five

	. 301

	NIST will handle all input of images via the JPEG and PNG libraries, sourced, respectively from
	NIST will handle all input of images via the JPEG and PNG libraries, sourced, respectively from
	http://www.ijg.org/
	http://www.ijg.org/

	 and see 302
	http://libpng.org
	http://libpng.org

	. 303

	All compilation and testing will be performed on x86 platforms. Thus, participants are strongly advised to verify library-304 level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to avoid linkage 305 problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.). 306
	Dependencies on external dynamic/shared libraries such as compiler-specific development environment libraries are 307 discouraged. If absolutely necessary, external libraries must be provided to NIST upon prior approval by the Test Liaison. 308
	1.20. Software and documentation 309
	1.20.1. SDK Library and platform requirements 310
	Participants shall provide NIST with binary code only (i.e. no source code). Header files (“.h”) are allowed, but these shall 311 not contain intellectual property of the company nor any material that is otherwise proprietary. It is preferred that the 312 SDK be submitted in the form of a single static library file. However, dynamically linked shared library files are permitted. 313
	The core library shall be named according to
	The core library shall be named according to
	Table 5
	Table 5

	. Additional shared object library files may be submitted that support 314 this “core” library file (i.e. the “core” library file may have dependencies implemented in these other libraries). 315

	Intel Integrated Performance Primitives (IPP) libraries are permitted if they are delivered as a part of the developer-316 supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries. The use of IPP 317 libraries shall not inhibit the SDK’s ability to run on CPUs that do not support IPP. Please take note that some IPP 318 functions are multithreaded and threaded implementations may complicate comparative timing. 319
	Access to any GPUs is not permitted. 320
	Table 5 – Implementation library filename convention 321
	Table
	TR
	TD
	Span
	Form

	libFIVE_provider_sequence.ending
	libFIVE_provider_sequence.ending

	Span

	TR
	TD
	Span
	Underscore delimited parts of

	libFIVE
	libFIVE

	provider
	provider

	sequence
	sequence

	ending
	ending

	Span

	Table
	TR
	TD
	Span
	the filename

	Span

	TR
	TD
	Span
	Description

	First part of the name, required to be this.
	First part of the name, required to be this.

	Single word name of the main provider EXAMPLE: Acme
	Single word name of the main provider EXAMPLE: Acme

	A two digit decimal identifier to start at 00 and increment by 1 every time any SDK is sent to NIST. EXAMPLE: 07
	A two digit decimal identifier to start at 00 and increment by 1 every time any SDK is sent to NIST. EXAMPLE: 07

	Either .so or .a
	Either .so or .a

	Span

	TR
	TD
	Span
	Example

	libFIVE_Acme_C_07.a
	libFIVE_Acme_C_07.a

	Span

	 322
	NIST will report the size of the supplied libraries. 323
	1.20.2. Configuration and developer-defined data 324
	The implementation under test may be supplied with configuration files and supporting data files. The total size of the 325 SDK, that is all libraries, include files, data files and initialization files shall be less than or equal to 1 073 741 824 bytes = 326 10243 bytes. 327
	NIST will report the size of the supplied configuration files. 328
	1.20.3. Installation and Usage 329
	The SDK must install easily (i.e. one installation step with no participant interaction required) to be tested, and shall be 330 executable on any number of machines without requiring additional machine-specific license control procedures or 331 activation. 332
	The SDK shall be installable using simple file copy methods. It shall not require the use of a separate installation program. 333
	The SDK shall neither implement nor enforce any usage controls or limits based on licenses, number of executions, 334 presence of temporary files, etc. The submitted implementations shall remain operable with no expiration date. 335
	Hardware (e.g. USB) activation dongles are not acceptable. 336
	1.20.4. Hard disk space 337
	FIVE participants should inform NIST if their implementations require more than 100K of persistent storage, per enrolled 338 image on average. 339
	1.20.5. Documentation 340
	Participants shall provide complete documentation of the SDK and detail any additional functionality or behavior beyond 341 that specified here. The documentation must define all (non-zero) developer-defined error or warning return codes. 342
	1.20.6. Modes of operation 343
	Individual SDKs provided shall not include multiple “modes” of operation, or algorithm variations. No switches or options 344 will be tolerated within one library. For example, the use of two different “coders” by a feature extractor must be split 345 across two separate SDK libraries, and two separate submissions. 346
	1.21. Runtime behavior 347
	1.21.1. Interactive behavior 348
	The SDK will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the submitted library shall 349 not use any interactive functions such as graphical user interface (GUI) calls, or any other calls which require terminal 350 interaction e.g. reads from “standard input”. 351
	1.21.2. Error codes and status messages 352
	The SDK will be tested in non-interactive “batch” mode, without terminal support. Thus, the submitted library shall run 353 quietly, i.e. it should not write messages to "standard error" and shall not write to “standard output”. An SDK may write 354 debugging messages to a log file - the name of the file must be declared in documentation. 355
	1.21.3. Exception Handling 356
	The application should include error/exception handling so that in the case of a fatal error, the return code is still 357 provided to the calling application. 358
	1.21.4. External communication 359
	Processes running on NIST hosts shall not side-effect the runtime environment in any manner, except for memory 360 allocation and release. Implementations shall not write any data to external resource (e.g. server, file, connection, or 361 other process), nor read from such. If detected, NIST will take appropriate steps, including but not limited to, cessation of 362 evaluation of all implementations from the supplier, notification to the provider, and documentation of the activity in 363 published reports
	1.21.5. Stateless behavior 365
	All components in this test shall be stateless, except as noted. This applies to face detection, feature extraction and 366 matching. Thus, all functions should give identical output, for a given input, independent of the runtime history. NIST 367 will institute appropriate tests to detect stateful behavior. If detected, NIST will take appropriate steps, including but not 368 limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, and 369 documentatio
	1.22. Threaded computations 371
	P
	Span
	Table 6
	Table 6

	 shows the limits on the numbers of threads a face recognition implementation may use. Threading is prohibited 372 for feature extraction and search, because NIST will parallelize the test by dividing the workload across many cores and 373 many machines. For the finalization function, if threading is used, NIST requires the provider to disclose the maximum 374 number of threads to us. 375

	Table 6 – Number of threads allowed for each function 376
	Table
	TR
	TD
	Span
	Function

	TD
	Span
	Video

	Span

	Feature extraction
	Feature extraction
	Feature extraction

	1
	1

	Span

	Finalize enrollment (before 1:N)
	Finalize enrollment (before 1:N)
	Finalize enrollment (before 1:N)

	1 T 16
	1 T 16

	Span

	Identification
	Identification
	Identification

	1
	1

	Span

	To expedite testing NIST will run up to P >> 1 processes concurrently. NIST's calling applications are single-threaded. 377
	1.23. Time limits 378
	The elemental functions of the implementations shall execute under the time constraints of
	The elemental functions of the implementations shall execute under the time constraints of
	Table 7
	Table 7

	. These time limits 379 apply to the function call invocations defined in section
	3
	3

	. Assuming the times are random variables, NIST cannot regulate 380 the maximum value, so the time limits are 90-th percentiles. This means that 90% of all operations should take less than 381 the identified duration. 382

	The time limits apply per image or video frame. When K images of a person are present or K frames are in a video clip, 383 the time limits shall be increased by a factor K. 384
	Table 7 – Processing time limits in milliseconds 385
	Table
	TR
	TD
	Span
	Function

	TD
	Span
	Video-to-Video

	TD
	Span
	Video-to-Still

	TD
	Span
	Still-to-Video

	Span

	Feature extraction enrollment
	Feature extraction enrollment
	Feature extraction enrollment

	5 * 1500 per video frame (1 core)
	5 * 1500 per video frame (1 core)

	1500 per image (1 core)
	1500 per image (1 core)

	5 * 1500 per video frame (1 core)
	5 * 1500 per video frame (1 core)

	Span

	Feature extraction for identification
	Feature extraction for identification
	Feature extraction for identification

	5 * 1500 per video frame (1 core)
	5 * 1500 per video frame (1 core)

	1500 per image (1 core)
	1500 per image (1 core)

	5 * 1500 per video frame (1 core)
	5 * 1500 per video frame (1 core)

	Span

	For video: the multiple of K=5 is a notional average of the number of persons expected in any given frame. This figure is 386 proportionally unreliable for any given sample. 387
	While there is no time limit for the enrollment finalization procedure, NIST will report the execution duration. 388
	1.24. Test datasets 389
	This section is under development. The data has, in some cases, been estimated from initial small partitions. The 390 completion of this section depends on further work. The information is subject to change. We intend to update this 391 section as fully as possible. 392
	NIST is likely to use other datasets, in addition. 393
	Table 8 – Main video corpora (others will be used) 394
	Table
	TR
	TD
	Span
	

	TD
	Span
	Dataset P

	TD
	Span
	Dataset T

	TD
	Span
	Dataset B

	TD
	Span
	Other datasets - Undisclosed

	Span

	Collection, environment
	Collection, environment
	Collection, environment

	Indoor public space with individuals walking mostly toward cameras as could occur on a transit terminal
	Indoor public space with individuals walking mostly toward cameras as could occur on a transit terminal

	Television footage, indoor and outdoor
	Television footage, indoor and outdoor

	
	

	Span

	Number of individuals in field of view
	Number of individuals in field of view
	Number of individuals in field of view

	Multiple, usually below 20 many not fully visible but usually more than 1.
	Multiple, usually below 20 many not fully visible but usually more than 1.

	Few, most often 1, occasionally others in background
	Few, most often 1, occasionally others in background

	
	

	Span

	View angle
	View angle
	View angle

	Various pitch due to different heights of camera installation, some yaw also due to subject behavior
	Various pitch due to different heights of camera installation, some yaw also due to subject behavior

	Pitch variation present, but yaw angles vary more due to subject behavior
	Pitch variation present, but yaw angles vary more due to subject behavior

	
	

	Span

	Video frame size
	Video frame size
	Video frame size

	1920 x 1080
	1920 x 1080

	Various
	Various

	Various
	Various

	
	

	Span

	Eye to eye distance
	Eye to eye distance
	Eye to eye distance

	10-100 pixels
	10-100 pixels

	10-150 pixels
	10-150 pixels

	10-120
	10-120

	
	

	Span

	TR
	The above values are guidelines; exceptions will inevitably occur in large datasets.
	The above values are guidelines; exceptions will inevitably occur in large datasets.

	
	

	Span

	Camera properties
	Camera properties
	Camera properties

	Consumer-grade video
	Consumer-grade video

	Professional-grade video
	Professional-grade video

	Professional-grade video cameras
	Professional-grade video cameras

	
	

	Span

	Camera motion
	Camera motion
	Camera motion

	Fixed geometry, fixed optics
	Fixed geometry, fixed optics

	Usually camera is still or slowly panning or zooming
	Usually camera is still or slowly panning or zooming

	
	

	Span

	Frames per second
	Frames per second
	Frames per second

	24
	24

	Up to 30
	Up to 30

	Up to 30
	Up to 30

	
	

	Span

	Similar composition to
	Similar composition to
	Similar composition to

	Compare to the iLids data but with higher spatial resolution on the face.
	Compare to the iLids data but with higher spatial resolution on the face.
	

	Similar to YouTubeFaces in that typically one subject is present and in the foreground
	Similar to YouTubeFaces in that typically one subject is present and in the foreground

	
	

	Span

	Accompanying stills
	Accompanying stills
	Accompanying stills

	Yes, for video-to-still and still-to-video searches, high-resolution stills approximating ISO/IEC 19794-5 are available. In addition, off-angle images exist with many combinations of pitch and yaw. In addition, less formal “social-media” like stills are available also. Various galleries will be formed from these images.
	Yes, for video-to-still and still-to-video searches, high-resolution stills approximating ISO/IEC 19794-5 are available. In addition, off-angle images exist with many combinations of pitch and yaw. In addition, less formal “social-media” like stills are available also. Various galleries will be formed from these images.
	
	Images for which interocular distance exceeds 240 pixels will be downsized.

	Stills usually resemble frames from the video. ISO/IEC 19794-5 images are not usually available.
	Stills usually resemble frames from the video. ISO/IEC 19794-5 images are not usually available.

