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ABSTRACT 

This paper describes and classifies a family of invertible digital signal transforms, referred to here 

as symmetric wavelet transforms (SWT's), for finite-length signals. SWT's are algorithms for applying 

multirate filter banks to symmetric extensions of finite-length input signals, thereby avoiding the sort of 

boundary artifacts introduced by simple periodization. This approach does for wavelet transforms what 

the discrete cosine transform does for the Fourier transform. A key point addressed here is when such 

symmetric decompositions can be formed with no increase in data storage requirements ('1nonexpansive 

decompositionsi'). Transforms based ou three types of symmetric signal extension and four classes of 

generalized linear phase filters are analyzed in terms of their memory requirements for general M-channel 

perfect-reconstruction filter banks. The classification is shown to be complete in the sense that it contains 

all possible nouexpansive SWT's. All such transforms are described explicitly in the case of two-channel 

systems, for both even- and odd-length signals. The individual channels in general Ai-channel systems 

are classified according to their individual memory requirements. Time-domain formulas are given for 

direct-form implementation of SWT analysis and synthesis filter banks. The paper classifies the particulai· 

SWT algorithms incorporated in the Federal Bureau of Investigation's digital fingerprint image coding 

standard. 
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Figure 1: M-Channel Subband Coder. 

I. INTRODUCTION. 

A critically downsampled M-channel subband coder is a digital filter bank of the type shown in Figure 1 

[l, 2, 3, 4). Such filter banks have received a great deal of attention lately as a result of the recent development 

of wavelet transforms, which are special instances of this type of sub band coder having a connection, in the 

infinite sampling-rate limit, with continuum approximation theory [5, 6, 7, 8). The filter bank in Figure 1 

is called a perfect-reconstruction quadrature mirror filter (PR QMF) bank if it has a linear time-invariant 

system function with, at worst, constant-amplitude or linear-phase distortion: 

_ X(z) -D 
T(z) = X(z) = Az (PR) 

When condition (PR) is satisfied, we will refer to the linear transformation 

(DWT) 

as a discrete wavele"l transform (DWT) 1 without insisting upon any particular degree of regularity for the 

infinitely iterated analysis bank, as is custo1narily done in the construction of "regular" continuous-time 

wavelets. The problem of specifying adequate filter-bank regularity properties is highly dependent on the 

application of interest and will not be dealt with in this paper. Nonetheless, every PR QMF bank corresponds, 

under very mild additional assumptions, to a wavelet frame for L 2(R) [9], so we feel justified in referring to 

the transform (DWT) given by an arbitrary PR QMF bank as a discrete wavelet transform. 

The first construction of nontrivial finite impulse response (FIR) filter banks satisfying condition (PR) 

was given by Smith and Barnwell [10] for two-channel systems (M = 2), under the assumption of power

complementarity, 

(PC) 
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Such systems generate orthogonal DWT's. Shortly thereafter, the construction of compactly supported 

regular orthogonal wavelets by iteration of PR QMF banks satisfying condition (PC) was demonstrated by 

Daubechies [11]. Both of these constructions resulted in filters with asymmetric impulse responses since, as 

was already known [12], the only FIR solutions to (PC) with linear phase are trivial. Subsequent constructions 

of two-channel FIR PR QMF banks [13] and wavelets [14] with linear phase were given by relaxing condition 

(PC). Linear phase two-channel PR QMF banks satisfying condition (PC) are possible using infinite impulse 

response (IIR) filters, and symmetric extension methods using !IR, filters have been studied in [15], but 

the present paper will only consider FIR filter banks. The design of M -channel FIR PR QMF banks has 

been studied by, e,g,, [16, 17, 18, 19, 20], Of particular interest for this paper, M-channcl linear phase FIR 

PR QMF banks with M > 2 have been constructed recently in [21, 22, 23], 

I-A. Symmetric Signal Extensions and Expansiveness. 

A problem arises when we apply a PR QMF subband coder like the one in Figure 1 to finite-length 

signals, namely, the problem of deciding how to handle the boundary conditions at the ends of the signal. 

Let x( n); n = 0, , , , , N 0 - 1, be a discrete-time signal of length N 0 , When the filters in Figure 1 are all FIR, 

filters, the coder can be applied to the periodized signal x(n) of period No, If the filters all have length less 

than or equal to No and if M divides Na (indicated as "MINo"), then this periodized filter bank defines a 

finite-length perfect-reconstruction DWT given by circular convolution and circular lvl : 1 downsampling. 

Since the output channels ll1i ... , iiM have period N 0/M, this transform is nonexpansive; i.e., it conserves 

storage costs in the sense of transforming an No-point sequence into M x (No/}vf) transformed data points. 

This feature is clearly desirable for applications in which memory requirements are an issue, such as data 

storage or transmission. The periodized DWT suffers) however, from the defect of introducing a jump 

discontinuity in the data at the point where the ends of the signal are matched up, This boundary artifact 

usually results in added variance in the high-frequency subband(s), a phenomenon that often degrades the 

performance of syste111s acting on the output 1 such as data quantizers. 

In image coding, a popular solution to this problem is to quantize the output of the (two-dimensional) 

discrete cosine transform (DCT) [24, 25], The DCT can be identified with a phase shift of the first half of 

the discrete Fourier transform (DFT) expansion of the even signal1 y, defined by the symmetric extension 

y(n) = x(n) ; n = 0 • •• , 1 No - 1 ; 
(1) 

{ x(2No - 1 - n) ; n =No, ... , 2No - 1 

While the 2No-point DFT is given mathematically by circular correlation with the Fourier kernel, ei 2 2·rnk/ N°, 

the periodization artifacts in the DCT are greatly reduced by the fact that the extension, y, is an even signal. 

We can employ a similar strategy for transforming finite-length signals using a PR QMF bank. Given x 

of length No, form a symmetric extension, y, of length N es 2No by a procedure like (1), The extension, y, 
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Figure 2: Extended M-Channel SWT Subband Coder. 

can then be transformed by N-periodic circular convolution, eliminating the jump discontinuity that would 

have resulted from simple periodization of x. If the system transfer function is given by (PR), we can recover 

x by projecting the output of the synthesis bank onto the first No coordinates: 

x(n)=[J(n+D)=Ax(n); n=0, ... ,N0 -I. 

See Figure 2. Beneath each signal component we have indicated the length ( or period) of that component. 

Note that a1, ... , aM have been given (possibly) different lengths, P1, ... , PM. We call the mapping 

a symmetric wavelet transform {SWT) of dimension N1 = p1 +·•+PM• We insist that this mapping preserve 

the perfect reconstruction property of the filter bank; i.e. 1 an SWT 1nust be an invertible transformation. 

Clearly, we do not want an SWT for which p; = N / M since it would then have dimension N1 = N s; 2N0 

and the price we would pay for the symmetric extension would be a doubling of storage costs. For real 

signals, the DCT avoids this problem by using an even extension, so that only half of the DFT output (i.e., 

only the cosine modes) needs to be saved. In the SWT's we will construct, the output channels ai will 

consist of one-half of a symmetric or antisymmetric subband1 bi. An SWT will be called nonexpansive if 

N1 = No, Deriving the details of such procedures1 which for clarity at this stage have been omitted from 

Figure 2, is the objective of this paper. The need to understand such details thoroughly to develop SWT 

implementations for digital image coding applications is what motivated the author to write this paper. 

Image coding appears to be a lucrative source of SWT applications, since coding images ( or even higher

dimensional digital data) involves transforming large numbers of relatively short row or column vectors. 

If the filter bank is implemented with several levels of cascade, boundary effects can propagate across a 

significant fraction of the transformed signal, so it is imperative to handle boundary conditions in a manner 
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that preserves perfect reconstructability and minin1izes spectral coloration. Syrrnnetric extrapolation meets 

these needs and furnishes several additional benefits. Since the period of the extended input is "" 2No, a 

signal of length No can be filtered with filters of length up to "" 2No; simple periodization constrains filter 

lengths to at most N • 0 For cascaded two-channel filter banksi this allows computation of an additional level 

of cascade for given signal and filter lengths. The fact that the period of y is even means that a two-channel 

SWT forms nonexpansive decompositions for both even- and odd-length inputs; DWT's based on simple 

perioclization are applicable only to even-length inputs. Examples of data coding applications utilizing these 

advantages of SWT's can be found in (26, 27, 28, 29]. 

I-B. Prior Results. 

Symmetric signal extension has been considered by a number of other researchers in the context of 

sub band coding. Karlsson and Vetterli [30] proposed several methods of continuous signal extension followed 

by linear convolution as alternatives to circular convolution for a two-channel subband coder. Also in the 

two-channel case, Smith and Eddins [31, 15, 32] observed that if the 2No-periodic extension, y, defined by (1) 

is :filtered by circular convolution with even-length linear phase filters and 2:1 circular downsampling, the 

resulting subbands are symmetric or antisymmetric and can be reconstructed losslessly by saving only No/2 

samples of each. (In the present notation, P1 = p, = No/2.) This appears to be the first example of a 

nonexpansive SWT. A second example for even-length signals was published by Martucci (33, 34] using a 

(2No - 2)-periodic extension with odd-length linear phase filters. (Both of these transforms were developed 

independently by the author; the latter appeared in [26].) 

IVIore recently1 there have been a few papers on the problem of defining symmetric extension algorithms 

for general M-channel PR QMF banks [35, 36, 37, 38]. The papers [37, 38] consider M-channel nonuniforrnly 

downsarnpled filter banks; constraints are derived on allowable combinations of signal extension method and 

filter symmetries. The authors also continue the analysis of nonexpansive symmetric transform sche1nes 

based on linear phase IIR filters begun in [15]. Some of the computational formulas derived in Section II of 

this paper appear, in slightly different forms, in the papers [36, 37) 38]; readers interested in a more concise 

overview of the M-channel case are directed to those papers. The author's goal in writing the present paper 

is to draw together a number of partial results on symmetric extension 111ethods scattered throughout the 

literature and include them in a unified manner with a thorough analysis of all possible symmetric extension 

and filter bank combinations and the resulting storage requirements. Accordingly} he has devoted much 

effort to making the classification as straightforward and applications-oriented as he can. 

It is possible to define smoother extrapolations than symmetric extensions; some such extrapolations 

appear in (30]. 'lbnsforms based on general linear extrapolation are considered in [39, 40, 41]. Methods based 

on computing nonlinear signal extensions have also appeared in the literature, e.g. 1 [42, 43]. In a s01newhat 

different vein, a method described recently by Wickerhauser [44] involves deforming the input signal by 
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smoothing it to 1natch up the endpointsi followed by periodization of the smoothed signal. This requires 

additional computations near the signal boundaries during both analysis and synthesis. The symmetric 

extension method proposed here is thus a compromise between the algoritlnnic simplicity of methods like 

simple periodization or zero-padding [41] and the maximum possible smoothness obtained by nonlinear 

extrapolation methods. One advantage is that symmetric extension can be accomplished entirely by data 

addressingj no additional con1putations are required to form the signal extrapolation. 

I-C. Organization and Scope of the Paper. 

Section II contains preliminaries regarding the definitions of symmetric and antisymmetric signal exten

sions. We consider signal decompositions based on three types of symmetric extension. Since the goal of 

fonning such extensions is to avoid introducing singularities and spurious high-band energy in the signal be

ing transformed, we do not understand the motivation for the transforms based on antisymmetric extensions 

that were proposed in [36]. Thus, this paper only considers transforms based on symmetric extensions; anti

symmetric extensions will be used exclusively for reconstructing antisymmetric subbands during synthesis. 

A new result in Section II is a rigorous derivation of the ways in which a symmetric signal can remain syrn

metric after .N/:1 downsampling; this result is crucial to the classification ofsyrnmetric transforrn algorithms. 

Projection/extension and shift operations are developed that fill in the missing details in Figure 2, starting 

with a given linear phase PR QMF bank. This approach is complementary to the one taken in [37, 38], in 

which the authors start with a given number of channels and downsampling rates and a given sy1n1netric 

extension and then derive constraints that a filter bank must be designed to satisfy in order to produce a 

(perfect reconstruction) SWT. The approach taken in the present paper is to assume that a PR QMF bank 

has already been designed, based solely on consideration of its filter characteristics, and then to classify the 

possible ways in which the given filter bank can be implemented in a system utilizing symmetric extension 

for finite-duration inputs. This decouples the filter bank design problem from the implementation issue. 

Block diagrams and generic formulas are derived for direct-form implementations of SWT analysis and 

synthesis filter banks. It is beyond the scope of this paper to describe lattice implementations of SWT 

algorithms, nor does this paper consider the actual construction of linear phase PR QMF banks. These topics 

are addressed in the references cited above. As a result of these restrictions, the author found it unnecessary 

to use polyphase filter bank realizations in this paper. After describing direct-form implementations) the 

notion of causality is discussed for SWT systems; we argue that transforms based on symmetric extrapolation 

are inherently non-causal in nature. To conclude Section II, we introduce a general notion of subban<l 

expansiveness and explain how the classification given in this paper contains all nonexpansive SWT's. 

Section III classifies all nonexpansive two-channel SWT algorithms in terms of signal length No, filter 

symmetry, and filter phase. The necessary parameters are given for implementing the operations designed 

in Section II. The analysis is based on a new characterization of the group delays in a linear phase PR QMF 
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bank. The particular SWT algorithms incorporated by the author into the FBI digital fingerprint image 

coding standard [29} are also described; this paper forms the principal technical reference on these rnatters. 

Section IV contains a complete but less specific classification of M-channel SWT's. The possible filter 

symmetry /phase combinations in M-channel linear phase PR QMF banks are not completely understood at 

presenti so we enm11erate all possible individual channels in .NJ-channel SWT's and classify them according 

to their individual channel expansiveness. We con1ment on the design of ]\/[-channel SWT's and illustrate 

with some examples for the cases NJ =3, 4. It is shown that nonexpansive SWT's exist for input signals of 

arbitrary length when NI = 3; the corresponding question for A1 =4 is open. Some interesting corollaries 

of our analysis of the expansiveness of A1-chanuel SVVT's are several new non-existence results for certain 

combinations of filter symmetries in FIR PR QMF banks. 