	
	

	Span

	 395
	NIST does not know the minimum and maximum numbers of persons appearing in video sequences. Moreover, NIST will 396 apply the algorithms to other databases. The maximum number of frames in a video sequence will be limited by the 397 duration of the sequence. NIST expects to use sequences whose duration extends from a few seconds to a few minutes 398
	Some notes regarding the video data: 399
	― NIST does not anticipate using interlaced video. 400
	― NIST does not anticipate using interlaced video. 400
	― NIST does not anticipate using interlaced video. 400

	― The videos are contiguous in time, without interruptions. 401
	― The videos are contiguous in time, without interruptions. 401

	― Some sequences exist at much higher frame rates. NIST will examine whether this offers benefit. 402
	― Some sequences exist at much higher frame rates. NIST will examine whether this offers benefit. 402

	― Some of the datasets were collected using consumer-grade cameras capturing video in standard formats while others 403 were collected using professional-grade cameras captured in modern proprietary video codecs. 404
	― Some of the datasets were collected using consumer-grade cameras capturing video in standard formats while others 403 were collected using professional-grade cameras captured in modern proprietary video codecs. 404

	In some videos, the scenes capture people walking towards the camera. Occasionally, there are people walking in various 405 transverse directions including people walking away from the camera. The cameras have varying pitch angles ranging 406 from 0 degrees (frontal) to higher values. The depth of scene varies between the cameras such that the sizes of the faces 407 vary, with the following: 408
	― Eye-to-eye distances range from approximately 10 pixels to 120 pixels 409
	― Eye-to-eye distances range from approximately 10 pixels to 120 pixels 409
	― Eye-to-eye distances range from approximately 10 pixels to 120 pixels 409

	― Amount of time a face is fully visible in a scene can vary from approximately 0 to 30 seconds 410
	― Amount of time a face is fully visible in a scene can vary from approximately 0 to 30 seconds 410

	― Some of the captures include non-uniform lighting due to light coming through adjacent windows 411
	― Some of the captures include non-uniform lighting due to light coming through adjacent windows 411

	 412
	Please note that the properties stated above may not hold for all datasets that might be employed in FIVE. 413
	1.25. Ground truth integrity 414
	Some of the test databases will be derived from operational systems. They may contain ground truth errors in which 415
	― a single person is present under two different identifiers, or 416
	― a single person is present under two different identifiers, or 416
	― a single person is present under two different identifiers, or 416

	― two persons are present under one identifier, or 417
	― two persons are present under one identifier, or 417

	― in which a face is not present in the image. 418
	― in which a face is not present in the image. 418

	If these errors are detected, they will be removed. NIST will use aberrant scores (high impostor scores, low genuine 419 scores) to detect such errors. This process will be imperfect, and residual errors are likely. For comparative testing, 420 identical datasets will be used and the presence of errors should give an additive increment to all error rates. For very 421 accurate implementations this will dominate the error rate. NIST intends to attach appropriate caveats to the accuracy 422 results. Fo
	2. Data structures supporting the API 424
	2.1. Overview 425
	This section describes the API for the face recognition in video applications described in section
	This section describes the API for the face recognition in video applications described in section
	1.8
	1.8

	. All SDK's submitted 426 to FIVE shall implement the functions required in Section
	3
	3

	. 427

	2.2. Requirement 428
	FIVE participants shall submit an SDK which implements the relevant C++ prototyped interfaces of clause
	FIVE participants shall submit an SDK which implements the relevant C++ prototyped interfaces of clause
	3
	3

	. C++ was 429 chosen in order to make use of some object-oriented features. 430

	2.3. File formats and data structures 431
	2.3.1. Overview 432
	In this test, an individual is represented by K 1 two-dimensional facial images, and by subject and image-specific 433 metadata. 434
	2.3.2. Dictionary of terms describing images and MULTIFACEs 435
	Images will be accompanied by one of the labels given in
	Images will be accompanied by one of the labels given in
	Table 9
	Table 9

	. Face recognition implementations submitted to FIVE 436 should tolerate images of any category. 437

	Table 9 – Labels describing types of images 438
	Table
	TR
	TD
	Span
	

	TD
	Span
	Label as C++ string

	TD
	Span
	Meaning

	TD
	Span
	Yaw (degrees)

	TD
	Span
	Pitch (degrees)

	Span

	1.
	1.
	1.

	"unknown"
	"unknown"

	Either the label is unknown or unassigned.
	Either the label is unknown or unassigned.

	
	

	
	

	Span

	2.
	2.
	2.

	“uncontrolled”
	“uncontrolled”

	Any illumination, pose is unknown and could be frontal
	Any illumination, pose is unknown and could be frontal

	
	

	
	

	Span

	3.
	3.
	3.

	“FF”
	“FF”

	Full frontal
	Full frontal

	0
	0

	0
	0

	Span

	4.
	4.
	4.

	“FD”
	“FD”

	Face down
	Face down

	0
	0

	10 to 40
	10 to 40

	Span

	5.
	5.
	5.
	5.

	“FU”
	“FU”

	Face up
	Face up

	0
	0

	-10 to -40
	-10 to -40

	Span

	6.
	6.
	6.

	“QL”
	“QL”

	Quarter left
	Quarter left

	-10 to -45
	-10 to -45

	0
	0

	Span

	7
	7
	7

	“QR”
	“QR”

	Quarter right
	Quarter right

	10 to 45
	10 to 45

	0
	0

	Span

	8.
	8.
	8.

	“HL”
	“HL”

	Half left
	Half left

	-46 to -80
	-46 to -80

	0
	0

	Span

	9.
	9.
	9.

	“HR”
	“HR”

	Half right
	Half right

	46 to 80
	46 to 80

	0
	0

	Span

	10.
	10.
	10.

	“PL”
	“PL”

	Profile left
	Profile left

	-90
	-90

	0
	0

	Span

	11.
	11.
	11.

	“PR”
	“PR”

	Profile right
	Profile right

	90
	90

	0
	0

	Span

	12.
	12.
	12.

	“QLU”
	“QLU”

	Quarter left up
	Quarter left up

	-10 to -45
	-10 to -45

	-10 to -40
	-10 to -40

	Span

	13.
	13.
	13.

	“QRU”
	“QRU”

	Quarter right up
	Quarter right up

	10 to 45
	10 to 45

	-10 to -40
	-10 to -40

	Span

	14.
	14.
	14.

	“HLU”
	“HLU”

	Half left up
	Half left up

	-46 to -80
	-46 to -80

	-10 to -40
	-10 to -40

	Span

	15.
	15.
	15.

	“HRU”
	“HRU”

	Half right up
	Half right up

	46 to 80
	46 to 80

	-10 to -40
	-10 to -40

	Span

	16.
	16.
	16.

	“HLD”
	“HLD”

	Half left down
	Half left down

	-46 to -80
	-46 to -80

	10 to 40
	10 to 40

	Span

	17.
	17.
	17.

	“HRD”
	“HRD”

	Half right down
	Half right down

	46 to 80
	46 to 80

	10 to 40
	10 to 40

	Span

	H3
	Span
	Figure 2
	Figure 2

	 provides examples of pose angles and their encoding (yaw, pitch) as specified in the ISO/IEC 19794-5 [ISO], with 439 yaw angle defined as the rotation in degrees about the y-axis (vertical axis) and pitch angle defined as the rotation in 440 degrees about the x-axis (horizontal axis). 441

	 442
	 (0,0) (+45,0) (-45,0) (0,-45) (0,+45)
	Figure 2 – Examples of pose angles and their encodings (yaw, pitch) 443
	NOTE 1: We do not intend to deliberately include non-face images in this test. 444
	NOTE 2: MULTIFACEs will contain face images of only one person. 445
	 446
	A MULTIFACE (see
	A MULTIFACE (see
	Table 12
	Table 12

) will be accompanied by one of the labels given in
	Table 10
	Table 10

	. Face recognition 447 implementations submitted to FIVE should tolerate MULTIFACEs of any category. 448

	Table 10 – Labels describing types of MULTIFACEs 449
	Table
	TR
	TD
	Span
	

	TD
	Span
	Label as C++ string

	TD
	Span
	Meaning

	Span

	1.
	1.
	1.

	“FRONTAL”
	“FRONTAL”

	All ONEFACEs contain nominally frontal images and are labeled “FF”.
	All ONEFACEs contain nominally frontal images and are labeled “FF”.

	Span

	2.
	2.
	2.

	“MULTIPOSE”
	“MULTIPOSE”

	Each ONEFACE is labeled with one of the following:
	Each ONEFACE is labeled with one of the following:
	“FF”, “FD”, “FU”, “QL”, “QR”, “HL”, “HR”, “PL”, “PR”, “QLU”, “QRU”, “HLU”, “HRU”, “HLD”,“HRD”.

	Span

	3.
	3.
	3.

	“INFORMAL”
	“INFORMAL”

	All ONEFACEs contain informal images that are labeled “uncontrolled”.
	All ONEFACEs contain informal images that are labeled “uncontrolled”.

	Span

	4.
	4.
	4.

	“UNKNOWN”
	“UNKNOWN”

	Each ONEFACE is labeled with one of the labels from
	Each ONEFACE is labeled with one of the labels from
	Each ONEFACE is labeled with one of the labels from
	Table 9
	Table 9

	, including possibly “unknown” or “uncontrolled”.

	Span

	 450
	2.3.3. Data structures for encapsulating multiple still images 451
	The standardized formats for facial images are the ISO/IEC 19794-5:2005 and the ANSI/NIST ITL 1-2007 type 10 record. 452 The ISO record can store multiple images of an individual in a standalone binary file. In the ANSI/NIST realm, K images of 453 an individual are usually represented as the concatenation of one Type 1 record + K Type 10 records. The result is usually 454 stored as an EFT file. 455
	An alternative method of representing K images of an individual is to define a structure containing an image filename and 456 metadata fields. Each file contains a standardized image format, e.g. PNG (lossless) or JPEG (lossy). 457
	2.3.4. Class for encapsulating a single face image 458
	Table 11 – ONEFACE class 459
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class ONEFACE
	class ONEFACE

	
	

	Span

	2.
	2.
	2.

	{
	{
	private:

	
	

	Span

	3.
	3.
	3.

	 uint16_t imageWidth;
	 uint16_t imageWidth;

	Number of pixels horizontally
	Number of pixels horizontally

	Span

	4.
	4.
	4.

	 uint16_t imageHeight;
	 uint16_t imageHeight;

	Number of pixels vertically
	Number of pixels vertically

	Span

	5.
	5.
	5.

	 uint16_t imageDepth;
	 uint16_t imageDepth;

	Number of bits per pixel. Legal values are 8 and 24.
	Number of bits per pixel. Legal values are 8 and 24.

	Span

	6.
	6.
	6.

	 uint8_t format;
	 uint8_t format;

	Flag indicating native format of the image as supplied to NIST
	Flag indicating native format of the image as supplied to NIST
	0x01 = JPEG (i.e. compressed data)
	0x02 = PNG (i.e. never compressed data)

	Span

	7.
	7.
	7.

	 uint8_t *data;
	 uint8_t *data;

	Pointer to raster scanned data. Either RGB color or intensity.
	Pointer to raster scanned data. Either RGB color or intensity.
	If image_depth == 24 this points to 3WH bytes RGBRGBRGB...
	If image_depth == 8 this points to WH bytes IIIIIII

	Span

	8.
	8.
	8.

	 std::string description;
	 std::string description;

	Single description of the image. The allowed values for this string are given in
	Single description of the image. The allowed values for this string are given in
	Single description of the image. The allowed values for this string are given in
	Table 9
	Table 9

	.

	Span

	9.
	9.
	9.

	public:
	public:
	 //getter/setter methods

	
	

	Span

	10.
	10.
	10.

	};
	};

	
	

	Span

	2.3.5. Class for encapsulating a set of face images from a single person 460
	Table 12 – MULTIFACE class 461
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class MULTIFACE
	class MULTIFACE
	{
	private:
	 std::vector<ONEFACE> faces;

	Vector containing F pre-allocated face images of the same person. The number of items stored in the vector is accessible via the vector::size() function.
	Vector containing F pre-allocated face images of the same person. The number of items stored in the vector is accessible via the vector::size() function.

	Span

	2.
	2.
	2.

	 std::string description;
	 std::string description;

	Single description of the vector of ONEFACEs. The allowed values for this string are given in
	Single description of the vector of ONEFACEs. The allowed values for this string are given in
	Single description of the vector of ONEFACEs. The allowed values for this string are given in
	Table 10
	Table 10

	.

	Span

	3.
	3.
	3.

	public:
	public:
	 //getter/setter methods

	
	

	Span

	4.
	4.
	4.

	};
	};

	
	

	Span

	2.3.6. Dictionary of terms describing ONEVIDEOs 462
	A ONEVIDEO will be accompanied by one of the labels given in
	A ONEVIDEO will be accompanied by one of the labels given in
	Table 13
	Table 13

	, describing the density of people in the video 463 frames. Face recognition implementations submitted to FIVE should tolerate ONEVIDEOs of any category. 464

	Table 13 – Labels describing the density of people in the video frames 465
	Table
	TR
	TD
	Span
	

	TD
	Span
	Label as C++ string

	TD
	Span
	Meaning

	Span

	1.
	1.
	1.

	“SINGLE”
	“SINGLE”

	All of the video frames contain one and only one person. Such video might arise from a TV interview or speech. An algorithm should produce one template from the ONEVIDEO.
	All of the video frames contain one and only one person. Such video might arise from a TV interview or speech. An algorithm should produce one template from the ONEVIDEO.