Finally, Section V contains concluding remarks and acknowledgments. 

II. PERIODIC MULTIRATE FILTER BANKS FOR SYMMETRIC SIGNALS. 

In this section we analyze the effects of some standard multirate filter bank operations on sym1netric 

extensions of input signals. The specific results needed to classify SWT's will be tabulated for later reference; 

most derivations are elementai·y and will be left to the reader, who is referred to [1, 4] for much more extensive 

treatments of multirate signal processing. The notation will generally follow the conventions in [45, 4], 

although we shall not use different notation to distinguish between a signal of length N and its periodic 

extension of period N. We will distinguish carefully between a finite-length signal and its various symmetric 

and antisymmetric extensions. We also restrict attention to real-valued signals and filters. This will simplify 

the analysis while still encompassing most conceivable applications. Moreover, since all operators involved 

are linear, the extension for complex signals is trivial. 

II-A. Signal Symmetries and Extension Operators. 

1. Six types of signal symmetry. There are two ways in which a discrete-time signal can be symmetric: it 

can be symmetric about one of its samples or about a point midway between two samples (see Figure 3). 

These cases are referred to as whole-sample symmetry (WSS) and half-sample symmetry (HSS) in [33, 34], and 

we retain the same terminology in this paper because of its mnemonic value. We call the axis of symmetry 

( e.g., n = c or n = c - 1/2) a center of symmetry for y and require the entire signal to be symmetric about a 

given center; nonetheless, a signal can still have multiple centers. There are obvious antisymmetric analogues 

in both the whole- and half-sample cases; these are designated whole-sample antisymmetry (WSA) and half

sample antisymmetry (HSA). We only declare y to be whole-sample antisymmetric about c if y(c) = 0. 

The above categories are not mutually exclusive since a signal may have different types of sy1nmetry 



(a) WSS (b) RSS 

T I ] I T T I j j I T • 
C C-1 C 

7 

Figure 3: (a) Whole-Sample Symmetry About c. 

(b) Half-Sample Symmetry About c - 1/2. 

about different centers; e.g., an alternating sequence like (-1)" is both WSS and RSA. To be precise, we 

must specify both a symmetry property and a center. Constant sequences show that there is no upper bound 

on the nun1ber of centers a signal may have1 but for symmetric or antisyn1metric periodic signals there is a 

lower bound of at least two. More specifically, let y be N-periodic with a center at c: 

y(c+n)=±y(c-n). 

Then c+ N/2 is also a center for y; an analogous statement holds for a signal with a center at c-1/2. If N 

is even then y is WSS (or WSA) about both c and c+N/2 in the former case, and HSS (or HSA) about both 

c-1/2 and c+ N /2-1/2 in the latter. If N is odd, however, y will be WSS ( or WSA) at c and RSS ( or RSA) at 

c+ N /2. We refer to such signals as odd-period symmetric (OPS) or odd-period antisymmetric (OPA) signals. 

For illustrations of these six types of syrnmetry1 the reader is referred ahead to Figures 4, 5, and 6
1 

where we 

present signal extensions with all these various symmetries. Formal definitions of the symmetry properties 

are given in Table I in terms of time-domain criteria and equivalent frequency-domain characterizations. 

Since OPS and OPA signals possess both whole- and half-sample symmetries, they satisfy both whole- and 

half-sample frequency domain characterizations; one can verify that the DFT characterizations of whole

and half-sample symmetry are mathematically equivalent when N is odd. 

To explain the last column in Table I, we need to define the dimension of a class of periodic signals 

sharing some syrmnetry property. The dimension, p, of such a class is the least value for which the class 

can be embedded losslessly in RP. This is the least upper bound on the number of nonredundant samples 

in an arbitrary signal from the class and thus depends on both the period, N, and the particular symmetry 

property. The dbnension tells us how many memory registers are required to store an arbitrary signal from 

the class. 

Consider, for instance, the class of all HSS signals of even period, N. This class will contain smne signals 

possessing other symmetry properties, too, but all members will satisfy a condition of the form 

y(c+n)=y(c-1-n), 
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Table I: Symmetry Properties of N-Periodic Signals. 

Symmetry Symmetry Characterization: 

Property Center Tin1e Domain DFT Domain Dimension 

wss C y( c + n) = y( c - n) Y'(k) = ei2•(2,)k/Ny(k) N/2+ 1 

WSA C y(c+n)=-y(c-n) Y'(k) = -e;2,(2,)k/Ny(k) N/2-1 

IISS C - 1/2 y(c + n) = y(c - 1 - n) Y'(k) = ej2,(2c-l)k/Ny(k) N/2 

HSA C - 1/2 y(c + n) = -y(c - 1- n) Y'(k) = -ej2,(2c-l)k/Ny(k) N/2 

OPS WSS at c and HSS at c + N/2, or (N + 1)/2 

(N Odd) HSS at c - 1/2 and WSS at c + (N - 1)/2 (N Odd) 

OPA WSA at c and HSA at c + N /2, or (N - 1)/2 

(N Odd) HSA at c - 1/2 and WSA at c + (N - 1)/2 (N Odd) 

so, in a single period c - N /2 :S n :5 c + N /2 - 1, the samples in the "second half" of the period, 

y(c+n); n=O, ... ,N/2-1, 

are redundant. An IISS signal therefore contains at most N /2 nonre<lundant samples, and since this upper 

bound is attained by symmetric ramps of the kind shown in Figure 4( d), the dimension of the IISS class 

is N /2 for even N. Similar arguments yield the figures in the last column of Table I. Also note that we 

do not count the end-samples that are necessarily zero when computing the dimension of the WSA and 

OPA classes. We will use the dimension of transform subbands to evaluate the storage requirernents-the 

('expansivenessl)-of the various transforms we construct. 

2. Four types of linear phase filters. We use the four principal types of linear phase FIR filters corresponding 

to the whole- and half-sample symmetry and antisymmetry properties defined above. These four classes also 

appear in [45] under the headings "Type I-IV." For the purpose of analyzing their effect on symmetric 

signals, it is 1nost convenient to refer to linear phase filters in terms of their whole- or half-sample symmetry 

properties. Since the transforms defined later are based on circular convolution, for a given period, N, we 

consider only FIR filters with at most N real-valued impulse response taps. 

At times 1 we shall make use of the fact that the center of sy1nmetry for a linear phase FIR filter is equal 

to the filter's group delay [45]. For this reason, we use I to denote the center of a linear phase FIR filter. 

Note that I is an integer for WS-type filters and an odd multiple of 1/2 for HS-type filters. It follows that 

synnnetric filters, of either type, satisfy the symmetry characterization 

(2) 
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while antisymmetric filters satisfy 

(3) 

3. Symmetric extension operators. We formalize the process of making a symmetric extension of a signal 1 

x 1 of length No by defining extension operators as linear transformations, 

of rank No. An extension operator simply replicates values of x according to some symmetry relation to 

construct an extension, y = Ex, with one of the six symmetry properties described above. As mentioned 

in the Iutroduction 1 we will only consider signal analyses based on symmetric extensions, but we will need 

antisymmetric extension operators in SWT synthesis banks. 

Aside from whether an extension is symmetric or antisymmetric, the main feature distinguishing different 

extensions is the number of times the first and last samples are repeated in the extension. A pair of digits, 

(i 1 j), indicates the number of times the first and last samples occur in a single period of the extended signal. 

For instance, in the extension EF'2)x shown in Figure 4(c), the sample x(O) occurs once in each period 

while x(No - 1) occurs twice. (The open dots represent a second full period of the extension.) The three 

extensions shown in Figure 4 are the only ones that will be considered for extending a signal prior to coding. 

The reason for this particular choice is that these are the only extensions for which the SWT approach 

produces nonexpansive transformsj details will be given in Section II-E. 

The three analysis extensions are defined formally in Table II. Each extension is initialized by setting 

y(n)=x(n); n=0, ... ,N0 -1, 

then extending from n = No to N - 1 using the given symmetry relation. Note that since these extensions 

coincide with x( n) for O :S n :S N -0 1, the repeated value of x(O) in E) 2 2
' )x occurs at the encl of the period; 

i.e., y(2No - !) = x(O). All of the extensions we define will be centered at either O or -1/2. 

This last fact makes it particularly simple to write down left inverses for the extension operators. Let 

be the projection onto the first L coordinates; i.e., a rectangular window of length L. Then 

These projection operators will find additional uses in Section II-C. 

Finally, we have five extension operators that will be used exclusively for reconstructing signal subbands, 

bi = 2 1
E;,ai, in the synthesis bank. The symmetric extension E~ ' )a pictured in Figure 5 is equivalent to a 

shift of the extension EF•2
)a, so it will not be necessary to consider its use as an analysis extension. F'our 
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Table II: Symmetric Extension Operators for Signal Analysis. 

Operator Extension y = Ex: Symmetry Characterization: 

E Period N Sy1n. 1 Center Time Domain DF'l' Domain 
E(l,1) ' 2Na -2 wss, 0 y(n) = y(N - n) Y*(k) = Y(k) ' 
E)l,2) 2No -1 OPS, 0 y(n) = y(N - n) Y'(k) = Y(k) 
E}2,2) 2No HSS, -1/2 y(n) = y(N -1- n) Y'(k) = ci 2dfNY(k) 

Figure 4: Symmetric Extensionsi y = E}i,j)x, for Signal Analysis. 
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Figure 5: The Symmetric Extension b = EF' 1
)a for Subband Synthesis. 

Table III: Extension Operators for Subband Synthesis. 

Operator Extension b = Ea: Symmetry Relation: 

E Period J( Sym., Center Shift ~ Time Domain 

E/2,1) 2p- l OPS, -1/2 0 b(n) = b(K-l-n) 

b(n) = -b(K - n); E~l,l) 2p+ 2 WSA, 0 1 
b(O) = 0 = b(p+ 1) 

b(n) = -b(K - n); E11,2) 2p+ 1 OPA, 0 1 
b(O) = 0 

b(n) = -b(K - 1- n); E(2,1) 
a 2p+ 1 OPA, -1/2 0 

b(p) = 0 
E£2,2) 2p HSA, -1/2 0 b(n) = -b(K - 1- n) 

antisymmetric extensions are shown in Figure 6. Note that p is the length of a and that operators with 

an ((a" subscript are antisymmetric extensions. Formal definitions are given in Table III; the presence of 

antisymmetric extensions complicates the initialization procedure slightly, however. Because we want WS

type extensions to have centers at 0, the signals being extended with whole-sample antisymmetry at 0 need 

to be delayed by one sample so we can insert the necessary value b(O):::::: 0. We introduce a parameter, 17, to 

accomodate this delay and initialize the subband extensions 

b(k)=a(k-ry); k=~, ... ,ry+p-l 

1 1 2Table III shows tha.t ry = 0 for all extensions except E£1• ) and E£ • l, which receive a one-sample delay. 

II-B. Convolution and Decimation. 

The symmetry properties that result from applying linear phase filters to symmetric signal extensions by 

N-point circular convolution, u = y * h, are readily obtained from frequency-domain characterizations. For 
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Figure 6: Antisymmetric Extensions, b::::: Eii,j)a 1 for Subband Synthesis. 



Table IV: Symmetry and Center of the Convolution Product u = y * h. 

Symmetry, Center of Filter h: 

WSS, 1 WSA, 1 HSS,, HSA,, 

Signal y: WSS, 0 WSS,, WSA,, HSS,, HSA, 1 

HSS, -l/2 HSS, 1 - 1/2 !ISA, 1 - 1/2 WSS, ,-1/2 WSA, ,-1/2 

instance, if y = E)1 1
' )x and his HSS then, using (2) and Table II, 

U'(k) Y'(k)H'(k) 

y ( k )H (k )ei2<(2e)k/N 

= ei2•(2e)k/NU(k) 

Since 21 is odd, Table I shows that u is HSS, centered at 1 . The other possible combinations of signal and 

filter symmetry are listed in Table IV; note that we do not distinguish even from odd periods. 

A more complicated problem is the matter of determining when M : 1 decimation of a symmetric signal, 

u, results in a symmetric subband, b. While the answer appears to have been intuited conectly in a couple 

recent papers, nowhere in the literature is there a precise statement, let alone a rigorous mathematical 

derivation, of this fundamental result. Accordingly) we provide proofs here and record the possibilities in 

Table V for later use. 

To answer the decimation question, we first observe the following rule for inte1·changing decimators and 

shifts: if liM(n) is a unit impulse at n = M (an M-sample delay) and b =lM u, i.e., b(n) = ·u(Mn), then 

(4) 

13 

When M[N, (4) also holds for M: 1 circular downsampling and circular shifts. We shall always insist that 

the signal length) the analysis extension a.nd decimation factor be constrained so that 1\1IN; this ensures 

that circular operations on length N signals coincide with linear operations on N-periodic signals. Without 

the restriction J\flN, M:l decimation of an JV-periodic signal doesn't result in an M : 1 reduction in the 

amount of inforrnation in the signal, which is the goal of performing decimation in the first place. 

The downsampling operation we are using, !M, preserves samples occurring at integer multiples of lvl, 

(lM u)(n) = u(Mn) . (5) 

The paper [36] considers two different types of decimation, termed "Decimation I," which corresponds to 

(5), and "Decimation II," which amounts to (5) preceded by a phase shift of M/2 samples. Since any such 

phase shift can be incorporated into the phase of the analysis filter, h, this paper will only make use of 
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the downsampler defined by (5) and will classify symmetric transforms in terms of the group delays of the 

analysis filters. Similarly, we shall always define the upsampling (or interpolation) operator to be 

a(n/M) if Min 
(i M a)(n) = (6) 

{ 0 otherwise . 