	Span

	2.
	2.
	2.

	“UNKNOWN”
	“UNKNOWN”

	Video frames can contain zero or more people in each frame. Such video might arise in a surveillance clip. The number of templates to return would be a random variable.
	Video frames can contain zero or more people in each frame. Such video might arise in a surveillance clip. The number of templates to return would be a random variable.

	Span

	2.3.7. Class for encapsulating a video sequence 466
	Table 14 – ONEVIDEO Class 467
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.
	1.

	class ONEVIDEO
	class ONEVIDEO

	
	

	Span

	2.
	2.
	2.

	{
	{
	private:

	
	

	Span

	3.
	3.
	3.

	 uint16_t frameWidth;
	 uint16_t frameWidth;

	Number of pixels horizontally of all frames
	Number of pixels horizontally of all frames

	Span

	4.
	4.
	4.

	 uint16_t frameHeight;
	 uint16_t frameHeight;

	Number of pixels vertically of all frames
	Number of pixels vertically of all frames

	Span

	5.
	5.
	5.

	 uint8_t frameDepth;
	 uint8_t frameDepth;

	Number of bits per pixel for all frames. Legal values are 8 and 24.
	Number of bits per pixel for all frames. Legal values are 8 and 24.

	Span

	6.
	6.
	6.

	 uint16_t framesPerSec;
	 uint16_t framesPerSec;

	The frame rate of the video sequence. If this value is 0, the frames are sampled irregularly and perhaps infrequently from the parent video clip (e.g. manually selected frames, or just the I-frames).
	The frame rate of the video sequence. If this value is 0, the frames are sampled irregularly and perhaps infrequently from the parent video clip (e.g. manually selected frames, or just the I-frames).

	Span

	7.
	7.
	7.

	 std::string peopleDensity;
	 std::string peopleDensity;

	Single description of the density of people in the video frames. The allowed values for this string are given in
	Single description of the density of people in the video frames. The allowed values for this string are given in
	Single description of the density of people in the video frames. The allowed values for this string are given in
	Table 13
	Table 13

	.

	Span

	8.
	8.
	8.

	 std::vector<const uint8_t*> data;
	 std::vector<const uint8_t*> data;

	Vector of pointers to data from each frame in the video sequence. The number of frames (i.e. size of the vector) can be obtained by calling vector::size(). The i-th entry in data (ie. data[i]) points to frame_width x frame_height pixels of data for the i-th frame.
	Vector of pointers to data from each frame in the video sequence. The number of frames (i.e. size of the vector) can be obtained by calling vector::size(). The i-th entry in data (ie. data[i]) points to frame_width x frame_height pixels of data for the i-th frame.

	Span

	9.
	9.
	9.

	public:
	public:

	
	

	Span

	10.
	10.
	10.

	 //getter/setter methods
	 //getter/setter methods
	};

	
	

	Span

	11.
	11.
	11.

	
	

	Span

	2.3.8. Class representing a pair of eye coordinates 468
	The data structure for reporting person locations in video appears in
	The data structure for reporting person locations in video appears in
	Table 15
	Table 15

	. The coordinates may be useful to NIST for 469 relating spatial location to recognition success during our analysis. 470

	Table 15 – EYEPAIR Class 471
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class EYEPAIR
	class EYEPAIR

	
	

	Span

	2.
	2.
	2.

	{
	{
	private:

	
	

	Span

	3.
	3.
	3.

	 bool isSet;
	 bool isSet;

	If the eye coordinates have been computed and assigned successfully, this value should be set to true, otherwise it should be set to false.
	If the eye coordinates have been computed and assigned successfully, this value should be set to true, otherwise it should be set to false.

	Span

	4.
	4.
	4.

	 int16_t xLeft;
	 int16_t xLeft;
	 int16_t yLeft;

	X and Y coordinate of the center of the subject's left eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.
	X and Y coordinate of the center of the subject's left eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.

	Span

	5.
	5.
	5.

	 int16_t xRight;
	 int16_t xRight;
	 int16_t yRight;

	X and Y coordinate of the center of the subject's right eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.
	X and Y coordinate of the center of the subject's right eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.

	Span

	6.
	6.
	6.

	 uint16_t frameNum
	 uint16_t frameNum

	For video: the frame number that corresponds to the video frame from which the eye coordinates were generated. (ie. the i-th frame from the video sequence). This field should not be set for eye coordinates for a single still image.
	For video: the frame number that corresponds to the video frame from which the eye coordinates were generated. (ie. the i-th frame from the video sequence). This field should not be set for eye coordinates for a single still image.

	Span

	7.
	7.
	7.

	public:
	public:
	 //getter/setter methods
	};

	
	

	Span

	8.
	8.
	8.

	
	

	Span

	2.3.9. Data type for representing a person’s trajectory via eye coordinates from a video sequence 472
	Table 16 – PersonTrajectory typedef 473
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	typedef std::vector<EYEPAIR> PersonTrajectory;
	typedef std::vector<EYEPAIR> PersonTrajectory;

	Vector of EYEPAIR (see
	Vector of EYEPAIR (see
	Vector of EYEPAIR (see
	2.3.8
	2.3.8

) objects for video frames where eyes were detected. This data structure should store eye coordinates for each video frame where eyes were detected for a particular person. For video frames where the person’s eyes were not detected, the SDK shall not add an EYEPAIR to this data structure.

	
	If a face can be detected, but not the eyes, the implementation should nevertheless fill this data structure with (x,y)LEFT == (x,y)RIGHT representing some point on the center of the face.

	Span

	2.3.10. Class for representing a person from a video sequence or an image 474
	Table 17 – PERSONREP Class 475
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class PERSONREP
	class PERSONREP

	
	

	Span

	2.
	2.
	2.

	{
	{
	private:

	
	

	Span

	3.
	3.
	3.

	 PersonTrajectory eyeCoordinates;
	 PersonTrajectory eyeCoordinates;

	Data structure for capturing eye coordinates
	Data structure for capturing eye coordinates

	Span

	4.
	4.
	4.

	 PersonTemplate proprietaryTemplate;
	 PersonTemplate proprietaryTemplate;

	PersonTemplate is a wrapper to a uint8_t* for capturing proprietary template data representing a person from a video sequence or an image.
	PersonTemplate is a wrapper to a uint8_t* for capturing proprietary template data representing a person from a video sequence or an image.

	Span

	5.
	5.
	5.

	public:
	public:

	
	

	Span

	6.
	6.
	6.

	 PERSONREP(const uint64_t inSize);
	 PERSONREP(const uint64_t inSize);

	The constructor takes a size parameter and allocates memory of inSize. getPersonTemplatePtr() should be called to access the newly allocated memory for SDK manipulation. Please note that this class will take care of all memory allocation and de-allocation of its own memory. The SDK shall not de-allocate memory created by this class.
	The constructor takes a size parameter and allocates memory of inSize. getPersonTemplatePtr() should be called to access the newly allocated memory for SDK manipulation. Please note that this class will take care of all memory allocation and de-allocation of its own memory. The SDK shall not de-allocate memory created by this class.

	Span

	7.
	7.
	7.

	 void pushBackEyeCoord(const EYEPAIR &eyes);
	 void pushBackEyeCoord(const EYEPAIR &eyes);

	This function should be used to add EYEPAIRs for the video frames or images where eye coordinates were detected.
	This function should be used to add EYEPAIRs for the video frames or images where eye coordinates were detected.

	Span

	8.
	8.
	8.

	 uint8_t* getPersonTemplatePtr();
	 uint8_t* getPersonTemplatePtr();

	This function returns a uint8_t* to the template data.
	This function returns a uint8_t* to the template data.

	Span

	9.
	9.
	9.

	 uint64_t getPersonTemplateSize() const;
	 uint64_t getPersonTemplateSize() const;

	This function returns the size of the template data.
	This function returns the size of the template data.

	Span

	10.
	10.
	10.

	 //… getter methods, copy constructor,
	 //… getter methods, copy constructor,
	 //… assignment operator

	
	

	Span

	11.
	11.
	11.

	};
	};

	
	

	Span

	2.3.11. Class for result of an identification search 476
	All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with the most 477 similar matching entries list first with lowest rank. 478
	Table 18 – CANDIDATE Class 479
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class CANDIDATE
	class CANDIDATE

	
	

	Span

	2.
	2.
	2.

	{
	{
	private:

	
	

	Span

	3.
	3.
	3.

	 bool isSet
	 bool isSet

	If the candidate is valid, this should be set to true. If the candidate computation failed, this should be set to false.
	If the candidate is valid, this should be set to true. If the candidate computation failed, this should be set to false.

	Span

	4.
	4.
	4.

	 uint32_t templateId;
	 uint32_t templateId;

	The Template ID integer from the enrollment database manifest defined in clause
	The Template ID integer from the enrollment database manifest defined in clause
	The Template ID integer from the enrollment database manifest defined in clause
	2.3.6
	2.3.6

	.

	Span

	5.
	5.
	5.

	 double similarityScore;
	 double similarityScore;

	Measure of similarity between the identification template and the enrolled candidate. Higher scores mean more likelihood that the samples are of the same person.
	Measure of similarity between the identification template and the enrolled candidate. Higher scores mean more likelihood that the samples are of the same person.
	An algorithm is free to assign any value to a candidate. The distribution of values will have an impact on the appearance of a plot of false-negative and false-positive identification rates.

	Span

	6.
	6.
	6.

	public:
	public:
	 //getter/setter methods

	
	

	Span

	7.
	7.
	7.

	};
	};

	
	

	Span

	2.3.12. Data type for representing a list of results of an identification search 480
	Table 19 – CANDIDATELIST typedef 481
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	typedef std::vector<CANDIDATE> CANDIDATELIST;
	typedef std::vector<CANDIDATE> CANDIDATELIST;

	A vector containing objects of CANDIDATEs. The CANDIDATE class is defined in section
	A vector containing objects of CANDIDATEs. The CANDIDATE class is defined in section
	A vector containing objects of CANDIDATEs. The CANDIDATE class is defined in section
	2.3.11
	2.3.11

	.

	Span

	 482
	2.3.13. Class representing return code values 483
	Table 20 – ReturnCode class 484
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	
	
	

	class ReturnCode {
	class ReturnCode {
	public:

	
	

	Span

	1.
	1.
	1.

	 typedef enum
	 typedef enum

	
	

	Span

	2.
	2.
	2.

	 {
	 {

	
	

	Span

	3.
	3.
	3.

	 Success=0,
	 Success=0,

	Success
	Success

	Span

	4.
	4.
	4.

	 MissingConfig=1,
	 MissingConfig=1,

	The configuration data is missing or unreadable
	The configuration data is missing or unreadable

	Span

	5.
	5.
	5.

	 EnrollDirFailed=2,
	 EnrollDirFailed=2,

	An operation on the enrollment directory failed
	An operation on the enrollment directory failed

	Span

	6.
	6.
	6.

	 InitNumData=3,
	 InitNumData=3,

	The SDK can’t support the number of images or videos
	The SDK can’t support the number of images or videos

	Span

	7.
	7.
	7.

	 InitBadDesc=4,
	 InitBadDesc=4,

	The image descriptions are unexpected or unusable
	The image descriptions are unexpected or unusable

	Span

	8.
	8.
	8.

	 RefuseInput=5,
	 RefuseInput=5,

	Elective refusal to process this kind of input (ONEVIDEO or MULTIFACE)
	Elective refusal to process this kind of input (ONEVIDEO or MULTIFACE)

	Span

	9.
	9.
	9.

	 FailExtract=6,
	 FailExtract=6,

	Involuntary failure to extract features
	Involuntary failure to extract features

	Span

	10.
	10.
	10.

	 FailTempl=7,
	 FailTempl=7,

	Elective refusal to produce a template
	Elective refusal to produce a template

	Span

	11.
	11.
	11.

	 FailParse=8,
	 FailParse=8,

	Cannot parse input data
	Cannot parse input data

	Span

	12.
	12.
	12.

	 FinInputData=9,
	 FinInputData=9,

	Cannot locate input data
	Cannot locate input data

	Span

	13.
	13.
	13.

	 FinTemplFormat=10,
	 FinTemplFormat=10,

	One or more template files are in an incorrect format
	One or more template files are in an incorrect format

	Span

	14.
	14.
	14.

	 IdBadTempl=11,
	 IdBadTempl=11,

	The input template was defective
	The input template was defective

	Span

	15.
	15.
	15.

	 ImgSizeNotSupported=12,
	 ImgSizeNotSupported=12,

	Size of input image/frame not supported
	Size of input image/frame not supported

	Span

	16.
	16.
	16.

	 Vendor=13
	 Vendor=13

	Vendor-defined failure
	Vendor-defined failure

	Span

	17.
	17.
	17.

	 } Status;
	 } Status;

	
	

	Span

	18.
	18.
	18.