The analogue of (4) for upsampling is 

(7) 

1. Downsampling WS-type channels. Let u be WSS with center at O; we want to know all values of c for 

which b =h1 (8, * u) will be either WSS or HSS. The phase, c, has been temporarily separated from the 

symmetry property, now embodied in u, to clarify the following arguments. Because of (4), we only need to 

consider O ::S c :S M - 1. Note that c is independent of u; i.e., we are determining the phases, c, for which 

M : 1 decin1ation of an arbitrary WSS signal with center c will result in another symmetric signal. The 

result, b, will be WSS with center no if and only if b(no + n) = b(n -0 n); i.e., 

u(M(no + n) - c) = u(M(n0 - n) - c) . (8) 

By considering simple examples of WSS signals like u = Dm + 8_m, it is easy to show that (8) holds for all 

WSS signals, u, only if 

M(no + n) - e = -(M(no - n) - c) 

This says Mno = c, so for OS c SM - l, the only solution is 

c = no = 0 

The same result holds when u and b are WSA. 

It is also possible to get an HSS signal by decimating a WSS signal, u. We will get an HSS signal, 

b(no + n) = b(no - 1- n), with center no -1/2 if 

u(M(no + n) - c) = u(M(no - 1 - n) - c) (9) 

The same examples show that (9) holds for all WSS signals, u, if and only if 

M(no + n) - c = -(M(n0 - 1 - n) - c) , 

or 2.A;J no - 2c = lvf. This constrains M to be even, and 

c=Mn0 -M/2 

For O Sc SM - l, the only solution to (10) is 

c = M/2 , no= 1 . (11) 
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Again, the same result holds when u is WSA and b is HSA. 

Let's illustrate briefly how to handle signals with more general centers using (4). Suppose we have a 

WSS signal centered at !vI v + M/2 (i.e., u * DMv+M/2); then 

bis av-sample delay of an HSS signal centered, according to (11), at no - 1/2 = 1/2, sob is centered at 

v + 1/2. Thus, if o, * u is WSS, we've shown that all we need for b =Lw (o, * u) to be HSS is that !vI be 

even and that c be congruent to !vI/2 mod !vf: 

c = !vI/2 mod M 

This allows us to smnmarize the above results as follows. 

Lemm.a 1. Let u be a WSS (resp., WSA) signal centered at 0, and let b =LM (o, * u). Th.en bis WSS (resp., 

WSA) with cenler at n0 if and only if c is a m.11/tiple of !vI (i.e., c = 0 mod !vI), in which case n 0 = c/!vI. 

Similarly, bis HSS (resp., HSA} if and only if !vI is even and c = !vI/2 mod !vI, in which case bis centered 

at the half-integer point c/ M. 

2. Downsam.pling HS-type channels. Now do the same analysis when u is an HSS signal centered at -1/2: 

u(n) = u(-1- n). Can b =LM (o, * ·u) be WSS with center no: b(no + n) = b(no - n)? This says 

u(M(no + n) - c) = u(M(no - n) - c) ; (12) 

by considering examples like u =Om+ 6-1-m we see that (12) holds for all HSS signals, u, if and only if 

M(no+n)-c=-1-(!vI(no-n)-c) , or 2Mno-2c=-1 

This has no solutions, sob is never WSS (or WSA) if u is HSS (or HSA). 

There are phases, c, however, for which bis HSS: b(no + n) = b(no -1- n). In terms of u, 

u(M(no + n) - c) = u(M(no - 1 - n) - c) 

By the same exa1nples 1 this requires 

M(no+n)-c=-1-(M(no-1-n)-c), 

or 2Mn -0 2c = M - 1. This means that M must be odd and 

1-M 
c = Mno + - - (13) 

2

For O :". c :". M - 1, the only solution to (13) is 

!vI + 1 
c = -2- ' no :::::: 1 . (14) 
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Table V: Symmetry Properties of Down-Sampled Signals. 

Signal y: Filter h: Subband Symmetry, Center: Shift 

Sy1n., Center Symmetry Center 1 M u = Y* h b =IM u (3 

Mv Any WSS/A, Mv WSS/A, v V 

WSS/WSA wss, 0 Mv+M/2 Even WSS/A, Mv+ M/2 HSS/ A, v + 1/2 v+l 

HSS/HSA Mv+M/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l 

Mv + 1/2 Any WSS/A, Mv WSS/A, v V 

HSS/HSA 
HSS, -1/2 Mv+(M + 1)/2 Even WSS/A, .Mv + .M/2 HSS/ A, v + 1/2 v+l 

WSS/WSA Mv+(M + 1)/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l 

Thus, b is HSS with center at no - 1/2 = 1/2; the same result holds when u and b are IISA. Including the 

effect of shifts by multiples of M, we get the following. 

Lemma 2. Let u be an HSS (resp., HSA) signal centered at -1/2, and let b =IM (o, * u). Then bis never 

WSS or WSA, and b is HSS (resp., HSA) if and only if M is odd and c = (M + 1)/2 mod M, in which 

case o, * u is centered at c -1/2 = M/2 mod .M, and b is centered at (2c- 1)/2M. 

Now drop the restriction that "u)) denotes a signal centered only at O or -1/2, so we can write u = Y*h 

where the group delay,/, of his arbitrary. From Table IV we see that there are two ways in which u can arise 

as an HS-type signal. The delays, 1 , for which u will have a center congruent to M/2 mod .M necessarily 

differ (by 1/2) depending on whether y is WSS or HSS. Similarly, there are two ways in which u can arise 

as a WS-type signal with center congruent to .M/2 mod .M, for group delays depending on the symmetry of 

y. In Table V we combine the results of Lemmas 1 and 2 with Table IV to enumerate all combinations of 

signal sym1netry, filter symmetry and phase, and decimation factor that result in a symmetric subban<l, b. 

Note that we do not distinguish even- from odd-periodic cases in this table, so the symmetry of b is given 

generically as, e.g., WSS or WSA (abbreviated "WSS/A"). This should, of course, be interpreted as OPS or 

OPA when the period of bis odd. The shift factor, (3, is the number of samples b needs to be advanced to 

n1ove its center up to O or -1/2, a detail that will be explained in the next section. 

II-C. Subband Projection and Reconstruction. 

Table V lists all conditions under which we obtain a symmetric subband) b, from an extended subband 

coder with linear phase filters. We now exploit the symmetry of b to reduce data storage requirements. Since 

N is the period of y, the period of bis K = N/.M. If bis symmetric, we only need to save one-half of a 

period of b; the discarded values can be reconstructed using the appropriate symmetry relation. 
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Consider an HSA subband, b, of period I{= 2p (compare Figure 6(d)); ifb is centered at -1/2, then the 

values {b(O), ... , b(l(/2 - 1)} comprise exactly one-half of a period of b. We define 

where PK/2 is the projection or rectangular window, defined in Section II-A, on the first p = l(j2 samples 

in a period of b. Now we can reconstruct b by extending the p-point sequence, a: 

The smne procedure works when bis HSS, using the symmetric extension operator EP'2
) for reconstruction. 

When b is WSS with center at O ( cf. Figure 4(b)), we need to save p = [( /2 + 1 values and so define 

a = PK/'+1 b, reconstructing b via b = 1
E;1· ) a. 

The situation when bis WSA with center at O (Figure 6(a)) is slightly different because we don't need to 

save the trivial value b(O) = 0. Therefore, b gets advanced by one sample and then projected onto the next 

p = K/2- 1 values: 

1 1Note that the antisy1nmetric extension operator, E~ ' )1 contains the one-sa1nple delay needed to insert the 

trivial values b(O) = 0 = b(K/2). 

In general, the number of points that need to be saved is given by the dimension of b; dimensions for 

the six symmetry classes were given in Table L When b has dimension p and center 0 or -1/21 we can save 

a = Ppb provided we advance b by one sample in the case of signals with whole-sample antisymmetry at 0. 

The dimension, p, is thus the same as the rank of the pertinent projection operator, Pp, The one-sample 

advance for signals that are WSA at O is given by the shift factor ry in Table III. One more concern: if b is 

not centered at 0 or -1/2, we first need to advance b by enough samples to move its center up to either 0 or 

-1/2; the necessary shift factor, f}, is given in Table Vas a function of signal and filter symmetry. 

1. The extended subband coder. We are now able to fill in the missing details in the block diagram for 

the extended M-channel subband coder, Figure 2. For simplicity, we only display a single channel, and we 

display the analysis and synthesis banks separately; see Figure 7, which indicates the period of each signal 

component. In the analysis bank, the input signal, x, of length N 0 is extended by an operator, Esys, from 

Table II, filtered and decimated, then advanced f}; + ry; samples before being projected onto coordinates 

n = 0, ... 1 Pi - l to produce the output channel ai, In the synthesis bank, ai is extended by the appropriate 

operator, Ei, delayed /3i samples, upsampled, and filtered. The choice of extension operator, Ei, in the 

synthesis bank is dictated by the symmetry of bi, as determined from Table V. The appropriate operators 

and shift factors, ry;, are given in Table VI for each of the six possible sub band symmetries. If the filter bank 

satisfies condition (PR), then the output will have only constant amplitude distortion: x(n) = Ax(n). 
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Figure 7: Analysis/Synthesis Channels for Extended Subband Coder. 

II-D. Generic Analysis/Synthesis Computations. 

It is now siinple to write down formulas for direct-form implementation of the SWT analysis and synthesis 

operations depicted in Figure 7. In the following formulas, we assun1e x has been extended to a symmetric 

signal, y, of period N. The filters h; and f; are implicitly extended with zeros to period N; the parameters 

'T}i, /Ji, and Pi and the synthesis extension Ei are determined from Tables V and VI based on the symmetry 

of y, the symmetry and phase of hi, and the decimation, M. 

1. Analysis. Using equation (4), we can write 

a; = Pp;(li_(f,+o,) * !M (y * h;)) 

Pp, Lu (y * (h; * /j_M(f,+a,))) 

so 
N-1 

a;(k)=L,y(n)h,(Mk-n+M(/3,+rJi)); k=O, ... ,p;-l. (15) 
n=O 

2. Synthesis. Note that the definition (6) of the upsampling operator implies the formula 

K-1 

((iM b;) * f,)(n) = L, b;(k) f;(n - Mk) . (16) 
k=O 

After for111ing the synthesis extension, ci = E1,a;,, and simplifying the synthesis calculation using (7), 

Xi = PN,(ii_D * f; • 1M (iir, * c;)) 

PN,(/i_D * f; * OMf, * IM c;) 
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Table VI: Symmetric Subband Reconstruction. 

Subband b: Shift Extension 

Symmetry Dim. p Center ry E 

wss K/2+ 1 0 0 E)l,1) 

WSA K/2-1 0 1 E(l,1) 
a 

-1/2 0 E(2,2) HSS K/2 

HSA K/2 -1/2 0 Ei2,2) 

OPS 

(I< Odd) 
(K + 1)/2 

0 0 EJ1,2) 

-1/2 0 E(2,l) 

OPA 

(K Odd) 
(I{ - 1)/2 

0 1 Eil,2) 

-1/2 0 E£2,1) 

synthesis can be evaluated using (16): 

K-1 

x,(n) = I: c,(k) J;(n - Mk - M(J, + D) n = 0, ... 1 No - l . (17) 
k::::O 

3. Causality. In the papers [33, 34], Martucci points out that perfect reconstruction with zero delay is 

impossible in a two-channel QMF bank with causal analysis and synthesis filters. He then concludes that this 

irnplies non-causal filter bank imple1nentations are necessary when transforming symmetric signal extensions. 

The real causality issue in the sym111etric transform case1 however, is the fact that symmetric extensions, 

y = E~i,j)x, are themselves inherently non-causal processesj i.e., y's ('past/' the values {y(n) : n < 0}, is 

defined in terms of y's "future," the values {y(n) : n c: O}. The whole notion of causality is predicated on a 

source information stream with a time-like orientation, an assumption that no longer holds if one wishes to 

regard a symmetric> periodized extension of the raw data as the system input. 

The crucial consideration for SWT imple1nentations is the precise set of filter output samples that need 

to be computed to provide a complete1 nonredundant half-period of each subband for transmission. Any 

application employing a sym1netric extension technique must provide knowledge of a sufficiently long seg1nent 

of "future" data to allow the computation of those nonredundant samples whose values depend on the input 

signal's "past." This means that SWT systems are never causal in the te1nporal, intuitive sense of the word. 

For this reason, we shall only use the word in its trivial, mathematical sense: a causal filter bank is one 

whose impulse responses are identically zero for all n < 0, We will not talk about ((causal SWT systems." 

To implement an SWT starting with a given PR QMF bank, one needs to manipulate filter delays 

because filter banks are frequently designed ( either analytically or numerically) with causal impulse responses. 

According to Figure 7 and Tables V and VI, the effect of filter group delay on an SWT system is the waiting 
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time specified by the advances, z/3;+11;, needed before projecting off a complete, nonreclundant half-period 

of the sub band bi, This necessary wait can be eliminated by pushing the advances ahead of the decimator 

using ( 4) and advancing the analysis filter: 

(cf. equation (15)) 

When filters are 1nade noncausal in this manner to eliminate delays in the analysis bank, the systern delay 

is determined by the phase of the synthesis bank; this subject will be treated more thoroughly in Section III 

for two-channel systems, where we will derive precise relationships between the group delays in the analysis 

and synthesis banks and the overall system delay. For instance, we show that a PR QMF system with causal 

analysis filters can have zero delay distortion if the synthesis bank is advanced sufficiently. Thus, noncausality 

for SWT analysis banks results from the need to compute a complete, nonredundant half-period's worth of 

samples in each SWT subband rather than from aliasing cancellation requirements. 

II-E. SWT Expansiveness. 