	 ReturnCode(const Status inStatus);
	 ReturnCode(const Status inStatus);

	Constructor that takes an input parameter of a Status enum value. All of the functions that need to be implemented for the Video API return an instantiation of a ReturnCode object with a valid status value passed in as a parameter.
	Constructor that takes an input parameter of a Status enum value. All of the functions that need to be implemented for the Video API return an instantiation of a ReturnCode object with a valid status value passed in as a parameter.

	Span

	19.
	19.
	19.

	 Status getStatus() const;
	 Status getStatus() const;

	Getter method to return status value
	Getter method to return status value

	Span

	20.
	20.
	20.

	private:
	private:

	
	

	Span

	21.
	21.
	21.

	 Status status;
	 Status status;

	Member variable for storing status
	Member variable for storing status

	Span

	22.
	22.
	22.

	};
	};

	
	

	Span

	2.4. File structures for enrolled template collection 485
	For still image enrollment, an SDK converts a MULTIFACE into a template using the 486 ImageEnrollment::generateEnrollmentTemplate() function of section
	For still image enrollment, an SDK converts a MULTIFACE into a template using the 486 ImageEnrollment::generateEnrollmentTemplate() function of section
	3.3.5.2
	3.3.5.2

	. For video enrollment, an SDK converts a 487 ONEVIDEO into one or more templates, using the VideoEnrollment::generateEnrollmentTemplate() of section
	3.3.1.2
	3.3.1.2

	. To 488 support the identification functions, NIST will concatenate enrollment templates into a single large file. This file is called 489 the EDB (for enrollment database). The EDB is a simple binary concatenation of proprietary templates. There is no 490 header. There are no delimiters. The EDB may extend to hundreds of gigabytes in length. 491

	This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB. The manifest 492 has the format shown as an example in
	This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB. The manifest 492 has the format shown as an example in
	Table 21
	Table 21

	. If the EDB contains N templates, the manifest will contain N lines. The 493 fields are space (ASCII decimal 32) delimited. There are three fields, all containing numeric integers. Strictly speaking, the 494 third column is redundant. 495

	Table 21 – Enrollment dataset template manifest 496
	Table
	TR
	TD
	Span
	Field name

	TD
	Span
	Template ID

	TD
	Span
	Template Length

	TD
	Span
	Position of first byte in EDB

	Span

	TR
	TD
	Span
	Datatype required

	TD
	Span
	Unsigned decimal integer

	TD
	Span
	Unsigned decimal integer

	TD
	Span
	Unsigned decimal integer

	Span

	TR
	TD
	Span
	Datatype length required

	TD
	Span
	4 bytes

	TD
	Span
	4 bytes

	TD
	Span
	8 bytes

	Span

	TR
	TD
	Span
	Example lines of a manifest file appear to the right. Lines 1, 2, 3 and N appear.

	90201744
	90201744

	1024
	1024

	0
	0

	Span

	TR
	163232021
	163232021

	1536
	1536

	1024
	1024

	Span

	TR
	7456433
	7456433

	512
	512

	2560
	2560

	Span

	TR
	...
	...

	
	

	
	

	Span

	Table
	TR
	TD
	183838
	183838

	1024
	1024

	307200000
	307200000

	Span

	 497
	The EDB scheme avoids the file system overhead associated with storing millions of individual files. 498
	3. API Specification 499
	3.1.1. Definitions 500
	As shown in
	As shown in
	Table 22
	Table 22

	, the video API supports 1:N identification of video-to-video, video-to-still image, and still image-to-501 video. The following hold: 502

	 A still image is a picture of one and only one person. One or more such images are presented to the implementation 503 using a MULTIFACE data structure. 504
	 A still image is a picture of one and only one person. One or more such images are presented to the implementation 503 using a MULTIFACE data structure. 504
	 A still image is a picture of one and only one person. One or more such images are presented to the implementation 503 using a MULTIFACE data structure. 504

	 A video is a sequence of F ≥ 1 frames containing P ≥ 0 persons. 505
	 A video is a sequence of F ≥ 1 frames containing P ≥ 0 persons. 505

	 A frame is 2D still image containing P ≥ 0 persons. 506
	 A frame is 2D still image containing P ≥ 0 persons. 506

	 Any person might be present in 0 ≤ f ≤ F frames, and their presence may be non-contiguous (e.g. due to occlusion). 507
	 Any person might be present in 0 ≤ f ≤ F frames, and their presence may be non-contiguous (e.g. due to occlusion). 507

	 Different videos contain different numbers of frames and people. 508
	 Different videos contain different numbers of frames and people. 508

	 A ONEVIDEO container is used to represent a video. It contains a small header and pointers to F frames. 509
	 A ONEVIDEO container is used to represent a video. It contains a small header and pointers to F frames. 509

	 Any person found in a video is represented by proprietary template (feature) data contained with a PERSONREP data 510 structure. A proprietary template contains information from one or more frames. Internally, it might embed multiple 511 traditional still-image templates, or it might integrate feature data by tracking a person across multiple frames. 512
	 Any person found in a video is represented by proprietary template (feature) data contained with a PERSONREP data 510 structure. A proprietary template contains information from one or more frames. Internally, it might embed multiple 511 traditional still-image templates, or it might integrate feature data by tracking a person across multiple frames. 512

	 A PERSONREP structure additionally contains a trajectory indicating the location of the person in each frame. 513
	 A PERSONREP structure additionally contains a trajectory indicating the location of the person in each frame. 513

	 514
	All of the code for the classes needed to implement the video API will be provided to implementers at 515
	All of the code for the classes needed to implement the video API will be provided to implementers at 515
	http://nigos.nist.gov:8080/five
	http://nigos.nist.gov:8080/five

	. A single sample video has been made available at the same link. The sample video is 516 only approximately representative of the scene and is not an extraction from the actual video data that will be used in the 517 evaluation. It is only intended to illustrate similarities in terms of camera placement relative to the subject and people 518 behavior. It is not intended to represent the optical properties of the actual imaging systems, particularly the spatial 519 sampling rate, nor the compression cha

	 521
	Table 22 – API implementation requirements for FIVE 522
	Table
	TR
	TD
	Span
	Function

	TD
	Span
	Video-to-video

	TD
	Span
	Still-to-video

	TD
	Span
	Video-to-still

	Span

	Enroll
	Enroll
	Enroll

	Videos
	Videos

	Videos
	Videos

	Stills
	Stills

	Span

	Enrollment input datatype
	Enrollment input datatype
	Enrollment input datatype

	ONEVIDEO
	ONEVIDEO

	ONEVIDEO
	ONEVIDEO

	MULTIFACE
	MULTIFACE

	Span

	Enrollment datatype
	Enrollment datatype
	Enrollment datatype

	PERSONREP
	PERSONREP

	PERSONREP
	PERSONREP

	PERSONREP
	PERSONREP

	Span

	Search
	Search
	Search

	Video
	Video

	Still
	Still

	Video
	Video

	Span

	Search input datatype
	Search input datatype
	Search input datatype

	ONEVIDEO
	ONEVIDEO

	MULTIFACE
	MULTIFACE

	ONEVIDEO
	ONEVIDEO

	Span

	Search datatype
	Search datatype
	Search datatype

	PERSONREP
	PERSONREP

	PERSONREP
	PERSONREP

	PERSONREP
	PERSONREP

	Span

	Search result
	Search result
	Search result

	CANDIDATELIST
	CANDIDATELIST

	CANDIDATELIST
	CANDIDATELIST

	CANDIDATELIST
	CANDIDATELIST

	Span

	API requirements
	API requirements
	API requirements

	3.3.1
	3.3.1
	3.3.1
	3.3.1

	 +
	3.3.2
	3.3.2

	 +
	3.3.3
	3.3.3

	 +
	3.3.4
	3.3.4

	

	3.3.1
	3.3.1
	3.3.1
	3.3.1

	 +
	3.3.2
	3.3.2

	 +
	3.3.7
	3.3.7

	 +
	3.3.4
	3.3.4

	

	3.3.5
	3.3.5
	3.3.5
	3.3.5

	 +
	3.3.6
	3.3.6

	 +
	3.3.3
	3.3.3

	 +
	3.3.8
	3.3.8

	

	Span

	3.1.1.1. Video-to-video 523
	Video-to-video identification is the process of enrolling N videos and then searching the enrollment database with a 524 search video. During identification, the SDK shall return a set of indices of candidate videos that contain people who 525 appear in the search video. 526
	 N templates will be generated from M enrollment videos. If no people appear in the videos, N will be 0. If many 527 people appear in each video, we'd expect N > M. 528
	 N templates will be generated from M enrollment videos. If no people appear in the videos, N will be 0. If many 527 people appear in each video, we'd expect N > M. 528
	 N templates will be generated from M enrollment videos. If no people appear in the videos, N will be 0. If many 527 people appear in each video, we'd expect N > M. 528

	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 529
	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 529

	 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 530 video. 531
	 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 530 video. 531

	 Each identification template generated will be searched against the enrollment database of templates generated 532 from the M input videos. 533
	 Each identification template generated will be searched against the enrollment database of templates generated 532 from the M input videos. 533
	 Each identification template generated will be searched against the enrollment database of templates generated 532 from the M input videos. 533

	 We anticipate that the same person may appear in more than one enrolled video. 534
	 We anticipate that the same person may appear in more than one enrolled video. 534

	3.1.1.2. Still image-to-video 535
	Still image-to-video identification is the process of enrolling N videos and then searching the enrollment database with a 536 template produced from a MULTIFACE as follows: 537
	 N templates will be generated from 1 < M ≤ N enrollment videos. 538
	 N templates will be generated from 1 < M ≤ N enrollment videos. 538
	 N templates will be generated from 1 < M ≤ N enrollment videos. 538

	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 539
	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 539

	 A MULTIFACE (still image) will be converted to an identification template. 540
	 A MULTIFACE (still image) will be converted to an identification template. 540

	 The identification template will be searched against the enrollment database of N templates. 541
	 The identification template will be searched against the enrollment database of N templates. 541

	 We anticipate that the same person may appear in more than one enrolled video. 542
	 We anticipate that the same person may appear in more than one enrolled video. 542

	3.1.1.3. Video-to-still image 543
	Video-to-still image identification is the process of enrolling N MULTIFACEs (see
	Video-to-still image identification is the process of enrolling N MULTIFACEs (see
	Table 12
	Table 12

) and then searching the 544 enrollment database with templates from persons found in a video as follows 545

	 N templates will be generated from N still-image MULTIFACEs. 546
	 N templates will be generated from N still-image MULTIFACEs. 546
	 N templates will be generated from N still-image MULTIFACEs. 546

	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 547
	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 547

	 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 548 video. 549
	 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 548 video. 549

	 Each of the S identification templates will be searched separately against the enrollment database of N templates. 550
	 Each of the S identification templates will be searched separately against the enrollment database of N templates. 550

	3.2. 1:N Identification 551
	3.2.1. Overview 552
	The 1:N application proceeds in two phases, enrollment and identification. The identification phase includes separate 553 pre-search feature extraction stage, and a search stage. 554
	The design reflects the following testing objectives for 1:N implementations. 555
	 support distributed enrollment on multiple machines, with multiple processes running in parallel allow recovery after a fatal exception, and measure the number of occurrences allow NIST to copy enrollment data onto many machines to support parallel testing respect the black-box nature of biometric templates extend complete freedom to the provider to use arbitrary algorithms support measurement of duration of core function calls support measurement of template size
	Table 23 – Procedural overview of the identification test 556
	Table
	TR
	TD
	Span
	Phase

	TD
	Span
	#

	TD
	Span
	Name

	TD
	Span
	Description

	TD
	Span
	Performance Metrics to be reported by NIST

	Span

	Enrollment
	Enrollment
	Enrollment
	Enrollment

	E1
	E1

	Initialization
	Initialization

	For still image enrollment, give the implementation advance notice of the number of individuals and images that will be enrolled.
	For still image enrollment, give the implementation advance notice of the number of individuals and images that will be enrolled.
	Give the implementation the name of a directory where any provider-supplied configuration data will have been placed by NIST. This location will otherwise be empty.
	The implementation is permitted read-write-delete access to the enrollment directory during this phase. The implementation is permitted read-only access to the configuration directory.
	After enrollment, NIST may rename and relocate the enrollment directory - the implementation should not depend on the name of the enrollment directory.

	
	

	Span

	TR
	E2
	E2

	Parallel Enrollment
	Parallel Enrollment

	For still image enrollment, for each of N individuals, pass multiple images to the implementation for conversion to a combined template. For video enrollment, for each of M video clips, pass multiple video frames to the implementation for generation of N templates, based on the number of people detected in the videos. The implementation will return a template to the calling application.
	For still image enrollment, for each of N individuals, pass multiple images to the implementation for conversion to a combined template. For video enrollment, for each of M video clips, pass multiple video frames to the implementation for generation of N templates, based on the number of people detected in the videos. The implementation will return a template to the calling application.
	The implementation is permitted read-only access to the enrollment directory during this phase. NIST's calling application will be responsible for storing all templates as binary files. These will not be available to the implementation during this enrollment phase.
	Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on different computers. For still image enrollment, the same person will not be enrolled twice.

	Statistics of the times needed to enroll an individual or video clip.
	Statistics of the times needed to enroll an individual or video clip.
	Statistics of the sizes of created templates.
	
	
	The incidence of failed template creations.

	Span

	TR
	E3
	E3

	Finalization
	Finalization

	Permanently finalize the enrollment directory. This supports, for example, dis-interleaving of internal feature representations, writing of a manifest, indexing, tree construction, computation of statistical information over the enrollment dataset, and adaptation of the representation.
	Permanently finalize the enrollment directory. This supports, for example, dis-interleaving of internal feature representations, writing of a manifest, indexing, tree construction, computation of statistical information over the enrollment dataset, and adaptation of the representation.
	The implementation is permitted read-write-delete access to the enrollment directory during this phase.

	For still image enrollment, size of the enrollment database as a function of population size N and the number of images.
	For still image enrollment, size of the enrollment database as a function of population size N and the number of images.
	Duration of this operation. The time needed to execute this function shall be reported with the preceding enrollment times.

	Span

	Pre-search
	Pre-search
	Pre-search

	S1
	S1

	Initialization
	Initialization

	Tell the implementation the location of an enrollment directory. The implementation could look at the enrollment data.
	Tell the implementation the location of an enrollment directory. The implementation could look at the enrollment data.
	The implementation is permitted read-only access to the enrollment directory during this phase.

	Statistics of the time needed for this operation.
	Statistics of the time needed for this operation.
	

	Span

	TR
	S2
	S2

	Template preparation
	Template preparation

	For each probe, create a template from a set of input images or one or more templates from a set of video clips. This operation will generally be conducted in a separate process invocation to step S2.
	For each probe, create a template from a set of input images or one or more templates from a set of video clips. This operation will generally be conducted in a separate process invocation to step S2.
	The implementation is permitted no access to the enrollment directory during this phase.
	The result of this step is a search template.

	Statistics of the time needed for this operation.
	Statistics of the time needed for this operation.
	Statistics of the size of the search template(s).

	Span

	Search
	Search
	Search

	S3
	S3

	Initialization
	Initialization

	Tell the implementation the location of an enrollment directory. The implementation should read all or some of the enrolled data into main memory, so that searches can commence.
	Tell the implementation the location of an enrollment directory. The implementation should read all or some of the enrolled data into main memory, so that searches can commence.
	The implementation is permitted read-only access to the enrollment directory during this phase.

	Statistics of the time needed for this operation.
	Statistics of the time needed for this operation.
	

	Span

	TR
	S4
	S4

	Search
	Search

	A template or multiple templates is searched against the enrollment database.
	A template or multiple templates is searched against the enrollment database.
	The implementation is permitted read-only access to the enrollment directory during this phase.

	Statistics of the time needed for this operation.
	Statistics of the time needed for this operation.
	Accuracy metrics - Type I + II error rates.

	Span

	Table
	TR
	Failure rates.
	Failure rates.

	Span

	3.3. Interfaces 557
	3.3.1. The VideoEnrollment Interface 558
	The abstract class VideoEnrollment must be implemented by the SDK developer in a class named exactly 559 SdkVideoEnrollment. The processing that takes place during each phase of the test is done via calls to the methods 560 declared in the interface as pure virtual, and therefore is to be implemented by the SDK. The test driver will call these 561 methods, handling all return values. 562
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class VideoEnrollment
	class VideoEnrollment

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir,
	 const uint32_t numVideos) = 0 ;

	Initialize the enrollment session.
	Initialize the enrollment session.

	Span

	4.
	4.
	4.

	 virtual ReturnCode generateEnrollmentTemplate(
	 virtual ReturnCode generateEnrollmentTemplate(
	 const ONEVIDEO &inputVideo,
	 vector<PERSONREP> &enrollTemplates) = 0;

	Generate enrollment template(s) for the persons detected in the input video. This function takes a ONEVIDEO (see
	Generate enrollment template(s) for the persons detected in the input video. This function takes a ONEVIDEO (see
	Generate enrollment template(s) for the persons detected in the input video. This function takes a ONEVIDEO (see
	2.3.6
	2.3.6

) as input and populates a vector of PERSONREP (see
	2.3.10
	2.3.10

) with the number of persons detected from the video sequence. The implementation could call vector::push_back to insert into the vector.

	Span

	5.
	5.
	5.

	 // Destructor
	 // Destructor

	
	

	Span

	6.
	6.
	6.

	};
	};

	
	

	Span

	3.3.1.1. Initialization of the video enrollment session 563
	Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization below for video-564 to-video and still image-to-video. 565
	Table 24 – VideoEnrollment::initialize 566
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir,
	const string &enrollDir,

	Input
	Input

	Span

	TR
	const uint32_t numVideos);
	const uint32_t numVideos);

	Input
	Input

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by the NIST application immediately before any M 1 calls to generateEnrollmentTemplate. Caution: The implementation should tolerate execution of P > 1 processes on the one or more machines each of which may be reading and writing to this same enrollment directory in parallel. File locking or process-specific temporary filenames would be needed to safely write content in the enrollDir.
	This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by the NIST application immediately before any M 1 calls to generateEnrollmentTemplate. Caution: The implementation should tolerate execution of P > 1 processes on the one or more machines each of which may be reading and writing to this same enrollment directory in parallel. File locking or process-specific temporary filenames would be needed to safely write content in the enrollDir.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	TR
	enrollDir
	enrollDir

	The directory will be initially empty, but may have been initialized and populated by separate invocations of the enrollment process. When this function is called, the SDK may populate this folder in any manner it sees fit. Permissions will be read-write-delete.
	The directory will be initially empty, but may have been initialized and populated by separate invocations of the enrollment process. When this function is called, the SDK may populate this folder in any manner it sees fit. Permissions will be read-write-delete.

	Span

	TR
	numVideos
	numVideos

	The total number of videos that will be passed to the SDK for enrollment.
	The total number of videos that will be passed to the SDK for enrollment.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission, space).
	An operation on the enrollment directory failed (e.g. permission, space).

	Span

	TR
	InitNumData
	InitNumData

	The SDK cannot support the number of videos.
	The SDK cannot support the number of videos.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.3.1.2. Video enrollment 567
	A ONEVIDEO is converted to enrollment template(s) for each person detected in the ONEVIDEO using the function below. 568
	Table 25 – VideoEnrollment::generateEnrollmentTemplate 569
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode generateEnrollmentTemplate(
	ReturnCode generateEnrollmentTemplate(

	
	

	Span

	TR
	const ONEVIDEO &inputVideo,
	const ONEVIDEO &inputVideo,

	Input
	Input

	Span

	TR
	std::vector<PERSONREP> &enrollTemplates);
	std::vector<PERSONREP> &enrollTemplates);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes a ONEVIDEO, and outputs a vector of PERSONREP objects. If the function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST application will concatenate the templates and pass the result to the enrollment finalization function. For a video in which no persons appear, a valid output is an empty vector (i.e. size() == 0).
	This function takes a ONEVIDEO, and outputs a vector of PERSONREP objects. If the function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST application will concatenate the templates and pass the result to the enrollment finalization function. For a video in which no persons appear, a valid output is an empty vector (i.e. size() == 0).
	If the function gives a non-zero exit status:
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise

	 the test driver will ignore the output template (the template may have any size including zero)
	 the test driver will ignore the output template (the template may have any size including zero)

	 the event will be counted as a failure to enroll. Such an event means that this person can never be identified correctly.
	 the event will be counted as a failure to enroll. Such an event means that this person can never be identified correctly.

	IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in the template, or created from the templates during the enrollment finalization function.

	Span

	Input
	Input
	Input
	Parameters

	inputVideo
	inputVideo

	An instance of a
	An instance of a
	An instance of a
	Table 14
	Table 14

	 class.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	enrollTemplates
	enrollTemplates

	For each person detected in the ONEVIDEO, the function shall identify the person’s estimated eye centers for each video frame where the person’s eye coordinates can be calculated. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. The frame number from the video of where the eye coordinates were detected shall be captured in the EYEPAIR.frameNum variable for each pair of eye coordinates. In the event the eye centers cannot be calculated (
	For each person detected in the ONEVIDEO, the function shall identify the person’s estimated eye centers for each video frame where the person’s eye coordinates can be calculated. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. The frame number from the video of where the eye coordinates were detected shall be captured in the EYEPAIR.frameNum variable for each pair of eye coordinates. In the event the eye centers cannot be calculated (

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	RefuseInput
	RefuseInput

	Elective refusal to process this kind of ONEVIDEO
	Elective refusal to process this kind of ONEVIDEO

	Span

	TR
	FailExtract
	FailExtract

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	FailTempl
	FailTempl

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	FailParse
	FailParse

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	ImgSizeNotSupported
	ImgSizeNotSupported

	Input image/frame size too small or large
	Input image/frame size too small or large

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.3.2. The VideoFinalize Interface 570
	The abstract class VideoFinalize must be implemented by the SDK developer in a class named exactly SdkVideoFinalize. 571 The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 572 manifest have been stored. These are described in section
	The abstract class VideoFinalize must be implemented by the SDK developer in a class named exactly SdkVideoFinalize. 571 The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 572 manifest have been stored. These are described in section
	2.3.6
	2.3.6

	. The enrollment directory permissions will be read + 573 write. 574

	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class VideoFinalize
	class VideoFinalize

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode finalize(
	 virtual ReturnCode finalize(
	 const string &enrollDir,
	 const string &edbName,
	 const string &edbManifest) = 0;

	This function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.
	This function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.

	Span

	4.
	4.
	4.

	 // Destructor
	 // Destructor

	
	

	Span

	5.
	5.
	5.
	5.

	};
	};

	
	

	Span

	3.3.2.1. Finalize video enrollment 575
	After all templates have been created, the function of
	After all templates have been created, the function of
	Table 26
	Table 26

	 will be called. This freezes the enrollment data. After this 576 call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 577 phases. 578

	The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 579 data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 580 No output is expected from this function, except a return code. 581
	Table 26 – VideoFinalize::finalize 582
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode finalize (
	ReturnCode finalize (

	
	

	Span

	TR
	const string &enrollDir,
	const string &enrollDir,

	Input
	Input

	Span

	TR
	const string &edbName,
	const string &edbName,

	Input
	Input

	Span

	TR
	const string &edbManifest);
	const string &edbManifest);

	Input
	Input

	Span

	Description
	Description
	Description

	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	2.3.6
	2.3.6

	. The enrollment directory permissions will be read + write.

	The function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.
	This function should be tolerant of being called two or more times. Second and third invocations should probably do nothing.

	Span

	Input
	Input
	Input
	Parameters

	enrollDir
	enrollDir

	The top-level directory in which enrollment data was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.
	The top-level directory in which enrollment data was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.

	Span

	TR
	edbName
	edbName

	The name of a single file containing concatenated templates, i.e. the EDB of section
	The name of a single file containing concatenated templates, i.e. the EDB of section
	The name of a single file containing concatenated templates, i.e. the EDB of section
	2.3.6
	2.3.6

	.

	While the file will have read-write-delete permission, the SDK should only alter the file if it preserves the necessary content, in other files for example.
	The file may be opened directly. It is not necessary to prepend a directory name.

	Span

	TR
	edbManifest
	edbManifest

	The name of a single file containing the EDB manifest of section
	The name of a single file containing the EDB manifest of section
	The name of a single file containing the EDB manifest of section
	2.3.6
	2.3.6

	.

	The file may be opened directly. It is not necessary to prepend a directory name.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	None
	None

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	FinInputData
	FinInputData

	Cannot locate the input data - the input files or names seem incorrect.
	Cannot locate the input data - the input files or names seem incorrect.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission, space).
	An operation on the enrollment directory failed (e.g. permission, space).

	Span

	TR
	FinTemplFormat
	FinTemplFormat

	One or more template files are in an incorrect format.
	One or more template files are in an incorrect format.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.3.3. The VideoFeatureExtraction Interface 583
	The abstract class VideoFeatureExtraction must be implemented by the SDK developer in a class named exactly 584 SdkVideoFeatureExtraction. 585
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class VideoFeatureExtraction
	class VideoFeatureExtraction

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir) = 0;

	Initialize the feature extraction session.
	Initialize the feature extraction session.