In Section I-A we defined the dimension, N,, of an SWT like the one in Figure 2 to be the sum of the 

individual subband ranks, N, = LPi, and called an SWT nonexpansive if N 1 = N . 0 We now consider the 

issue of expansiveness in greater detail. Our analysis will concentrate on maximally decimated PR QMF 

banks of the type shown in Figure 1, although we will mention briefly how to extend the analysis to SWT's 

based on nonuniformly downsampled PR QMF banks. 

The SWT, x 1-> {ai, ... , aM }, is a linear transformation, 

(18) 

since the transform is invertible, we have N1 2: No, We define the expansiveness, €sys, of an SWT to be 

(19) 

The expansiveness represents the number of additional dimensions (read: "storage registers'') needed to hold 

the transforn1ed signal above and beyond the number required by the original input, x, The nonexpansive 

case is the one in which €sys = 0. 

The transform (18) will be called an equal-rank SWT if all subbands have the same rank: p1 = p2 = 
· · · = PM =: p. Equal-rank transforms are nice because the details of storing and manipulating output are a 

little simpler than for systems with variable-length output channels, particularly if the outputs are cascaded 

back through an SVVT analysis bank. The equal-rank condition is not necessary, however, for either perfect 

reconstruction or, as we will show, for nonexpansiveness. An equal-rank transform has dimension 

M 

N, = LPi =Mp, 
i=l 
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so to design a nonexpansive equal-rank SWT, No = N1 = NI p, we must first satisfy the necessary condition 

MINo. As a trivial example of the kind of design limitations this condition imposes on us, note that we 

cannot construct a nonexpansive equal-rank two-channel SWT for odd-length signals. In Section III we will 

construct nonexpansive two-channel SWT's for odd-length signals using channels with unequal ranks. 

The analysis so far of the operations involved in converting a PR QMF bank into an SWT has focused on 

individual channels in the coder, without requiring any system-wide considerations as are needed in designing 

filter banks that satisfy condition (PR). While expansiveness is clearly a property of the overall SWT system, 

we can still define a measure of expansiveness for individual SWT channels to give some indication of the 

efficiency of a single channel. Define the channel expansiveness, Ci, of the i th channel in an SVVT to be 

e; = Pi - No/M (20) 

This is consistent with definition (19) in the sense that 

M M 

L c; = L(Pi - No/ M) = f,y, , (21) 
i.:::1 i.:::1 

although it is possible, under definition (20), for a channel to have fractional expansiveness, An advantage 

of this approach is that it is easy to tabulate the expansiveness of individual channels using (20) and then 

calculate e,y, via (21). It also allows us to use the inequality in (19) to rule out certain channel combinations 

for linear phase PR QMF banks via the constraint 

(22) 

If a bank of linear phase filters creates synunetric subbancls with L Ei < 0 for some symmetric extension
1 

Esys, then it defines a noninvertible transforn1 of RN° and therefore cannot be a PR QMF bank. 

1. Nonuniformly downsampled filter banks. Some recent work on symmetric wavelet transform techniques [37, 

38] has addressed the possibility of using nonuniformly downsampled linear phase PR QMF banks; i.e., filter 

banks that differ from the one depicted in Figure 1 by having different decimation ratios, Nh, in different 

subbands. Such a filter bank is critically downsampled if 

Because of the requirement that Iv! I N in any SWT scheme, nonuniform downsampling imposes more 

restrictions on the allowable combinations of input signal length and synnnetric extension type than does 

uniform downsampling since we now need Nii J N for all ./llli; see Section IV-A for more on divisibility criteria 

for 1\1/-channel SWT's. Nonetheless, we can still employ the above analysis of expansiveness in the case of 

nonuniform filter banks. 
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Figure 8: The Symmetric Signal Extension y = EJ1,3 lx. 

For coding applications in which expansiveness is an issue) it makes sense to restrict attention to critically 

downsampled filter banks. In the nonuniform case, we define the expansiveness of the ith channel to be 

generalizing (20). Since f,y, = I:, p; - No, the relationship (21) continues to hold for critically downsampled 

nonuniform filter banks. This means that all of the results we shall present in Section IV concerning individual 

channels in M-channel SWT's are applicable to the design of nonuniformly downsampled SWT's, including 

the analysis of expansiveness. 

2. Completeness of the classification. The claim was made in Section II-A that the three principal symmet

ric extensions characterized in Table II and depicted in Figure 4 are the only ones ( except for trivial phase 
2 1

shifts of these three, like E\ ' )x) that are capable of producing nonexpansive SWT's. To make this claim 

precise, we need to establish the scope of what we are considering to be '(symmetric wavelet transforms." 

Accordingly, we restrict attention to the extensions Eii,j)x; as mentioned before, these extensions have the 

advantage that they require no additional computations when extrapolating the signal. Moreover, we only 

consider algorithms in which the redundancy introduced by symmetric extension is removed by windowing 

symmetric subbands, b;. The claim is that the extensions E\'•j)x for (i,j)=(l,l), (1,2), or (2,2) are the only 

ones for which the ranks, Pi, of the subbands can add up to exactly No. The reason for this is that if either 

i or j is greater than or equal to 3, then the resulting transform is equivalent to an (unnecessary) extension 

of the input, x, to a longer input, x', followed by a nonexpansive transform of x1• 

For instance, consider the extension y = EP'3 )x shown in Figure 8. This is equivalent to EP• 1)x', where 

x' is the signal of length No+ l obtained by replicating the last sample, c = .,(No - 1). Since we are now 

transforming a signal of length No+ l, the above analysis shows that an SWT based on applying EJ1,l) to x' 

will produce sub bands having ranks satisfying L Pi 2: No+ 1) unless there is some other way to remove the 

extra sa1nple's worth of redundancy hidden in the transform of x'. To see that this additional redundancy 

cannot be re1novecl by simple windowing of the subbands bL note that x' can be obtained by one-sample 



zero-padding of x followed by the addition of an impulse, CON,, at n = No: 

n=O, ... ,No 

where 

+ { x(n), 0 S: n < No 
X (n) = 

0, n =No 

Then y = y+ +CON,, where y+ = 1E\1' )x+, so the result of filtering y by his 

The redundancy inherent in the symmetry of b =LM (y * h) can be removed by windowing, as described 

above, but the redundancy 1·esulting from the one-point extension x -+ x' is spread out across the subband 

by the (coN, * h) term. In particular, the effects of the one-sample redundancy are not manifest in a form 

(like subband sy1nmetry or endpoint duplication) that can be removed by windowing operations. 

This same analysis can be applied to other extensions involving multiple duplications of signal endpoints, 

leading to the following conclusion. 

Theorem 3. All nonexpansive symmetric wavelet transforms based on signal extrapolations of the form y = E}i,j)x 

are based on the three extensions EP' 1)x, EF, 2\v, and EF' 2)x. 

Thusi this paper's scope is limited to a classification of SWT's based on these three principal extensions. 

III. Two-CHANNEL SYMMETRIC SuBBAND ConERs. 

This section of the paper will give a complete classification of all nonexpansive two-channel SVVT's, 

using the extensions Ei1 1
' )x and EF' 2

)x described in Section II-A. The extension Ei 1 2
' )x has an odd 

period and therefore cannot be used in conjunction with 2:1 downsampling. We first tabulate all individual 

channel sym1netries and channel expansiveness figures for both admissible analysis extensions. Next, we 

give all possible filter symmetry and phase combinations for two-channel SWT filter banks. Finally, we put 

these possibilities together to classify two-channel SWT's. The particular cases incorporated in the FBI 

standard [29] for compression of gray-scale fingerprint images are given at the end of this section. 

III-A. Two Types of Symmetric Extension. 

1. The extension y = EP''>x. We will walk through the analysis, listing the results in Table VII. According 

to Table II, the period of y is N = 2No-2, so the period of an unprojected sub band, b;, is I( = N /2 = N0 -1. 

Since y is WSS we see from Table V that HSS/HSA filters never produce symmetric subbands when M = 2. 

We therefore will not list any signal/filter combinations in Table VII involving HSS/HSA filters since they 

23 
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Table VII:(!, !)-Symmetric Wavelet Transform Channels, M = 2. 

Signal x: Filter h: Subband b: Shifts: Exten. Expan. 

No Sym. Center 1 Sym. 1 Center Dim. p (3 ry E f 

2v OPS, V No/2 V 0 E\'•') 0 
wss 

Even 2v+ 1 OPS, v + 1/2 No/2 v+l 0 El'·') 0 

Eil,2) (K Odd) 2v OPA, I/ No/2 - I V 1 -1 
WSA E(2,l) 2v+ 1 OPA, v+ 1/2 No/2 - I v+l 0 a -1 

2v WSS, V (No+ 1)/2 V 0 EF· 1
) 1/2 

wss Ep,2) Odd 2v+ I IISS, v + 1/2 (No - 1)/2 v+l 0 -1/2 

Eil,1) (K Even) 2v WSA,v (No - 3)/2 V 1 -3/2 
WSA 

E~2,2) 2v+ I !ISA, v+ 1/2 (No -1)/2 v+l 0 -1/2 

can never be part of a (!, 1)-SWT. In general, we will not. bother listing signal/filter symmetry or phase 

combinations that do not result in symmetric subbands. 

Let N 0 be even (so I( is odd), and consider WSS filters, h. From Table V we see there are two distinct 

cases, depending on whether the group delay of his even (1 = 2v) or odd (1 = 2v + 1). Both cases work 

since NI is even, resulting in OPS subbands with centers v and v + 1/2, respectively, and requiring shift 

factors, /3, of v and v+ 1. The di1nension of an OPS sub band of period I( = N -0 l is, according to Table VI, 

K+l 
p= - - = No/2 

2

so the channel expansiveness is 

c = p - No/M = 0 . 

Table VI also gives the shift factor ry = 0 (in both phases) and the synthesis extensions E\'• 2
) and E\2• 1l. 

This yields the first two lines in Table VII. Note that these are precisely the design features needed to 

describe the systen1s depicted in Figure 7. The next two lines in the table give the analogous results for 

WSA filters. The second half of Table VII contains the sub band design parameters when N 0 is odd. 

' t . 2 . T ,1.e ex .enswn y = E(2,2) s x. This is an HSS extension of period N = 2No, with sub band period I(= No. 

Table V shows tbat we will not obtain symmetric subbands from E\'' 2
)x if his WSS or WSA, so Table VIII 

lists the possible channels obtained using HSS/HSA filters. Derivation is similar to that for Table VII. 
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Table VIII: (2, 2)-Symmetric Wavelet Transform Channels, M = 2. 

Signal x: Filter h: Subband b: Shifts: Exten. Expan. 

No Syrn. Center 1 Syn1., Center Dim. p /3 
211 + 1/2 WSS, II No/2+ 1 II 

RSS 
Even 211 + 3/2 HSS, 11 + 1/2 No/2 11+1 

(I< Even) 211+ 1/2 WSA, II No/2- 1 II 

RSA 
211 + 3/2 RSA, 11+ 1/2 No/2 11+1 

211 + 1/2 OPS, II (No+ 1)/2 II 

RSS 
Odd 211+ 3/2 OPS, 11 + 1/2 (No+ 1)/2 11+1 

(K Odd) 211 + 1/2 OPA, 11 (No - 1)/2 II 

RSA 
211 + 3/2 OPA, 11 + 1/2 (No - 1)/2 11+1 

ry E c 

E\1,1) 0 1 

0 E\'•') 0 
E~l,1) 1 -1 

E~2,2) 0 0 
E)l,2) 0 1/2 
E\2,1) 0 1/2 
Ell,2) 1 -1/2 

E~2,1) 0 -1/2 

III-B. Two-Channel Discrete Wavelet Transforms. 

In this section we will determine all possible combinations of filter symmetry and phase for SWT's based 

on two-channel PR QMF banks. The input-output relationship for such a system (see Figure 1) is 

The coefficient of .X(-z), the "aliasing term" in the system function, can be eliminated by defining the 

synthesis filters according to the following anti-aliasing relations: 

(AA) 

This produces a linear translation-invariant system with transfer function 

_ X(z) z-D, 
T(z) = X(z) = ±--[Ho(-z)H1(z)-H2 0(z)H1(-z)] (23) 

In the Introduction, we said that a PR QMF bank satisfies the perfect-reconstruction condition) 

T(z) = Az-D . (PR) 

Using equation (23) in the two-channel case, condition (PR) reads 

Ho(-z)H1(z)- H0(z)H1(-z) = 2Az-D+D, (24) 

Since the left-hand side of (24) is an odd function of z, D, - D must be odd; define Da to be the difference, 

Da = D - D, = 2rn + 1 



1 1 1 1Ho(-z- )H1(z- ) - Ho(z- )H1(-z- ) 

z',0 +2
,, [(-1) 2

' 0 +2,, Ho(-z)H1 (z) - ( -1)4'' Ho(z)H1 (-z)] 

z',,+2,, [Ho(-z)H1(z) - Ho(z)H1(-z)] 
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The process of designing a two-channel PR QMF bank therefore reduces to the following: given an analysis 

bank satisfying 

Ho(-z)H1(z) - Ho(z)H1(-z) = 2Az-D" , Da odd, (PR2) 

the anti-aliasing relations (AA) define a PR QMF system with transfer function 

T(z) = ±Az-D , D = Da + D, . (TF2) 

According to (TF2)i we can advance or delay the synthesis bank by an arbitrary factor, Dsi with a 

concomitant advance or delay of the transfer function. In particulari any PR QMF bank can be made into 

a zero-delay system by choosing Ds = -Da for the synthesis bank. From now on, we shall concentrate 

on DWT analysis banks and assume that the synthesis banks are given by (AA). The precise relationship 

between Da and the group delays of the analysis filters will be made clear in the next subsection, 

1. Symmetry/phase possibilities: nontrivial filter banks. Consider the possible combinations of filter sym

metries that might occur in an SWT analysis bank. While [13] reports the existence of trivial PR QMF pairs 

with both even- and odd-order (i.e., WS- and HS-type) filters, Table V shows that one or the other of these 

classes is excluded when M = 2, depending on whether the extension EsysX is HSS or WSS. Consequently) 

the filters in a two-channel SWT must have the same symmetry type (i.e., either both must be HS-type or 

both must be WS-type). Moreover, it is shown in [13] that the only nontrivial classes of two-channel linear 

phase FIR PR QMF banks are those containing either a WSS-WSS or an HSS-HSA filter pair. 

In the nontrivial cases, an interesting relationship holds between the analysis-bank component of the 

DWT system delay, z-D., and the group delays ')'o, ')'1 of the individual analysis filters: 

Theorem 4. Let {ho, hi} be a nontrivial linear phase PR QlvIF bank with analysis delay component z-D 0 • 

Then Da = ')'o + ')'1; in particular, 'Yo + ')'1 must be odd. 

Proof By (2) and (3), 

so condition (PR2) implies 



Ho(-z)H1(z)-Ho(z)H1(-z) Da odd, 
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since 411 is even and 210 + 2/1 is even in the nontrivial cases. Thus, Da = /o + /1. II 

The crucial assumption that 2,o + 211 is even fails for the trivial mixed-type filter banks mentioned above. As 

a corollary of Theorein 4, we get the following result characterizing the possible phase shifts for a nontrivial 

linear phase PR QMF analysis bank. 

Corollary 5. If{H0 (z),H1(z)} is a nontrivial linear phase PR QMF bank and Hb(z) = z-m,Ho(z), H[(z) = 

z-m,H1(z), then {H!(z), H((z)} is a PR QMF bank if and only ifmo + 1111 is even, with delay component 

Proof. We are given 

so 

If mo + m1 is even then so is mo - m1, and (25) reduces to 

which has an odd exponent and thus satisfies (PR2). Conversely, if {Hb(z), H((z)} satisfies (PR2) then, by 

Theorem 4) 

so m 0 + m 1 must be even since both Da and n: are odd. II 

111-C. Classification of Two-Channel Symmetric Wave/el Transforms. 

This section enumerates all possible two-channel SWT's based on the results of Sections III-A and III-B. 

The transfonns 'Will be classified according to extension, Esys, input signal length, N , 0 and analysis filter bank 

symmetries and phases. Synthesis filter banks will not be cliscussed 1 except for the FBI implementations, since 

they are completely determined by condition (AA) and do not affect our analysis of system expansiveness. 

Transforms based on the extension E)i,j) will be referred to as "( i, j)-SWT's." 

J. (1,1)-Symmetric wavelet transforms. According to Table VII, the SWT's based on the extension y = 
E;1'1)x all use WS-type filters, so Theorem 4 says that the analysis bank {Ho, Hi} must consist of a WSS

WSS pair whose phases have opposite parities, which we denote /o = 2vo 1 /1 = 2v1 + 1. There are only two 

classes of SWT's satisfying these conditions, corresponding to No even or N0 odd. 
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No Even: This (1, 1)-SWT is defined by the first two lines in Table VII. The subband ranks and the 

channel expansions are 

Po= No/2 = p1 [Q = 0 = €1 ) 

so this is a nonexpansive equal-rank transform. 

N 0 Odd: The (1, 1)-SWT for odd-length signals necessarily has unequal ranks, 

Po= (No+ 1)/2 , Pl = (No - 1)/2 

Nonetheless, it is nonexpansive: Co= 1/2 and €1 = -1/2 so €sys = 0. 

While one could always duplicate an endpoint on an odd-length signal and apply an even-length transform, 

such a procedure would necessarily be expansive according to Theorem 3; the transform described here; while 

it does have unequal subband ranks, provides a nonexpansive alternative for odd-length signals. 

2. {2,2)-Symmetric wavelet transforms. According to Theorem 4, we must use an HSS-HSA pair of analysis 

filters whose phases satisfy either 'Yo = 2vo+ 1/2 and ,1 = 2v1 + 1/2, or else 'Yo = 2vo+3/2 and ,1 = 2v1 +3/2. 

Combining these two options with the choice of No even or No odd gives us four distinct cases to consider. 

No Even, 'Yi = 2v; + 1/2: Let ho be HSS and h1 IISA; Table VIII indicates unequal ranks, 

Po = No/2 + l , Pl = No/2 - 1 , 

but zero expansiveness, €sys := 0. 

No Even, 1; = 2v; + 3/2: This SWT has equal sub band ranks, po = No/2 =Pl, and is nonexpansive. 

No Odd, Both Phases: Both of these nonexpansive choices have subband ranks 

Po= (No+ 1)/2 , P1 = (No -1)/2 . 

The difference between the two is in the extension operators needed in the synthesis bank. 

3. The FBI fingerprint coding standard. The recently published WSQ Gray-Scale Fingerprint Image Com

pression Specification [29] involves scalar quantization of the subbands resulting from a cascaded two

dimensional (product) filter bank decomposition of digitized fingerprint images. The decomposition involves 

five levels of cascade, resulting in 64 two-dimensional subbands. The primitive one-dimensional filtering 

operations are two-channel SWT's based on either WSS-WSS or HSS-HSA PR QMF banks. Since the FBI 

specification does not include constraints on the exact dimensions of an image (e.g., image dimensions need 

not be divisible by 25
), the algorithm incorporates SWT's for both even- and odd-length signals. This en

sures that an image of arbitrary dimensions can be transformed nonexpansively by choosing the appropriate 

SWT algorithm at each stage in the cascade. 
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The standard dictates a class of SWT dec01npositions that a decoder must be capable of reconstructing. 

As of the publication of (29] there is just one approved filter bank for fingerprint image coding-a WSS-WSS 

lowpass-highpass filter pair with nine and seven impulse response taps, respectively: 

8 6 

Ho(z) = L ho(n)z-n H,(z) = L h1(n)z-n 
n=O n=O 

Values for the taps can be found in (29); the filters correspond to a pair of smooth biorthogonal wavelet bases 

constructed in (14, 6]. Although the above expressions are for causal filters, according to Corollary 5 they 

can be advanced by 

to form an equivalent PR QMF bank with 'Yo = 0, ,1 = -1. With these advances, the shift factors given 

in Table VII are f3o = 0 = f31 and 7/0 = 0 = 7/1 for No both even and odd. Recall that noncausal filtering 

is required to c01npute a complete, nonredundant half-period of each symmetric subband, as explained in 

Section II-D. The symmetries and ranks of the resulting subbands and the extensions used in the synthesis 

bank are given in Table VII. Since the delay of the analysis bank is Da = -1, we set D, = 1 in the 

anti-aliasing relations (AA) to get synthesis filters that yield a transfer function with zero phase distortion: 

(26) 

The corresponding impulse response relationships are given in [29]. 

The standard also allows for the use of HSS-HSA filter banks in conjunction with (2,2)-SWT's. In this 

case the convention is to set /o = -1/2 = 'Y1 so that Da = -1. When N 0 is even, the second and fourth 

lines in Table VIII give sub band ranks Po = No/2 = Pl, and when No is odd Table VIII gives sub band ranks 

po = ( No + 1 )/2 and pr = ( No - 1) /2; these agree with the ranks resulting in the case of the ( 1, 1 )-SWT. The 

group delay convention for the analysis bank again ensures that the shift factors are all zero, and we again 

set D, = 1 and use the anti-aliasing relations (26) to get synthesis filters that yield zero phase distortion. 

IV. M-CHANNEL SYMME'l'RIC SUBBAND CODERS. 

We now extend the analysis given in Section III for two-channel SWT's to the case of general M-channel 

syste1ns. The details of implementing the individual channels in such a subband coder are still based on 

Figure 7 and are thus entirely analogous to the two-channel case, but at the time of this writing there 

is no exhaustive classification of the possible M-channel filter symmetry and phase con1binations like the 

classification given in Section III-B for the two-channel case. 

The difficulties involved in producing numerically tractable design procedures for linear phase NI-channel 

PR QMF banks are such that efforts to date have focused on special cases or subclasses of linear phase PR 

QMF banks or on particular values of Jyf > 2 [21, 22, 23]. For this reason we cannot. enumerate the various 
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symmetry/phase combinations and system expansiveness values for NI-channel SWT's like we did for the 

two-channel case in Section III-C. Instead, we shall tabulate all possible individual channels for NI-channel 

coders that result in symmetric subbands, as we did for the two-channel case in the tables of Section III-A. 

It should be clear to the reader, based on the presentation in Section III-C, that it's quite easy to design 

specific SWT systems using such tables. Channel expansiveness values are included to give some indication 

of how efficient the channels are and to facilitate computing the expansiveness of specific systems via (21). 

There is one special case of interest about which we can draw some conclusions based on our single

channel analysis. We will call a linear phase PR QMF analysis bank, {h1,. , , , hM }, a concentric filter bank 

if all filters have the same center of symmetry. Note that all of the filters in a concentric filter bank must 

be of the same type, i.e., all must be either HS-type or all must be WS-type filters, and all have the same 

group delay, The design of concentric filter banks has been studied in [21, 23]. 

While we do not have a result as comprehensive as Corollary 5 for describing the phase shifts of an 

M-channel PR QMF bank that result in another PR QMF bank, it is clear that the entire analysis bank can 

be advanced or delayed in unison by an arbitrary phase since applying the same phase shift to the synthesis 

bank will result in a new analysis/synthesis system whose output differs from that of the original system by 

a constant phase shift. It is also easy to see that we can shift any one filter by a multiple of M samples: 

according to relation (4) in Section II-B, shifting h; by Nfo; is equivalent. to shifting the downsampled 

sub band, bi, by Vi, a process that is easy to compensate for in the synthesis bank. In particular, a linear 

phase PR QMF bank in which all filters have group delays that are pairwise congruent modulo NI can be 

reduced to a concentric PR QMF bank. We shall use these simple facts when discussing the implementation 

of PR QMF banks in SWT's. 

The most useful result to date on filter symmetries in concentric filter banks is the following theorem 

from [23] on paraunitary (i.e, orthogonal) systems. 

Theorem 6. Let {h1,,,,, hM} be a concentric paraunitary filter bank. 

1. If M is even, there are NI/2 symmetric filters and NI/2 antisymmetric filters, 

2. If NI is odd, there are (NI+ 1)/2 symmetric filters and (NI - 1)/2 antisymmetric filters. 

This result will allow us to calculate the overall expansiveness, fsys i for concentric para.unitary systems. 

As in the two-channel case, the synthesis bank for an M-channel PR QMF system is determined by 

anti-aliasing relations in terms of the analysis bank [17, 3]. For Aef-channel systems it is most convenient 

to express this relationship in terms of the M-component polyphase decompositions of the analysis and 

synthesis banks) a topic we have promised to avoid in the present exposition. Note that 1 as was mentioned 

previously, there are no nontrivial two-channel para.unitary QMF banks with linear phase FIR filters. 
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IV-A. Divisibility Constraints on Signal Length. 

Unlike the two-channel case1 when M > 2 there do not always exist SWT's for input signals1 xi of 

arbitrary length. Recall fron1 Section 11-B that we imposed the divisibility constraint 

MIN (DIV) 

to ensure that ]Vf : 1 circular decimation of y coincides with lvf l linear decimation of the infinite) N

periodic signal. This prevents us fron1 using the (2N - 1)-periodic extension y == EF 12
0 )x when Mis even. 

The periods of the even-length analysis extensions in Table II may also fail to be divisible by certain M for 

certain N 0 , so let us consider the possibilities carefully. 

First, while one might expect to use an M-channel coder if the signal length contains powers of lvf 1 

No = J •ML, this will only be possible for SWT's based on the 2No-periodic extension EJ2 2
' )x when M > 2. 

The extension Ej1 2
' )x of period 2No - 1 is out since M ,r (21 ML - 1), and Ej1 1

' )x only works for M = 2 

because MI (2JML - 2) implies M=2. 

To decide just when a given extension has a period divisible by Jyf i we define a nmnber's resid·ue mo(folo 

M. If O '.': r '.". M - 1 and 

No= rmod M 

then we call ,· the residue of No mod M and write 

1· = res(No, M) 

Since r satisfies the same congruences modulo M as No, we can now classify the extensions satisfying 

condition (DIV) in terms of res(No, M) by solving the following simple congruences. 

MI 2No, or 2r = 0 mod M: ,, = 0 (all M), M/2 (M even) 

MI 2No - 1, or 2r = 1 mod M: ,, = (M + 1)/2 (M odd) 

M I 2No - 2, or 21· = 2 mod M: 1· = 1 (all M), 1 + M/2 (M even) 

The corresponding constraints are listed in Table IX and will be used to derive the results in the next 

subsections. One observation that is immediately clear from Table IX is that while there are admissible 

SWT extensions for all input lengths when ./11=2, 3, or 4, there are always excluded congruence classes of 

input lengths for filter banks with 5 or more channels. 

Given a combination satisfying condition (DIV), the next question is whether there exist nonexpansive 

SWT's for this choice of No, N I and M. As mentioned above, we cannot answer this question in complete 

generality, but we can say something negative concerning the possibility of nonexpansive SWT's with equal 

subband ranks. In Section II-E we showed that such transforms are only possible when M I N . 0 This is 

equivalent to having res(No, A![)= 0, so from Table IX we see that nonexpansive equal-rank SWT's are only 

possible using 2No-periodic extensions. The only hope for nonexpansive (1,1)- and (1,2)-SWT's when M > 2 



K +l 
p 

2 

32 

Table IX: Divisibility Constraints on Signal Length, No, 

M N res (No, M) I(= N/M 

0 Even 
2No 

M/2 Odd 
Even 

1 Even 
2No-2 

M/2+ 1 Odd 

2No 0 Even 

Odd 2Na - 1 (M+l)/2 Odd 

2No -2 1 Even 

is with unequal subband ranks. In light of the distinctions in Tables V and IX, the classification of channels 

will be presented in two parts: first for M even, then for M odd. 

IV-B. M Even. 