	Span

	4.
	4.
	4.
	4.

	 virtual ReturnCode generateIdTemplate(
	 virtual ReturnCode generateIdTemplate(
	 const ONEVIDEO &inputVideo,
	 vector<PERSONREP> &idTemplates) = 0;

	Generate identification template(s) for the persons detected in the input video. This function takes a ONEVIDEO (see
	Generate identification template(s) for the persons detected in the input video. This function takes a ONEVIDEO (see
	Generate identification template(s) for the persons detected in the input video. This function takes a ONEVIDEO (see
	2.3.6
	2.3.6

) as input and populates a vector of PERSONREP (see
	2.3.10
	2.3.10

) with the number of persons detected from the video sequence. The implementation could call vector::push_back to insert into the vector.

	Span

	5.
	5.
	5.

	 // Destructor
	 // Destructor

	
	

	Span

	6.
	6.
	6.

	};
	};

	
	

	Span

	3.3.3.1. Video feature extraction initialization 586
	Before one or more ONEVIDEOs are sent to the identification feature extraction function, the test harness will call the 587 initialization function below. 588
	Table 27 – VideoFeatureExtraction::initialize 589
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir);
	const string &enrollDir);

	Input
	Input

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test and sets all needed parameters. This function will be called once by the NIST application immediately before any M 1 calls to generateIdTemplate.
	This function initializes the SDK under test and sets all needed parameters. This function will be called once by the NIST application immediately before any M 1 calls to generateIdTemplate.
	
	The implementation has read-only access to enrollDir (containing prior enrollment data) and to configDir.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	
	
	

	enrollDir
	enrollDir

	The read-only top-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.
	The read-only top-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission).
	An operation on the enrollment directory failed (e.g. permission).

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.3.3.2. Video feature extraction 590
	A ONEVIDEO is converted to one or more identification templates using the function below. The result may be stored by 591 NIST, or used immediately. The SDK shall not attempt to store any data. 592
	Table 28 – VideoFeatureExtraction::generateIdTemplate 593
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode generateIdTemplate(
	ReturnCode generateIdTemplate(

	
	

	Span

	TR
	const ONEVIDEO &inputVideo,
	const ONEVIDEO &inputVideo,

	Input
	Input

	Span

	TR
	std::vector<PERSONREP> &idTemplates);
	std::vector<PERSONREP> &idTemplates);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes a ONEVIDEO (see
	This function takes a ONEVIDEO (see
	This function takes a ONEVIDEO (see
	2.3.6
	2.3.6

) as input and populates a vector of PERSONREP (see
	2.3.10
	2.3.10

) with the number of persons detected from the video sequence. The implementation could call vector::push_back to insert into the vector.

	If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template to permanent storage, or may keep it only in memory (the implementation does not need to know). If the function returns a non-zero exit status, the output template will be not be used in subsequent search operations.
	The function shall not have access to the enrollment data, nor shall it attempt access.

	Span

	Input
	Input
	Input
	Parameters

	InputVideo
	InputVideo

	An instance of a section
	An instance of a section
	An instance of a section
	2.3.6
	2.3.6

	 class. Implementations must alter their behavior according to the people detected in the video sequence.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	IdTemplates
	IdTemplates

	For each person detected in the video, the function shall create a PERSONREP (see section
	For each person detected in the video, the function shall create a PERSONREP (see section
	For each person detected in the video, the function shall create a PERSONREP (see section
	2.3.10
	2.3.10

) object, populate it with a template and eye coordinates for each frame where eyes

	Span

	Table
	TR
	were detected, and add it to the vector.
	were detected, and add it to the vector.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	RefuseInput
	RefuseInput

	Elective refusal to process this kind of ONEVIDEO
	Elective refusal to process this kind of ONEVIDEO

	Span

	TR
	FailExtract
	FailExtract

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	FailTempl
	FailTempl

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	FailParse
	FailParse

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	ImgSizeNotSupported
	ImgSizeNotSupported

	Input image/frame size too small or large
	Input image/frame size too small or large

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.3.4. The VideoSearch Interface 594
	The abstract class VideoSearch must be implemented by the SDK developer in a class named exactly SdkVideoSearch. 595
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class VideoSearch
	class VideoSearch

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir) = 0;

	Initialize the search session.
	Initialize the search session.

	Span

	4.
	4.
	4.

	 virtual ReturnCode identifyVideo(
	 virtual ReturnCode identifyVideo(
	 const PERSONREP &idVideoTemplate,
	 const uint32_t candListLength,
	 CANDIDATELIST &candList) = 0;

	For video-to-video identification
	For video-to-video identification
	This function searches a template generated from a ONEVIDEO against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	This function searches a template generated from a ONEVIDEO against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	2.3.12
	2.3.12

).

	Span

	5.
	5.
	5.

	 virtual ReturnCode identifyImage(
	 virtual ReturnCode identifyImage(
	 const PERSONREP &idImageTemplate,
	 const uint32_t candListLength,
	 CANDIDATELIST &candList) = 0;

	For still-to-video identification
	For still-to-video identification
	
	This function searches a template generated from a MULTIFACE against the enrollment set, and outputs a vector containing candListLength objects of Candidates.

	Span

	6.
	6.
	6.

	 // Destructor
	 // Destructor

	
	

	Span

	7.
	7.
	7.

	};
	};

	
	

	Span

	3.3.4.1. Video identification initialization 596
	The function below will be called once prior to one or more calls of the searching function of
	The function below will be called once prior to one or more calls of the searching function of
	Table 30
	Table 30

	. The function might 597 set static internal variables so that the enrollment database is available to the subsequent identification searches. 598

	Table 29 – VideoSearch::initialize 599
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir);
	const string &enrollDir);

	Input
	Input

	Span

	Description
	Description
	Description

	This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the VideoFinalize::finalize function.
	This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the VideoFinalize::finalize function.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	TR
	enrollDir
	enrollDir

	The read-only top-level directory in which enrollment data was placed.
	The read-only top-level directory in which enrollment data was placed.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission).
	An operation on the enrollment directory failed (e.g. permission).

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.3.4.2. Video identification search 600
	The function below compares a proprietary identification template against the enrollment data and returns a candidate 601 list. 602
	Table 30 – VideoSearch::identifyVideo and VideoSearch::identifyImage 603
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode identifyVideo(
	ReturnCode identifyVideo(

	Searches a template generated from a ONEVIDEO against the enrollment set (video-to-video)
	Searches a template generated from a ONEVIDEO against the enrollment set (video-to-video)

	Span

	
	
	

	const PERSONREP &idVideoTemplate,
	const PERSONREP &idVideoTemplate,

	Input
	Input

	Span

	
	
	

	const uint32_t candListLength,
	const uint32_t candListLength,

	Input
	Input

	Span

	
	
	

	CANDIDATELIST &candList);
	CANDIDATELIST &candList);

	Output
	Output

	Span

	
	
	

	TD
	Span
	ReturnCode identifyImage(

	Searches a template generated from a MULTIFACE against the enrollment set (still-to-video)
	Searches a template generated from a MULTIFACE against the enrollment set (still-to-video)

	Span

	TR
	TD
	Span
	const PERSONREP &idImageTemplate,

	Input
	Input

	Span

	TR
	TD
	Span
	const uint32_t candListLength,

	Input
	Input

	Span

	TR
	TD
	Span
	CANDIDATELIST &candList);

	Output
	Output

	Span

	Description
	Description
	Description
	

	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength Candidates (see section
	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength Candidates (see section
	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength Candidates (see section
	2.3.12
	2.3.12

). Each candidate shall be populated by the implementation and added to candList. Note that candList will be an empty vector when passed into this function. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	idTemplate
	idTemplate

	A template from generateIdTemplate() - If the value returned by that function was non-zero the contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.
	A template from generateIdTemplate() - If the value returned by that function was non-zero the contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.

	Span

	TR
	candListLength
	candListLength

	The number of candidates the search should return
	The number of candidates the search should return

	Span

	Output
	Output
	Output
	Parameters

	candList
	candList

	A vector containing candListLength objects of Candidates. The datatype is defined in section
	A vector containing candListLength objects of Candidates. The datatype is defined in section
	A vector containing candListLength objects of Candidates. The datatype is defined in section
	2.3.12
	2.3.12

	. Each candidate shall be populated by the implementation and added to this vector. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	IdBadTempl
	IdBadTempl

	The input template was defective.
	The input template was defective.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.3.5. The ImageEnrollment Interface 604
	The abstract class ImageEnrollment must be implemented by the SDK developer in a class named exactly 605 SdkImageEnrollment. 606
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class ImageEnrollment
	class ImageEnrollment

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir,
	 const uint32_t numPersons,
	 const uint32_t numImages,
	 const vector<string> &descriptions) = 0 ;

	Initialize the enrollment session.
	Initialize the enrollment session.

	Span

	4.
	4.
	4.

	 virtual ReturnCode generateEnrollmentTemplate(
	 virtual ReturnCode generateEnrollmentTemplate(
	 const MULTIFACE &inputFaces,
	 PERSONREP &outputTemplate) = 0;

	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	2.3.3
	2.3.3

) as input and outputs a proprietary template represented by a PERSONREP (see
	2.3.10
	2.3.10

).

	
	For each input image in the MULTIFACE, the function shall return the estimated eye centers by setting PERSONREP.eyeCoordinates.

	Span

	5.
	5.
	5.

	 // Destructor
	 // Destructor

	
	

	Span

	6.
	6.
	6.

	};
	};

	
	

	Span

	3.3.5.1. Initialization of the image enrollment session 607
	Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization below for video-608 to-still. 609
	Table 31 – ImageEnrollment::initialize 610
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir,
	const string &enrollDir,

	Input
	Input

	Span

	TR
	const uint32_t numPersons,
	const uint32_t numPersons,

	Input
	Input

	Span

	TR
	const uint32_t numImages,
	const uint32_t numImages,

	Input
	Input

	Span

	TR
	const std::vector<string> &descriptions);
	const std::vector<string> &descriptions);

	Input
	Input

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by the NIST application immediately before any M 1 calls to generateEnrollmentTemplate. Caution: The implementation should tolerate execution of P > 1 processes on the one or more machines each of which may be reading and writing to this same enrollment directory in parallel. File locking or process-specific temporary filenames would be needed to safely write content in the enrollDir.
	This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by the NIST application immediately before any M 1 calls to generateEnrollmentTemplate. Caution: The implementation should tolerate execution of P > 1 processes on the one or more machines each of which may be reading and writing to this same enrollment directory in parallel. File locking or process-specific temporary filenames would be needed to safely write content in the enrollDir.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	
	
	

	enrollDir
	enrollDir

	The directory will be initially empty, but may have been initialized and populated by separate invocations of the enrollment process. When this function is called, the SDK may populate this folder in any manner it sees fit. Permissions will be read-write-delete.
	The directory will be initially empty, but may have been initialized and populated by separate invocations of the enrollment process. When this function is called, the SDK may populate this folder in any manner it sees fit. Permissions will be read-write-delete.

	Span

	
	
	

	numPersons
	numPersons

	The number of persons who will be enrolled.
	The number of persons who will be enrolled.

	Span

	TR
	numImages
	numImages

	The total number of images that will be enrolled, summed over all identities.
	The total number of images that will be enrolled, summed over all identities.

	Span

	TR
	descriptions
	descriptions

	A lexicon of labels one of which will be assigned to each enrollment image. See
	A lexicon of labels one of which will be assigned to each enrollment image. See
	A lexicon of labels one of which will be assigned to each enrollment image. See
	Table 9
	Table 9

	 for valid values.

	NOTE: The identification search images may or may not be labeled. An identification image may carry a label not in this set of labels. The number of items stored in the vector is accessible via the vector::size() function.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission, space).
	An operation on the enrollment directory failed (e.g. permission, space).

	Span

	TR
	InitNumData
	InitNumData

	The SDK cannot support the number of videos.
	The SDK cannot support the number of videos.

	Span

	TR
	InitBadDesc
	InitBadDesc

	The descriptions are unexpected, or unusable.
	The descriptions are unexpected, or unusable.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.3.5.2. Image enrollment 611
	A MULTIFACE (see
	A MULTIFACE (see
	Table 12
	Table 12

) is converted to a single enrollment template using the function below. 612

	Table 32 – ImageEnrollment::generateEnrollmentTemplate 613
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode generateEnrollmentTemplate(
	ReturnCode generateEnrollmentTemplate(

	
	

	Span

	TR
	const MULTIFACE &inputFaces,
	const MULTIFACE &inputFaces,

	Input
	Input

	Span

	TR
	PERSONREP &outputTemplate);
	PERSONREP &outputTemplate);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes a MULTIFACE, and outputs a proprietary template in the form of a PERSONREP object. If the function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST application will concatenate the templates and pass the result to the enrollment finalization function.
	This function takes a MULTIFACE, and outputs a proprietary template in the form of a PERSONREP object. If the function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST application will concatenate the templates and pass the result to the enrollment finalization function.
	If the function gives a non-zero exit status:
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise

	 the test driver will ignore the output template (the template may have any size including zero)
	 the test driver will ignore the output template (the template may have any size including zero)

	 the event will be counted as a failure to enroll. Such an event means that this person can never be identified
	 the event will be counted as a failure to enroll. Such an event means that this person can never be identified

	Span

	Table
	TR
	correctly.
	correctly.
	correctly.
	correctly.

	IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in the template, or created from the templates during the enrollment finalization function.

	Span

	Input
	Input
	Input
	Parameters

	inputFaces
	inputFaces

	An instance of a
	An instance of a
	An instance of a
	Table 12
	Table 12

	 structure.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	outputTemplate
	outputTemplate

	An instance of a section
	An instance of a section
	An instance of a section
	2.3.10
	2.3.10

	 class, which stores proprietary template data and eye coordinates. The function shall identify the person’s estimated eye centers for each image in the MULTIFACE. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. In the event the eye centers cannot be calculated, the SDK shall store an EYEPAIR and set EYEPAIR.isSet to false to indicate there was a failure in generating eye coordinates. In other words, for N images in the MULTIFACE.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	RefuseInput
	RefuseInput

	Elective refusal to process this kind of MULTIFACE
	Elective refusal to process this kind of MULTIFACE

	Span

	TR
	FailExtract
	FailExtract

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	FailTempl
	FailTempl

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	FailParse
	FailParse

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	ImgSizeNotSupported
	ImgSizeNotSupported

	Input image/frame size too small or large
	Input image/frame size too small or large

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.3.6. The ImageFinalize Interface 614
	The abstract class ImageFinalize must be implemented by the SDK developer in a class named exactly SdkImageFinalize. 615 The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 616 manifest have been stored. These are described in section
	The abstract class ImageFinalize must be implemented by the SDK developer in a class named exactly SdkImageFinalize. 615 The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 616 manifest have been stored. These are described in section
	2.3.6
	2.3.6

	. The enrollment directory permissions will be read + 617 write. 618

	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class ImageFinalize
	class ImageFinalize

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode finalize(
	 virtual ReturnCode finalize(
	 const string &enrollDir,
	 const string &edbName,
	 const string &edbManifest) = 0;

	This function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.
	This function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.

	Span

	4.
	4.
	4.

	 // Destructor
	 // Destructor

	
	

	Span

	5.
	5.
	5.

	};
	};

	
	

	Span

	3.3.6.1. Finalize image enrollment 619
	After all templates have been created, the function of
	After all templates have been created, the function of
	Table 33
	Table 33

	 will be called. This freezes the enrollment data. After this 620 call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 621 phases. 622

	The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 623 data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 624 No output is expected from this function, except a return code. 625
	Table 33 – ImageFinalize::finalize 626
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode finalize(
	ReturnCode finalize(

	
	

	Span

	TR
	const string &enrollDir,
	const string &enrollDir,

	Input
	Input

	Span

	TR
	const string &edbName,
	const string &edbName,

	Input
	Input

	Span

	TR
	const string &edbManifest);
	const string &edbManifest);

	Input
	Input

	Span

	Description
	Description
	Description

	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have
	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have

	Span

	Table
	TR
	been stored. These are described in section
	been stored. These are described in section
	been stored. These are described in section
	2.3.6
	2.3.6

	. The enrollment directory permissions will be read + write.

	The function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.
	This function should be tolerant of being called two or more times. Second and third invocations should probably do nothing.

	Span

	Input
	Input
	Input
	Parameters

	enrollDir
	enrollDir

	The top-level directory in which enrollment data was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.
	The top-level directory in which enrollment data was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.

	Span

	TR
	edbName
	edbName

	The name of a single file containing concatenated templates, i.e. the EDB of section
	The name of a single file containing concatenated templates, i.e. the EDB of section
	The name of a single file containing concatenated templates, i.e. the EDB of section
	2.3.6
	2.3.6

	.

	While the file will have read-write-delete permission, the SDK should only alter the file if it preserves the necessary content, in other files for example.
	The file may be opened directly. It is not necessary to prepend a directory name.

	Span

	TR
	edbManifest
	edbManifest

	The name of a single file containing the EDB manifest of section
	The name of a single file containing the EDB manifest of section
	The name of a single file containing the EDB manifest of section
	2.3.6
	2.3.6

	.

	The file may be opened directly. It is not necessary to prepend a directory name.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	None
	None

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	FinInputData
	FinInputData

	Cannot locate the input data - the input files or names seem incorrect.
	Cannot locate the input data - the input files or names seem incorrect.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission, space).
	An operation on the enrollment directory failed (e.g. permission, space).

	Span

	TR
	FinTemplFormat
	FinTemplFormat

	One or more template files are in an incorrect format.
	One or more template files are in an incorrect format.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.3.7. The ImageFeatureExtraction Interface 627
	The abstract class ImageFeatureExtraction must be implemented by the SDK developer in a class named exactly 628 SdkImageFeatureExtraction. 629
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class ImageFeatureExtraction
	class ImageFeatureExtraction

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir) = 0;

	Initialize the feature extraction session.
	Initialize the feature extraction session.

	Span

	4.
	4.
	4.

	 virtual ReturnCode generateIdTemplate(
	 virtual ReturnCode generateIdTemplate(
	 const MULTIFACE &inputFaces,
	 PERSONREP &outputTemplate) = 0;

	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	2.3.3
	2.3.3

) as input and outputs a proprietary template represented by a PERSONREP (see
	2.3.10
	2.3.10

).

	
	For each input image in the MULTIFACE, the function shall return the estimated eye centers by setting PERSONREP.eyeCoordinates.

	Span

	5.
	5.
	5.

	 // Destructor
	 // Destructor

	
	

	Span

	6.
	6.
	6.

	};
	};

	
	

	Span

	3.3.7.1. Image feature extraction initialization 630
	Before one or more MULTIFACEs are sent to the identification feature extraction function, the test harness will call the 631 initialization function below. 632
	Table 34 – ImageFeatureExtraction::initialize 633
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir);
	const string &enrollDir);

	Input
	Input

	Span

	Description
	Description
	Description

	This function initializes the SDK under test and sets all needed parameters. This function will be called once by
	This function initializes the SDK under test and sets all needed parameters. This function will be called once by

	Span

	
	
	
	

	the NIST application immediately before M 1 calls to generateIdTemplate. The implementation has read-only access to enrollDir (containing prior enrollment data) and to configDir.
	the NIST application immediately before M 1 calls to generateIdTemplate. The implementation has read-only access to enrollDir (containing prior enrollment data) and to configDir.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	
	
	

	enrollDir
	enrollDir

	The read-only top-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.
	The read-only top-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission).
	An operation on the enrollment directory failed (e.g. permission).

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.3.7.2. Image feature extraction 634
	A MULTIFACE is converted to one identification template using the function below. The result may be stored by NIST, or 635 used immediately. The SDK shall not attempt to store any data. 636
	Table 35 – ImageFeatureExtraction::generateIdTemplate 637
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode generateIdTemplate(
	ReturnCode generateIdTemplate(

	
	

	Span

	TR
	const MULTIFACE &inputFaces,
	const MULTIFACE &inputFaces,

	Input
	Input

	Span

	TR
	PERSONREP &outputTemplate);
	PERSONREP &outputTemplate);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	2.3.3
	2.3.3

) as input and populates a PERSONREP (see
	2.3.10
	2.3.10

) with a proprietary template and eye coordinates.

	If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template to permanent storage, or may keep it only in memory (the developer implementation does not need to know). If the function returns a non-zero exit status, the output template will be not be used in subsequent search operations.
	The function shall not have access to the enrollment data, nor shall it attempt access.

	Span

	Input
	Input
	Input
	Parameters

	inputFaces
	inputFaces

	An instance of a
	An instance of a
	An instance of a
	Table 12
	Table 12

	 structure.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	outputTemplate
	outputTemplate

	An instance of a section
	An instance of a section
	An instance of a section
	2.3.10
	2.3.10

	 class, which stores proprietary template data and eye coordinates. The function shall identify the person’s estimated eye centers for each image in the MULTIFACE. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. In the event the eye centers cannot be calculated, the SDK shall store an EYEPAIR and set EYEPAIR.isSet to false to indicate there was a failure in generating eye coordinates. In other words, for N images in the MULTIFACE.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	RefuseInput
	RefuseInput

	Elective refusal to process this kind of MULTIFACE
	Elective refusal to process this kind of MULTIFACE

	Span

	TR
	FailExtract
	FailExtract

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	FailTempl
	FailTempl

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	FailParse
	FailParse

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	ImgSizeNotSupported
	ImgSizeNotSupported

	Input image/frame size too small or large
	Input image/frame size too small or large

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.3.8. The ImageSearch Interface 638
	The abstract class ImageSearch must be implemented by the SDK developer in a class named exactly SdkImageSearch. 639
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class VideoFeatureExtraction
	class VideoFeatureExtraction

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.
	3.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir) = 0;

	Initialize the search session.
	Initialize the search session.

	Span

	4.
	4.
	4.

	 virtual ReturnCode identifyVideo(
	 virtual ReturnCode identifyVideo(
	 const PERSONREP &idTemplate,
	 const uint32_t candListLength,
	 CANDIDATELIST &candList) = 0;

	For video-to-still identification
	For video-to-still identification
	
	This function searches a template generated from a ONEVIDEO against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	This function searches a template generated from a ONEVIDEO against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	2.3.12
	2.3.12

). Each candidate shall be populated by the implementation and added to candList. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	5.
	5.
	5.

	 // Destructor
	 // Destructor

	
	

	Span

	6.
	6.
	6.

	};
	};

	
	

	Span

	3.3.8.1. Image identification initialization 640
	The function below will be called once prior to one or more calls of the searching function of
	The function below will be called once prior to one or more calls of the searching function of
	Table 37
	Table 37

	. The function might 641 set static internal variables so that the enrollment database is available to the subsequent identification searches. 642

	Table 36 – ImageSearch::initialize 643
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir);
	const string &enrollDir);

	Input
	Input

	Span

	Description
	Description
	Description

	This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the ImageFinalize::finalize function.
	This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the ImageFinalize::finalize function.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	TR
	enrollDir
	enrollDir

	The read-only top-level directory in which enrollment data was placed.
	The read-only top-level directory in which enrollment data was placed.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission).
	An operation on the enrollment directory failed (e.g. permission).

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.3.8.2. Image identification search 644
	The function below performs a video-to-still identification and compares a proprietary identification template generated 645 from a video against the enrollment data and returns a candidate list. 646
	Table 37 – ImageSearch::identifyVideo 647
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode identifyVideo(
	ReturnCode identifyVideo(

	Searches a template generated from a ONEVIDEO against the enrollment set (video-to-still)
	Searches a template generated from a ONEVIDEO against the enrollment set (video-to-still)

	Span

	
	
	

	const PERSONREP &idVideoTemplate,
	const PERSONREP &idVideoTemplate,

	Input
	Input

	Span

	
	
	

	const uint32_t candListLength,
	const uint32_t candListLength,

	Input
	Input

	Span

	
	
	

	CANDIDATELIST &candList);
	CANDIDATELIST &candList);

	Output
	Output

	Span

	Description
	Description
	Description
	

	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	2.3.12
	2.3.12

). Each candidate shall be populated by the implementation and added to candList. Note that candList will be an empty vector when passed into this function. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	idTemplate
	idTemplate

	A template from VideoFeatureExtraction::generateIdTemplate() - If the value returned by that function was non-zero the contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.
	A template from VideoFeatureExtraction::generateIdTemplate() - If the value returned by that function was non-zero the contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.

	Span

	TR
	candListLength
	candListLength

	The number of candidates the search should return
	The number of candidates the search should return

	Span

	Output
	Output
	Output
	Parameters

	candList
	candList

	A vector containing candListLength objects of Candidates. The datatype is defined in section
	A vector containing candListLength objects of Candidates. The datatype is defined in section
	A vector containing candListLength objects of Candidates. The datatype is defined in section
	2.3.12
	2.3.12

	. Each candidate shall be populated by the implementation and

	Span

	Table
	TR
	added to this vector. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.
	added to this vector. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	IdBadTempl
	IdBadTempl

	The input template was defective.
	The input template was defective.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	NOTE: Ordinarily the calling application will set the input candidate list length to operationally typical values, say 0 L 648 200, and L << N. However, there is interest in the presence of mates much further down the candidate list. We may 649 therefore extend the candidate list length such that L approaches N. 650
	4. References 651
	AN27
	AN27
	AN27
	AN27

	NIST Special Publication 500-271: American National Standard for Information Systems — Data Format for the Interchange of Fingerprint, Facial, & Other Biometric Information – Part 1. (ANSI/NIST ITL 1-2007). Approved April 20, 2007.
	NIST Special Publication 500-271: American National Standard for Information Systems — Data Format for the Interchange of Fingerprint, Facial, & Other Biometric Information – Part 1. (ANSI/NIST ITL 1-2007). Approved April 20, 2007.