For both 2No- and (2Na - 2)-periodic extensions, Table IX indicates two distinct classes of signal lengths, 

parameterized by res(No, M), that satisfy condition (DIV). As in Section III-A, for each class we shall list 

only those combinations of filter symmetry and phase that result in symmetric sub bands, bi, 

1. The extension y = 1 1E) ' )x. Since Mis even, Table Vindicates that the (2No-2)-periodic WSS extension, 

E;1• 1
)x, produces symmetric subbands only when used with WS-type filters, and only for group delays 

1 = M v or 1 = M v + M /2. Consider the case of signals with res(No, M) = M /2 + 1, as given in Table IX; 

when h is WSS with phase M v then, since I( is odd in this case, Table V shows that b will be OPS with 

center v, From Table VI, the dimension of b is 

so the expansiveness of this channel is 

No 
f = I 1 

p-~ 
M 2 M 

When 1 = M v + M /2, b is again OPS but with center v + 1/2. The pertinent results for these two cases are 

given in the first two lines of Table X; derivation of the other lines in that table is similar. 

The channel expansiveness figures in Table X indicate some of the limitations of the (!, 1)-SWT when 

M > 2. By inequality (22), we cannot have perfect reconstruction unless I:;e; 2 O; this can be used to rule 

out the existence of concentric WS-type filter banks when M is even. By preceding remarks, such a filter 



Table X: (1, !)-Symmetric Wavelet Transform Channels, M Even. 

Signal x: Filter h: Subband b: Shifts: Exten. Expan. 

res(No, M) Sym. Center 1 Sym., Center Dim. p f3 ry E £ 

M/2+1 

(K Odd) 

wss 
Mv OPS, V (No -1)/M + 1/2 V 0 E~l,2) 1/2-1/M 

Mv+M/2 OPS, v+ 1/2 (No -1)/M + 1/2 v+l 0 E;'•') 1/2 - 1/M 

Mv OPA, V (No - 1)/M - 1/2 V 1 Eil,2) -1/2-1/M 
WSA 

Mv+M/2 OPA, v+ 1/2 (No - 1)/M - 1/2 v+l 0 E(2,1) 
a -1/2-1/M 

1 

(K Even) 

wss 
Mv WSS, V (No - 1)/M + 1 V 0 El'·') 1-1/M 

Mv+M/2 HSS, v + 1/2 (No - l)/M v+l 0 E;'•') -1/M 

Mv WSA,v (No - 1)/M - 1 V 1 Eil,1) -1-1/M 
WSA 

Mv+M/2 HSA, v+ 1/2 (No - 1)/M v+l 0 Ei'•') -1/M 

bank could be advanced or delayed to have its center at M /2. If it were then applied in a (1, 1 )-SWT to 

signals of length No, where res(No, M) = 1, it would produce a transform with overall expansiveness 

c,y, = M(-1/M) = -1 , 

regardless of the mix of WSS and WSA filters. This contradicts (22), implying 

Theorem 7. There are no concentric WS-type FIR PR QMF banks for M even. 

This generalizes one of the consequences of Theorem 4 in Section III-A. We do not know if there exist 

non-concentric WS-type QMF banks for M even, M > 2. 

2. The extension y = EF'2)x. Since this is an HSS extension, Table Vindicates that we are constrained to 

using HS-type filters. The possible subband symmetries and expansion factors are listed in Table XI. 

Example: (M = 4) A four-channel concentric paraunitary filter bank has been constructed in [23] with 

four HS-type filters, each of length eight. The filter bank is causal, i.e., the filters are supported on the 

interval [0, 7], with centers at 7 /2. Filters ho and h2 are HSS while h1 and hs are HSA. If the analysis bank 

is advanced one sample, 

H;(z) = zH;(z) , 

then the filters will have centers,; = 5/2 = (M + 1)/2 so Table XI shows that we will have a nonexpansive 

equal-rank (2, 2)-SWT when res(No, 4)=0 and a nonexpansive (2,2)-SW'I' when res(No ,4)=2. If the analysis 

bank is advanced three samples, 

H; " (z) = z 3 H;(z) , 
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Table XI: (2, 2)-Symmetric Wavelet Transform Channels, M Even. 

Signal a:: Filter h: Subband b: Shifts: Exten. Expan. 

res(N0 , M) Sym. Center 1 Sym., Center Dim. p (3 ry E f 

E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 
0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2

) 0 

(I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 
RSA 

Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 

Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 
RSS 

M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 

(K Odd) Eil,2) Mv+ 1/2 OPA, V No/M - 1/2 V 1 -1/2 
RSA 

E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M - 1/2 // + 1 0 -1/2 

the centers will be at 1/2 and the resulting (2, 2)-SWT will be nonexpansive, with the 1-ISS channels having 

rank p;' = No/4 + 1 and the !ISA channels having rank p;' = No/4 - 1 when res(No,4) = 0, and ranks 

No/4 ± 1/2 when res(No,4) = 2. 

VVe can generalize this example: 

Proposition 8. For M even, any concentric HS-type PR QMF bank yields a nonexpansive equal-rank (2, 2)

SWT for inputs with res(No, M) = 0 if we shift the analysis bank so that its center is congruent to (lvl + 1)/2 

mod 1\1. If the analysis bank contains equal numbers of symmetric and antisymmetric filters (e.g., paraunitary 

filter banks), nonexpansiveness also holds for inputs with res(N , 0 M) = lvl/2 and for analysis banks wilh 

centers congruent to 1/2 mod M (for both input residue classes O and M /2). 

When NI is even, note that a given filter bank can be used for SWT's on just two distinct residue classes 

of input lengths, 1neaning that there will always be excluded input lengths for a given filter bank whenever 

Mc". 4. For lvl=4, the existence of nonexpa.nsive SWT's for signals with res(No,4)=1 or 3 depends on the 

existence of (non-concentric) WS-type QMF banks for use in (1,1)-SWT's. 

IV-C. M Odd. 

The SWT possibilities in this case differ markedly from the situation when lvI is even. Table IX gives 

only one residue class of signal lengths satisfying condition (DIV) for ea.ch possible extension. For either 

WSS or IISS signal extensions, Table V indicates that there a.re symmetric subband coders for both WS- and 

HS-type filters. This increases the possible combinations of filter symmetries that can be used in SWT's. 

For instance, in [22] the authors construct a three-channel PR QMF analysis bank with causal filters having 
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Table XII: (!, !)-Symmetric Wavelet Transform Channels, M Odd. 

Signal x: Filter h: Subband b: Shifts: Exten. Expan. 

res(No, M) Sym. Center 1 Sym., Center Dim. p /3 ~ E £ 

I 

wss M.v wss,,., (No - I)/M + I 1/ 0 EP· 1
) 1- I/M 

WSA Mv WSA,v (No - I)/M - I ,., I EP· 1
) -]- 1/M. 

(I{ Even) HSS Mv+M/2 HSS, v + 1/2 (No - I)/M v+l 0 E\2•') -1/M 

HSA Mv+M/2 HSA, v+ 1/2 (No - I)/M v+l 0 Ei'•') -1/M 

the following sy1nmetries. 

HSS, ,o = 27.5 (56 taps) WSS, ,1 = 26 (53 taps) !ISA, 12 = 27.5 (56 taps) (27) 

We will discuss the implementation of SWT's based on this example later in this section. 

11. The y = 1extension E) ' )x. When N = 2Na - 2, the only residue class satisfying condition (DIV) 

is res(No, M) = 1, but there are symmetric subband coders for all four classes of filters. The possible 

symmetry /relative phase combinations are listed in Table XII; the derivation is via Tables V and VI, as in 

preceding sections. An analogue of Theorem 7 for concentric HS-type filter banks when M is odd follows 

from the last two lines in Table XII: by shifting such a filter bank so it is centered at M /2, we could construct 

a (1, 1)-SWT with expansiveness fsys = -1. Since this is impossible, we conclude 

Theorem 9. There are no concentric HS-type PIR PR QMP banks for M odd. 

As in Theorem 7, note that this conclusion is not limited to the paraunitary case. 

We can take full advantage of the choice of filter symmetries in Table XII to construct a nonexpansive 

three-channel (1, 1)-SWT using the filter bank (27). Delay the bank by one sample, 

I -1 
H;(z) = z H;(z) , ,; 

I = 1; + 1 , 

so that,; = 27 = 0 mod 3 and,; = ,; = 28.5 = 3/2 mod 3. Then this new filter bank defines a(!, 1)-SWT 

when res(No, 3) = 1, with expansiveness £,y, = (1 -1/3) + 2(-1/3) = 0. 

When M is odd, there is the possibility of using concentric WS-type PR Qlv!F banks. Although we 

do not have an explicit example of such a filter bank construction (a theoretical classification is given i1;t 

[23]), we can use Theorem 6 and (21) to calculate the expansiveness of a (1, 1)-SWT based on a concentric 

paraunitary WS-type filter bank with center congruent to O mod M. Using the first two lines in Table XII, 

Thus, a concentric para.unitary WS-type (1, 1)-SWT is always nonexpansive when Mis odd. 
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Table XIII: (1, 2)-Symmetric Wavelet Transform Channels, M Odd, 

Signal x: Filter h: Subband b: Shifts: Exten. Expa.n. 

res(No, M) Syrn. Center 1 Sym.i Center Dim. p /3 T/ E € 

(M + 1)/2 

(K Odd) 

wss Mv OPS, v (2No - 1 + M)/2M l/ 0 2EP · ) (M -1)/2M 

WSA Mv OPA, v (2No - 1 - M)/2M l/ 1 EP·') -(M + l)/2M 

IISS Mv+M/2 OPS, v + 1/2 (2No - 1 + M)/2M v+l 0 E(2,l) 

' (M - 1)/2lvl 

HSA Mv+M/2 OPA, v + 1/2 (2No - 1 - M)/2lvl 11+1 0 E~2,l) -(M + 1)/2M 

Table XIV: (2, 2)-Syrnmetric Wavelet Transform Channels, M Ode!. 

Signal x: Filter h: Subband b: Shifts: Exten. Expan. 

res(No, M) Sym. Center 1 Sym., Center Dim. p /3 T/ E € 

0 

(I{ Even) 

wss Mv+(M + 1)/2 IISS, v + 1/2 No/M v+l 0 E\'•') 0 

WSA Mv+ (M + 1)/2 IISA, v + 1/2 No/M v+l 0 Ei2,2) 0 

IISS Mv+ 1/2 WSS, V No/M + 1 V 0 EJ1,l) 1 

IISA Mv+l/2 WSA,v No/M - I V I E~l,l) -1 

2. The extension y = E)1 2
' )x. The possible symmetric channels for the (1, 2)-SWT, M odd, are listed in 

Table XIII. The same one-sample delay of the filter bank (27) that was used in a (1,1)-SWT above now 

furnishes a (1,2)-SWT for inputs with res(N0 ,3)=2; the expansiveness is f,y, = 2(1/3)- (2/3) = 0. 

Now compute the expansiveness of a (1,2)-SWT based on a concentric paraunitary WS-type filter bank 

with center congruent to O 1110d M: 

= (M+l) (M-1) (M-1) (-M+l) e,y, 2 2M + 2 2M 0 ' 

3. The extension y = E\ 2 2
• )x. The possible symmetric channels for the (2, 2)-SWT, M odd, are listed in 

Table XIV. The example (27) can be incorporated into a nonexpansive (2, 2)-SWT without added phase 

shifts since ,1 = 26 = 2 mod 3 and ,o = 12 = 27.5 = 1/2 mod 3. 

Note that both WS-type channels for the (2, 2)-SWT have expansiveness e; = 0. This means that a 

concentric WS-type PR QMF bank-regardless of the mix of symmetric and antisymmetric filters-would 

furnish a nonexpansive equal-rank (2, 2)-SWT for signals satisfying res(No, M) = 0 if the analysis bank's 

center is congruent to ( lvf + 1) /2 mod M. We summarize the possibilities for SWT's based on concentric 
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WS-type filter banks in 

Proposition 10. For M odd, any concentric WS-type PR QMF bank yields a nonexpansive equal-rank (2, 2)

SWT for inputs with res(No, M) = 0 if its center is congruent to (M + 1)/2 mod M. If the analysis bank 

contains (M + 1)/2 symmetric filters and (M - 1)/2 antisymmetric filters {e.g., paraunitary filter banks} 

and the center of the analysis bank is congruent to O mod M, we get a none,:pansive {1,1)-SWT for inputs 

satisfying res{No, M )=1 and a nonexpansive (1,2)-SWT for inputs satisfying res(No, M) = (1vI + 1)/2. In 

particular, when _NJ =3 a concentric WS-type PR QMF bank with two symmetric filters and one antisymmetric 

filter furnishes nonexpansive SW1"s for all input length resid1te classes, 

V. CONCLUSIONS. 

This paper characterizes all possible nonexpansive symmetric wavelet transform algorithms based on 

a classification of the possible cmnbinations of symmetric signal extensions and linear phase filters that 

produce symmetric subbands in downsampled subband coders. Detailed algorithms are developed for direct

form implementations of all of these transforms. A general notion of transform expansiveness has been 

introduced to analyze the extent to which SWT's conserve data storage requirements. 

In the case of two-channel PR QMF banks, we have been able to enumerate all possible SWT's explicitly. 

Nonexpansive SWT's based on (1, 1)- and (2, 2)-symmetric extensions have been shown to exist for both 

even- and odd-length signals. The specific SWT algorithms employed in the FBI fingerprint image coding 

specification have been described. 

In the general M-channel case, the classification of symmetric subband coder channels has been applied 

to the analysis of SWT algorithms for recently constructed examples of linear phase PR QMF banks, such 

as concentric filter banks. Algebraic restrictions on the allowable combinations of input signal length and 

downsample factor prevent any one symmetric extension method from being applicable to signals of arbitrary 

length when Ji.,[ > 2. By employing different analysis extensions and judicious phase shifts, however, we have 

shown how certain 3-channel filter banks can provide nonexpansive SWT's for input signals of arbitrary 

length. We have also shown that a single filter bank never furnishes nonexpansive SWT's for input signals 

of arbitrary length when M 2'. 4. 