	Span

	FRVT 2002
	FRVT 2002
	FRVT 2002

	Face Recognition Vendor Test 2002: Evaluation Report, NIST Interagency Report 6965, P. Jonathon Phillips, Patrick Grother, Ross J. Micheals, Duane M. Blackburn, Elham Tabassi, Mike Bone
	Face Recognition Vendor Test 2002: Evaluation Report, NIST Interagency Report 6965, P. Jonathon Phillips, Patrick Grother, Ross J. Micheals, Duane M. Blackburn, Elham Tabassi, Mike Bone

	Span

	FRVT 2002b
	FRVT 2002b
	FRVT 2002b

	Face Recognition Vendor Test 2002: Supplemental Report, NIST Interagency Report 7083, Patrick Grother
	Face Recognition Vendor Test 2002: Supplemental Report, NIST Interagency Report 7083, Patrick Grother

	Span

	FRVT 2006
	FRVT 2006
	FRVT 2006

	P. Jonathon Phillips, W. Todd Scruggs, Alice J. O’Toole, Patrick J. Flynn, Kevin W. Bowyer, Cathy L. Schott, and Matthew Sharpe. "FRVT 2006 and ICE 2006 Large-Scale Results." NISTIR 7408, March 2007.
	P. Jonathon Phillips, W. Todd Scruggs, Alice J. O’Toole, Patrick J. Flynn, Kevin W. Bowyer, Cathy L. Schott, and Matthew Sharpe. "FRVT 2006 and ICE 2006 Large-Scale Results." NISTIR 7408, March 2007.

	Span

	FRVT 2013
	FRVT 2013
	FRVT 2013

	P. Grother and M. Ngan, Face Recognition Vendor Test (FRVT), Performance of Face Identification Algorithms, NIST Interagency Report 8009, Released May 26, 2014.
	P. Grother and M. Ngan, Face Recognition Vendor Test (FRVT), Performance of Face Identification Algorithms, NIST Interagency Report 8009, Released May 26, 2014.
	P. Grother and M. Ngan, Face Recognition Vendor Test (FRVT), Performance of Face Identification Algorithms, NIST Interagency Report 8009, Released May 26, 2014.
	http://face.nist.gov/frvt
	http://face.nist.gov/frvt

	

	Span

	IREX III
	IREX III
	IREX III

	P. Grother, G.W. Quinn, J. Matey, M. Ngan, W. Salamon, G. Fiumara, C. Watson, Iris Exchange III, Performance of Iris Identification Algorithms, NIST Interagency Report 7836, Released April 9, 2012.
	P. Grother, G.W. Quinn, J. Matey, M. Ngan, W. Salamon, G. Fiumara, C. Watson, Iris Exchange III, Performance of Iris Identification Algorithms, NIST Interagency Report 7836, Released April 9, 2012.
	P. Grother, G.W. Quinn, J. Matey, M. Ngan, W. Salamon, G. Fiumara, C. Watson, Iris Exchange III, Performance of Iris Identification Algorithms, NIST Interagency Report 7836, Released April 9, 2012.
	http://iris.nist.gov/irex
	http://iris.nist.gov/irex

	

	Span

	ISO
	ISO
	ISO
	STD05

	ISO/IEC 19794-5:2005 — Information technology — Biometric data interchange formats — Part 5: Face image data. The standard was published in 2005, and can be purchased from ANSI at
	ISO/IEC 19794-5:2005 — Information technology — Biometric data interchange formats — Part 5: Face image data. The standard was published in 2005, and can be purchased from ANSI at
	ISO/IEC 19794-5:2005 — Information technology — Biometric data interchange formats — Part 5: Face image data. The standard was published in 2005, and can be purchased from ANSI at
	http://webstore.ansi.org/
	http://webstore.ansi.org/

	

	Multipart standard of "Biometric data interchange formats". This standard was published in 2005. It was amended twice to include guidance to photographers, and then to include 3D information. Two corrigenda were published. All these changes and new material is currently being incorporated in revision of the standard. Publication is likely in early 2011. The documentary history is as follows.
	ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image data. First edition: 2005-06-15.
	International Standard ISO/IEC 19794-5:2005 Technical Corrigendum 1: Published 2008-07-01
	International Standard ISO/IEC 19794-5:2005 Technical Corrigendum 2: Published 2008-07-01
	Information technology — Biometric data interchange formats — Part 5: Face image data AMENDMENT 1: Conditions for taking photographs for face image data. Published 2007-12-15
	Information technology — Biometric data interchange formats — Part 5: Face image data AMENDMENT 2: Three dimensional image data.
	JTC 1/SC37/N3303. FCD text of the second edition. Contact pgrother AT nist DOT gov for more information.

	Span

	MBE
	MBE
	MBE

	P. Grother, G .W. Quinn, and P. J. Phillips, Multiple-Biometric Evaluation (MBE) 2010, Report on the Evaluation of 2D Still Image Face Recognition Algorithms, NIST Interagency Report 7709, Released June 22, 2010. Revised August 23, 2010.
	P. Grother, G .W. Quinn, and P. J. Phillips, Multiple-Biometric Evaluation (MBE) 2010, Report on the Evaluation of 2D Still Image Face Recognition Algorithms, NIST Interagency Report 7709, Released June 22, 2010. Revised August 23, 2010.
	http://face.nist.gov/mbe
	http://face.nist.gov/mbe
	http://face.nist.gov/mbe

	

	Span

	MINEX
	MINEX
	MINEX

	P. Grother et al., Performance and Interoperability of the INCITS 378 Template, NIST IR 7296
	P. Grother et al., Performance and Interoperability of the INCITS 378 Template, NIST IR 7296
	P. Grother et al., Performance and Interoperability of the INCITS 378 Template, NIST IR 7296
	http://fingerprint.nist.gov/minex04/minex_report.pdf
	http://fingerprint.nist.gov/minex04/minex_report.pdf

	

	Span

	MOC
	MOC
	MOC

	P. Grother and W. Salamon, MINEX II - An Assessment of ISO/IEC 7816 Card-Based Match-on-Card Capabilities
	P. Grother and W. Salamon, MINEX II - An Assessment of ISO/IEC 7816 Card-Based Match-on-Card Capabilities
	http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf
	http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf
	http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf

	

	Span

	PERFSTD
	PERFSTD
	PERFSTD
	INTEROP

	ISO/IEC 19795-4 — Biometric Performance Testing and Reporting — Part 4: Interoperability Performance Testing. Posted as
	ISO/IEC 19795-4 — Biometric Performance Testing and Reporting — Part 4: Interoperability Performance Testing. Posted as
	ISO/IEC 19795-4 — Biometric Performance Testing and Reporting — Part 4: Interoperability Performance Testing. Posted as
	document 37N2370
	document 37N2370

	. The standard was published in 2007. It can be purchased from ANSI at
	http://webstore.ansi.org/
	http://webstore.ansi.org/

	.

	Span

	 652
	Annex A 653 Submission of Implementations to the FIVE 654
	A.1 Submission of implementations to NIST 655
	NIST requires that all software, data and configuration files submitted by the participants be signed and encrypted. 656 Signing is done with the participant's private key, and encryption is done with the NIST public key. The detailed 657 commands for signing and encrypting are given here:
	NIST requires that all software, data and configuration files submitted by the participants be signed and encrypted. 656 Signing is done with the participant's private key, and encryption is done with the NIST public key. The detailed 657 commands for signing and encrypting are given here:
	http://www.nist.gov/itl/iad/ig/encrypt.cfm
	http://www.nist.gov/itl/iad/ig/encrypt.cfm

	 658

	NIST will validate all submitted materials using the participant's public key, and the authenticity of that key will be verified 659 using the key fingerprint. This fingerprint must be submitted to NIST by writing it on the signed participation agreement. 660
	By encrypting the submissions, we ensure privacy; by signing the submission, we ensure authenticity (the software 661 actually belongs to the submitter). NIST will reject any submission that is not signed and encrypted. NIST accepts no 662 responsibility for anything that is transmitted to NIST that is not signed and encrypted with the NIST public key. 663
	A.2 How to participate 664
	Those wishing to participate in FIVE testing must do all of the following, on the schedule listed on Page
	Those wishing to participate in FIVE testing must do all of the following, on the schedule listed on Page
	2
	2

	. 665

	― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 666
	― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 666
	― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 666
	― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 666
	http://www.nist.gov/itl/iad/ig/encrypt.cfm
	http://www.nist.gov/itl/iad/ig/encrypt.cfm

	 667

	― Send a signed and fully completed copy of the Application to Participate in the Face In Video Evaluation (FIVE). This is 668 available at
	― Send a signed and fully completed copy of the Application to Participate in the Face In Video Evaluation (FIVE). This is 668 available at
	― Send a signed and fully completed copy of the Application to Participate in the Face In Video Evaluation (FIVE). This is 668 available at
	http://www.nist.gov/itl/iad/ig/five.cfm
	http://www.nist.gov/itl/iad/ig/five.cfm

	. This must identify, and include signatures from, the Responsible 669 Parties as defined in the application. The properly signed FIVE Application to Participate shall be sent to NIST as a 670 PDF. 671

	― Provide an SDK (Software Development Kit) library which complies with the API (Application Programmer Interface) 672 specified in this document. 673
	― Provide an SDK (Software Development Kit) library which complies with the API (Application Programmer Interface) 672 specified in this document. 673

	 Encrypted data and SDKs below 20MB can be emailed to NIST at
	 Encrypted data and SDKs below 20MB can be emailed to NIST at
	 Encrypted data and SDKs below 20MB can be emailed to NIST at
	 Encrypted data and SDKs below 20MB can be emailed to NIST at
	five@nist.gov
	five@nist.gov

	 674

	 Encrypted data and SDKS above 20MB shall be 675
	 Encrypted data and SDKS above 20MB shall be 675

	EITHER 676
	 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 677 and then rename to include the filename extension need for passage through the NIST firewall. 678
	 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 677 and then rename to include the filename extension need for passage through the NIST firewall. 678
	 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 677 and then rename to include the filename extension need for passage through the NIST firewall. 678
	 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 677 and then rename to include the filename extension need for passage through the NIST firewall. 678
	 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 677 and then rename to include the filename extension need for passage through the NIST firewall. 678

	 you% split –a 3 –d –b 9000000 libFIVE_enron_A_02.tgz.gpg 679
	 you% split –a 3 –d –b 9000000 libFIVE_enron_A_02.tgz.gpg 679

	 you% ls -1 x??? | xargs –iQ mv Q libFIVE_enron_A_02_Q.tgz.gpg 680
	 you% ls -1 x??? | xargs –iQ mv Q libFIVE_enron_A_02_Q.tgz.gpg 680

	 Email each part in a separate email. Upon receipt NIST will 681
	 Email each part in a separate email. Upon receipt NIST will 681

	 nist% cat FIVE2012_enron_A02_*.tgz.gpg > libFIVE_enron_A_02.tgz.gpg 682
	 nist% cat FIVE2012_enron_A02_*.tgz.gpg > libFIVE_enron_A_02.tgz.gpg 682

	OR 683
	 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver8, 684
	 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver8, 684
	 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver8, 684
	 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver8, 684
	 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver8, 684

	8 NIST will not register, or establish any kind of membership, on the provided website.
	8 NIST will not register, or establish any kind of membership, on the provided website.

	OR 685
	 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 686
	 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 686
	 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 686
	 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 686
	 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 686

	FIVE Test Liaison (A203)
	FIVE Test Liaison (A203)
	FIVE Test Liaison (A203)
	FIVE Test Liaison (A203)
	100 Bureau Drive
	A203/Tech225/Stop 8940
	NIST
	Gaithersburg, MD 20899-8940
	USA

	In cases where a courier needs a phone number, please use NIST shipping and handling on: 301 -- 975 -- 6296.
	In cases where a courier needs a phone number, please use NIST shipping and handling on: 301 -- 975 -- 6296.
	

	Span

	A.3 Implementation validation 687
	Registered Participants will be provided with a small validation dataset and test program available on the website 688
	http://www.nist.gov/itl/iad/ig/five.cfm
	http://www.nist.gov/itl/iad/ig/five.cfm
	http://www.nist.gov/itl/iad/ig/five.cfm

	 shortly after the final evaluation plan is released. 689

	The validation test programs shall be compiled by the provider. The output of these programs shall be submitted to NIST. 690
	Prior to submission of the SDK and validation data, the Participant must verify that their software executes on the 691 validation images, and produces correct similarity scores and templates. 692
	Software submitted shall implement the FIVE API Specification as detailed in the body of this document. 693
	Upon receipt of the SDK and validation output, NIST will attempt to reproduce the same output by executing the SDK on 694 the validation imagery, using a NIST computer. In the event of disagreement in the output, or other difficulties, the 695 Participant will be notified. 696