Modulo constraints on input length, we have constructed examples of nonexpansive SWT's for both even 

and odd values of M. We prove that concentric PR QMF banks always yield nonexpansive equal-rank SWT's 

for the (2, 2)-symmetric extension in both of the cases M even (with concentric HS-type filter banks) and 

M odd (with concentric WS-type filter banks). When M is odd, we prove that a concentric paraunitary 

WS-type PR QMF bank generates a nonexpansive (1,1)-SWT. We also prove that nonexpansive SWT's can 

never have equal-rank subbands for (1, 1)- or (1, 2)-symmetric extensions when M > 2. 

As an interesting corollary of our analysis, we are able to use dimensionality results about SWT's to 
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prove the nonexistence of certain classes of linear phase PR QMF banks. In particular, we can show that 

concentric PR QMF banks based on WS-type filters are impossible for even M and that concentric PR QMF 

banks based on HS-type filters are impossible for odd M. 
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	Figure
	Figure 1: M-Channel Subband Coder. 
	I. INTRODUCTION. A critically downsampled M-channel subband coder is a digital filter bank of the type shown in Figure 1 [l, 2, 3, 4). Such filter banks have received a great deal of attention lately as a result of the recent development of wavelet transforms, which are special instances of this type of sub band coder having a connection, in the infinite sampling-rate limit, with continuum approximation theory [5, 6, 7, 8). The filter bank in Figure 1 is called a perfect-reconstruction quadrature mirror fil
	Such systems generate orthogonal DWT's. Shortly thereafter, the construction of compactly supported regular orthogonal wavelets by iteration of PR QMF banks satisfying condition (PC) was demonstrated by Daubechies [11]. Both of these constructions resulted in filters with asymmetric impulse responses since, as was already known [12], the only FIR solutions to (PC) with linear phase are trivial. Subsequent constructions of two-channel FIR PR QMF banks [13] and wavelets [14] with linear phase were given by re
	In image coding, a popular solution to this problem is to quantize the output of the (two-dimensional) discrete cosine transform (DCT) [24, 25], The DCT can be identified with a phase shift of the first half of the discrete Fourier transform (DFT) expansion of the even signal1 y, defined by the symmetric extension y(n) = x(n) ; n = 0••• , 1 No -1 ; (1) { x(2No -1 -n) ; n =No, ... , 2No -1 While the 2No-point DFT is given mathematically by circular correlation with the Fourier kernel, ei22·rnk/N°, the period
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	Figure 2: Extended M-Channel SWT Subband Coder. 
	can then be transformed by N-periodic circular convolution, eliminating the jump discontinuity that would have resulted from simple periodization of x. If the system transfer function is given by (PR), we can recover x by projecting the output of the synthesis bank onto the first No coordinates: x(n)=[J(n+D)=Ax(n); n=0, ... ,N0-I. See Figure 2. Beneath each signal component we have indicated the length ( or period) of that component. Note that a1, ... , aM have been given (possibly) different lengths, P1, .
	that preserves perfect reconstructability and minin1izes spectral coloration. Syrrnnetric extrapolation meets these needs and furnishes several additional benefits. Since the period of the extended input is "" 2No, a signal of length No can be filtered with filters of length up to "" 2No; simple periodization constrains filter lengths to at most N• 0For cascaded two-channel filter banksi this allows computation of an additional level of cascade for given signal and filter lengths. The fact that the period o
	I-B. Prior Results. Symmetric signal extension has been considered by a number of other researchers in the context of sub band coding. Karlsson and Vetterli [30] proposed several methods of continuous signal extension followed by linear convolution as alternatives to circular convolution for a two-channel subband coder. Also in the two-channel case, Smith and Eddins [31, 15, 32] observed that if the 2No-periodic extension, y, defined by (1) is :filtered by circular convolution with even-length linear phase 
	smoothing it to 1natch up the endpointsi followed by periodization of the smoothed signal. This requires additional computations near the signal boundaries during both analysis and synthesis. The symmetric extension method proposed here is thus a compromise between the algoritlnnic simplicity of methods like simple periodization or zero-padding [41] and the maximum possible smoothness obtained by nonlinear extrapolation methods. One advantage is that symmetric extension can be accomplished entirely by data 
	I-C. Organization and Scope of the Paper. Section II contains preliminaries regarding the definitions of symmetric and antisymmetric signal exten-sions. We consider signal decompositions based on three types of symmetric extension. Since the goal of fonning such extensions is to avoid introducing singularities and spurious high-band energy in the signal be-ing transformed, we do not understand the motivation for the transforms based on antisymmetric extensions that were proposed in [36]. Thus, this paper on
	bank. The particular SWT algorithms incorporated by the author into the FBI digital fingerprint image coding standard [29} are also described; this paper forms the principal technical reference on these rnatters. Section IV contains a complete but less specific classification of M-channel SWT's. The possible filter symmetry /phase combinations in M-channel linear phase PR QMF banks are not completely understood at presenti so we enm11erate all possible individual channels in .NJ-channel SWT's and classify t
	II. PERIODIC MULTIRATE FILTER BANKS FOR SYMMETRIC SIGNALS. In this section we analyze the effects of some standard multirate filter bank operations on sym1netric extensions of input signals. The specific results needed to classify SWT's will be tabulated for later reference; most derivations are elementai·y and will be left to the reader, who is referred to [1, 4] for much more extensive treatments of multirate signal processing. The notation will generally follow the conventions in [45, 4], although we sha
	The above categories are not mutually exclusive since a signal may have different types of sy1nmetry 
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	Figure 3: (a) Whole-Sample Symmetry About c. (b) Half-Sample Symmetry About c -1/2. 
	about different centers; e.g., an alternating sequence like (-1)" is both WSS and RSA. To be precise, we must specify both a symmetry property and a center. Constant sequences show that there is no upper bound on the nun1ber of centers a signal may have1 but for symmetric or antisyn1metric periodic signals there is a lower bound of at least two. More specifically, let y be N-periodic with a center at c: y(c+n)=±y(c-n). Then c+ N/2 is also a center for y; an analogous statement holds for a signal with a cent
	Sect
	Figure
	Table I: Symmetry Properties of N-Periodic Signals. 
	Symmetry 
	Symmetry 
	Symmetry 
	Symmetry Characterization: 

	Property 
	Property 
	Center 
	Tin1e Domain DFT Domain 
	Dimension 

	wss 
	wss 
	C 
	y( c + n) 
	= y( c -
	n) 
	Y'(k) 
	= ei2•(2,)k/Ny(k) 
	N/2+ 1 

	WSA 
	WSA 
	C 
	y(c+n)=-y(c-n) 
	Y'(k) 
	= -e;2,(2,)k/Ny(k) 
	N/2-1 

	IISS 
	IISS 
	C -
	1/2 
	y(c + n) 
	= y(c -
	1 -
	n) 
	Y'(k) 
	= ej2,(2c-l)k/Ny(k) 
	N/2 

	HSA 
	HSA 
	C -
	1/2 
	y(c + n) = -y(c -
	1-n) 
	Y'(k) 
	= -ej2,(2c-l)k/Ny(k) 
	N/2 

	OPS 
	OPS 
	WSS at c and HSS at c + N/2, 
	or 
	(N + 1)/2 

	(N Odd) 
	(N Odd) 
	HSS at c -1/2 and WSS at c + (N 
	-1)/2 
	(N Odd) 

	OPA 
	OPA 
	WSA at c and HSA at c + N /2, 
	or 
	(N -1)/2 

	(N Odd) 
	(N Odd) 
	HSA at c -1/2 and WSA at c + (N 
	-1)/2 
	(N Odd) 


	so, in a single period c -N /2 :S n :5 c + N /2 -1, the samples in the "second half" of the period, y(c+n); n=O, ... ,N/2-1, are redundant. An IISS signal therefore contains at most N /2 nonre<lundant samples, and since this upper bound is attained by symmetric ramps of the kind shown in Figure 4( d), the dimension of the IISS class is N /2 for even N. Similar arguments yield the figures in the last column of Table I. Also note that we do not count the end-samples that are necessarily zero when computing th
	Figure
	Figure
	Figure
	Figure
	while antisymmetric filters satisfy (3) 3. Symmetric extension operators. We formalize the process of making a symmetric extension of a signal1 x1 of length No by defining extension operators as linear transformations, of rank No. An extension operator simply replicates values of x according to some symmetry relation to construct an extension, y = Ex, with one of the six symmetry properties described above. As mentioned in the Iutroduction1 we will only consider signal analyses based on symmetric extensions
	be the projection onto the first L coordinates; i.e., a rectangular window of length L. Then These projection operators will find additional uses in Section II-C. Finally, we have five extension operators that will be used exclusively for reconstructing signal subbands, bi = 21E;,ai, in the synthesis bank. The symmetric extension E~')a pictured in Figure 5 is equivalent to a shift of the extension EF•2)a, so it will not be necessary to consider its use as an analysis extension. F'our 
	(a) x(n) 0 No-1 ., (b) E(l,1) ' X • ) • ' ' • ) \' 0 N0-1 2N0-3 ( c) E(l,2) ' X 0 No-1 2No-2 (d) E(2,2) ' X 0 No-1 2Nu-l 
	Table II: Symmetric Extension Operators for Signal Analysis. 
	Operator Extension y = Ex: Symmetry Characterization: E Period N Sy1n.1 Center Time Domain DF'l' Domain E(l,1) ' 2Na -2 wss, 0 y(n) = y(N -n) Y*(k) = Y(k) ' E)l,2) 2No -1 OPS, 0 y(n) = y(N -n) Y'(k) = Y(k) E}2,2) 2No HSS, -1/2 y(n) = y(N -1-n) Y'(k) = ci2dfNY(k) 
	Operator Extension y = Ex: Symmetry Characterization: E Period N Sy1n.1 Center Time Domain DF'l' Domain E(l,1) ' 2Na -2 wss, 0 y(n) = y(N -n) Y*(k) = Y(k) ' E)l,2) 2No -1 OPS, 0 y(n) = y(N -n) Y'(k) = Y(k) E}2,2) 2No HSS, -1/2 y(n) = y(N -1-n) Y'(k) = ci2dfNY(k) 
	Operator Extension y = Ex: Symmetry Characterization: E Period N Sy1n.1 Center Time Domain DF'l' Domain E(l,1) ' 2Na -2 wss, 0 y(n) = y(N -n) Y*(k) = Y(k) ' E)l,2) 2No -1 OPS, 0 y(n) = y(N -n) Y'(k) = Y(k) E}2,2) 2No HSS, -1/2 y(n) = y(N -1-n) Y'(k) = ci2dfNY(k) 
	Operator Extension y = Ex: Symmetry Characterization: E Period N Sy1n.1 Center Time Domain DF'l' Domain E(l,1) ' 2Na -2 wss, 0 y(n) = y(N -n) Y*(k) = Y(k) ' E)l,2) 2No -1 OPS, 0 y(n) = y(N -n) Y'(k) = Y(k) E}2,2) 2No HSS, -1/2 y(n) = y(N -1-n) Y'(k) = ci2dfNY(k) 
	Operator Extension y = Ex: Symmetry Characterization: E Period N Sy1n.1 Center Time Domain DF'l' Domain E(l,1) ' 2Na -2 wss, 0 y(n) = y(N -n) Y*(k) = Y(k) ' E)l,2) 2No -1 OPS, 0 y(n) = y(N -n) Y'(k) = Y(k) E}2,2) 2No HSS, -1/2 y(n) = y(N -1-n) Y'(k) = ci2dfNY(k) 
	Operator Extension y = Ex: Symmetry Characterization: E Period N Sy1n.1 Center Time Domain DF'l' Domain E(l,1) ' 2Na -2 wss, 0 y(n) = y(N -n) Y*(k) = Y(k) ' E)l,2) 2No -1 OPS, 0 y(n) = y(N -n) Y'(k) = Y(k) E}2,2) 2No HSS, -1/2 y(n) = y(N -1-n) Y'(k) = ci2dfNY(k) 
	Operator Extension y = Ex: Symmetry Characterization: E Period N Sy1n.1 Center Time Domain DF'l' Domain E(l,1) ' 2Na -2 wss, 0 y(n) = y(N -n) Y*(k) = Y(k) ' E)l,2) 2No -1 OPS, 0 y(n) = y(N -n) Y'(k) = Y(k) E}2,2) 2No HSS, -1/2 y(n) = y(N -1-n) Y'(k) = ci2dfNY(k) 
	Operator Extension y = Ex: Symmetry Characterization: E Period N Sy1n.1 Center Time Domain DF'l' Domain E(l,1) ' 2Na -2 wss, 0 y(n) = y(N -n) Y*(k) = Y(k) ' E)l,2) 2No -1 OPS, 0 y(n) = y(N -n) Y'(k) = Y(k) E}2,2) 2No HSS, -1/2 y(n) = y(N -1-n) Y'(k) = ci2dfNY(k) 
	Operator Extension y = Ex: Symmetry Characterization: E Period N Sy1n.1 Center Time Domain DF'l' Domain E(l,1) ' 2Na -2 wss, 0 y(n) = y(N -n) Y*(k) = Y(k) ' E)l,2) 2No -1 OPS, 0 y(n) = y(N -n) Y'(k) = Y(k) E}2,2) 2No HSS, -1/2 y(n) = y(N -1-n) Y'(k) = ci2dfNY(k) 








	Figure 4: Symmetric Extensionsi y = E}i,j)x, for Signal Analysis. 
	(2,1) E' a 0 p-1 
	Figure 5: The Symmetric Extension b = EF'1)a for Subband Synthesis. 
	Table III: Extension Operators for Subband Synthesis. 
	Operator Extension b = Ea: Symmetry Relation: E Period J( Sym., Center Shift ~ Time Domain E/2,1) 2p-l OPS, -1/2 0 b(n) = b(K-l-n) b(n) = -b(K -n); E~l,l) 2p+ 2 WSA, 0 1 b(O) = 0 = b(p+ 1) b(n) = -b(K -n); E11,2) 2p+ 1 OPA, 0 1 b(O) = 0 b(n) = -b(K -1-n); E(2,1) a 2p+ 1 OPA, -1/2 0 b(p) = 0 E£2,2) 2p HSA, -1/2 0 b(n) = -b(K -1-n) 
	Operator Extension b = Ea: Symmetry Relation: E Period J( Sym., Center Shift ~ Time Domain E/2,1) 2p-l OPS, -1/2 0 b(n) = b(K-l-n) b(n) = -b(K -n); E~l,l) 2p+ 2 WSA, 0 1 b(O) = 0 = b(p+ 1) b(n) = -b(K -n); E11,2) 2p+ 1 OPA, 0 1 b(O) = 0 b(n) = -b(K -1-n); E(2,1) a 2p+ 1 OPA, -1/2 0 b(p) = 0 E£2,2) 2p HSA, -1/2 0 b(n) = -b(K -1-n) 
	Operator Extension b = Ea: Symmetry Relation: E Period J( Sym., Center Shift ~ Time Domain E/2,1) 2p-l OPS, -1/2 0 b(n) = b(K-l-n) b(n) = -b(K -n); E~l,l) 2p+ 2 WSA, 0 1 b(O) = 0 = b(p+ 1) b(n) = -b(K -n); E11,2) 2p+ 1 OPA, 0 1 b(O) = 0 b(n) = -b(K -1-n); E(2,1) a 2p+ 1 OPA, -1/2 0 b(p) = 0 E£2,2) 2p HSA, -1/2 0 b(n) = -b(K -1-n) 
	Operator Extension b = Ea: Symmetry Relation: E Period J( Sym., Center Shift ~ Time Domain E/2,1) 2p-l OPS, -1/2 0 b(n) = b(K-l-n) b(n) = -b(K -n); E~l,l) 2p+ 2 WSA, 0 1 b(O) = 0 = b(p+ 1) b(n) = -b(K -n); E11,2) 2p+ 1 OPA, 0 1 b(O) = 0 b(n) = -b(K -1-n); E(2,1) a 2p+ 1 OPA, -1/2 0 b(p) = 0 E£2,2) 2p HSA, -1/2 0 b(n) = -b(K -1-n) 
	Operator Extension b = Ea: Symmetry Relation: E Period J( Sym., Center Shift ~ Time Domain E/2,1) 2p-l OPS, -1/2 0 b(n) = b(K-l-n) b(n) = -b(K -n); E~l,l) 2p+ 2 WSA, 0 1 b(O) = 0 = b(p+ 1) b(n) = -b(K -n); E11,2) 2p+ 1 OPA, 0 1 b(O) = 0 b(n) = -b(K -1-n); E(2,1) a 2p+ 1 OPA, -1/2 0 b(p) = 0 E£2,2) 2p HSA, -1/2 0 b(n) = -b(K -1-n) 




	antisymmetric extensions are shown in Figure 6. Note that p is the length of a and that operators with an ((a" subscript are antisymmetric extensions. Formal definitions are given in Table III; the presence of antisymmetric extensions complicates the initialization procedure slightly, however. Because we want WS-type extensions to have centers at 0, the signals being extended with whole-sample antisymmetry at 0 need to be delayed by one sample so we can insert the necessary value b(O):::::: 0. We introduce 
	(a) E(l,1) a a 0 p (b) E(l,2) a a 2p 0 p (c) E(2,1) a a 2p 0 p-l (d) 2p-l 0 p-1 
	Figure 6: Antisymmetric Extensions, b::::: Eii,j)a1 for Subband Synthesis. 
	Figure
	Table IV: Symmetry and Center of the Convolution Product u = y * h. 
	Symmetry, Center of Filter h: WSS, 1 WSA, 1 HSS,, HSA,, Signal y: WSS, 0 WSS,, WSA,, HSS,, HSA,1 HSS, -l/2 HSS, 1 -1/2 !ISA, 1-1/2 WSS, ,-1/2 WSA, ,-1/2 
	instance, if y = E)11')x and his HSS then, using (2) and Table II, U'(k) Y'(k)H'(k) y ( k )H (k )ei2<(2e)k/N = ei2•(2e)k/NU(k) Since 21 is odd, Table I shows that u is HSS, centered at 1. The other possible combinations of signal and filter symmetry are listed in Table IV; note that we do not distinguish even from odd periods. A more complicated problem is the matter of determining when M : 1 decimation of a symmetric signal, u, results in a symmetric subband, b. While the answer appears to have been intuit
	When M[N, (4) also holds for M: 1 circular downsampling and circular shifts. We shall always insist that the signal length) the analysis extension a.nd decimation factor be constrained so that 1\1IN; this ensures that circular operations on length N signals coincide with linear operations on N-periodic signals. Without the restriction J\flN, M:l decimation of an JV-periodic signal doesn't result in an M : 1 reduction in the amount of inforrnation in the signal, which is the goal of performing decimation in 
	Figure
	the downsampler defined by (5) and will classify symmetric transforms in terms of the group delays of the analysis filters. Similarly, we shall always define the upsampling (or interpolation) operator to be a(n/M) if Min (i M a)(n) = (6) { 0 otherwise . The analogue of (4) for upsampling is 
	1. Downsampling WS-type channels. Let u be WSS with center at O; we want to know all values of c for which b =h1 (8, * u) will be either WSS or HSS. The phase, c, has been temporarily separated from the symmetry property, now embodied in u, to clarify the following arguments. Because of (4), we only need to consider O ::S c :S M -1. Note that c is independent of u; i.e., we are determining the phases, c, for which M : 1 decin1ation of an arbitrary WSS signal with center c will result in another symmetric si
	Figure
	Again, the same result holds when u is WSA and b is HSA. Let's illustrate briefly how to handle signals with more general centers using (4). Suppose we have a WSS signal centered at !vI v + M/2 (i.e., u * DMv+M/2); then bis av-sample delay of an HSS signal centered, according to (11), at no -1/2 = 1/2, sob is centered at v + 1/2. Thus, if o, * u is WSS, we've shown that all we need for b =Lw (o, * u) to be HSS is that !vI be even and that c be congruent to !vI/2 mod !vf: c = !vI/2 mod M This allows us to sm
	Table V: Symmetry Properties of Down-Sampled Signals. 
	Signal y: Filter h: Subband Symmetry, Center: Shift Sy1n., Center Symmetry Center 1 M u = Y* h b =IM u (3 Mv Any WSS/A, Mv WSS/A, v V WSS/WSA wss, 0 Mv+M/2 Even WSS/A, Mv+ M/2 HSS/ A, v + 1/2 v+l HSS/HSA Mv+M/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l Mv + 1/2 Any WSS/A, Mv WSS/A, v V HSS/HSA HSS, -1/2 Mv+(M + 1)/2 Even WSS/A, .Mv + .M/2 HSS/ A, v + 1/2 v+l WSS/WSA Mv+(M + 1)/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l 
	Signal y: Filter h: Subband Symmetry, Center: Shift Sy1n., Center Symmetry Center 1 M u = Y* h b =IM u (3 Mv Any WSS/A, Mv WSS/A, v V WSS/WSA wss, 0 Mv+M/2 Even WSS/A, Mv+ M/2 HSS/ A, v + 1/2 v+l HSS/HSA Mv+M/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l Mv + 1/2 Any WSS/A, Mv WSS/A, v V HSS/HSA HSS, -1/2 Mv+(M + 1)/2 Even WSS/A, .Mv + .M/2 HSS/ A, v + 1/2 v+l WSS/WSA Mv+(M + 1)/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l 
	Signal y: Filter h: Subband Symmetry, Center: Shift Sy1n., Center Symmetry Center 1 M u = Y* h b =IM u (3 Mv Any WSS/A, Mv WSS/A, v V WSS/WSA wss, 0 Mv+M/2 Even WSS/A, Mv+ M/2 HSS/ A, v + 1/2 v+l HSS/HSA Mv+M/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l Mv + 1/2 Any WSS/A, Mv WSS/A, v V HSS/HSA HSS, -1/2 Mv+(M + 1)/2 Even WSS/A, .Mv + .M/2 HSS/ A, v + 1/2 v+l WSS/WSA Mv+(M + 1)/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l 
	Signal y: Filter h: Subband Symmetry, Center: Shift Sy1n., Center Symmetry Center 1 M u = Y* h b =IM u (3 Mv Any WSS/A, Mv WSS/A, v V WSS/WSA wss, 0 Mv+M/2 Even WSS/A, Mv+ M/2 HSS/ A, v + 1/2 v+l HSS/HSA Mv+M/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l Mv + 1/2 Any WSS/A, Mv WSS/A, v V HSS/HSA HSS, -1/2 Mv+(M + 1)/2 Even WSS/A, .Mv + .M/2 HSS/ A, v + 1/2 v+l WSS/WSA Mv+(M + 1)/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l 
	Signal y: Filter h: Subband Symmetry, Center: Shift Sy1n., Center Symmetry Center 1 M u = Y* h b =IM u (3 Mv Any WSS/A, Mv WSS/A, v V WSS/WSA wss, 0 Mv+M/2 Even WSS/A, Mv+ M/2 HSS/ A, v + 1/2 v+l HSS/HSA Mv+M/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l Mv + 1/2 Any WSS/A, Mv WSS/A, v V HSS/HSA HSS, -1/2 Mv+(M + 1)/2 Even WSS/A, .Mv + .M/2 HSS/ A, v + 1/2 v+l WSS/WSA Mv+(M + 1)/2 Odd HSS/A, Mv+M/2 HSS/ A, v + 1/2 v+l 




	Thus, b is HSS with center at no -1/2 = 1/2; the same result holds when u and b are IISA. Including the effect of shifts by multiples of M, we get the following. Lemma 2. Let u be an HSS (resp., HSA) signal centered at -1/2, and let b =IM (o, * u). Then bis never WSS or WSA, and b is HSS (resp., HSA) if and only if M is odd and c = (M + 1)/2 mod M, in which case o, * u is centered at c -1/2 = M/2 mod .M, and b is centered at (2c-1)/2M. Now drop the restriction that "u)) denotes a signal centered only at O o
	Figure
	Figure
	Figure
	Consider an HSA subband, b, of period I{= 2p (compare Figure 6(d)); ifb is centered at -1/2, then the values {b(O), ... , b(l(/2 -1)} comprise exactly one-half of a period of b. We define where PK/2 is the projection or rectangular window, defined in Section II-A, on the first p = l(j2 samples in a period of b. Now we can reconstruct b by extending the p-point sequence, a: The smne procedure works when bis HSS, using the symmetric extension operator EP'2) for reconstruction. When b is WSS with center at O (
	Analysis: y N Synthesis: No 
	Figure 7: Analysis/Synthesis Channels for Extended Subband Coder. 
	II-D. Generic Analysis/Synthesis Computations. It is now siinple to write down formulas for direct-form implementation of the SWT analysis and synthesis operations depicted in Figure 7. In the following formulas, we assun1e x has been extended to a symmetric signal, y, of period N. The filters h; and f; are implicitly extended with zeros to period N; the parameters 'T}i, /Ji, and Pi and the synthesis extension Ei are determined from Tables V and VI based on the symmetry of y, the symmetry and phase of hi, a
	Table VI: Symmetric Subband Reconstruction. 
	Subband b: 
	Subband b: 
	Subband b: 
	Subband b: 
	Subband b: 
	Shift 
	Extension 

	Symmetry Dim. p Center 
	Symmetry Dim. p Center 
	ry 
	E 

	wss 
	wss 
	K/2+ 1 
	0 
	0 
	E)l,1) 

	WSA 
	WSA 
	K/2-1 
	0 
	1 
	E(l,1) a 

	-1/2 
	-1/2 
	0 
	E(2,2) 

	HSS 
	HSS 
	K/2 

	HSA 
	HSA 
	K/2 
	-1/2 
	0 
	Ei2,2) 

	OPS (I< Odd) 
	OPS (I< Odd) 
	(K + 1)/2 
	0 
	0 
	EJ1,2) 

	-1/2 
	-1/2 
	0 
	E(2,l) 

	OPA (K Odd) 
	OPA (K Odd) 
	(I{ -
	1)/2 
	0 
	1 
	Eil,2) 

	-1/2 
	-1/2 
	0 
	E£2,1) 


	synthesis can be evaluated using (16): K-1 x,(n) = I: c,(k) J;(n -Mk -M(J, + D) n = 0, ... 1 No -l . (17) k::::O 3. Causality. In the papers [33, 34], Martucci points out that perfect reconstruction with zero delay is impossible in a two-channel QMF bank with causal analysis and synthesis filters. He then concludes that this irnplies non-causal filter bank imple1nentations are necessary when transforming symmetric signal extensions. The real causality issue in the sym111etric transform case1 however, is the
	Figure
	Figure
	Figure
	time specified by the advances, z/3;+11;, needed before projecting off a complete, nonreclundant half-period of the sub band bi, This necessary wait can be eliminated by pushing the advances ahead of the decimator using ( 4) and advancing the analysis filter: (cf. equation (15)) When filters are 1nade noncausal in this manner to eliminate delays in the analysis bank, the systern delay is determined by the phase of the synthesis bank; this subject will be treated more thoroughly in Section III for two-channe
	Figure
	Figure
	so to design a nonexpansive equal-rank SWT, No = N1 = NI p, we must first satisfy the necessary condition MINo. As a trivial example of the kind of design limitations this condition imposes on us, note that we cannot construct a nonexpansive equal-rank two-channel SWT for odd-length signals. In Section III we will construct nonexpansive two-channel SWT's for odd-length signals using channels with unequal ranks. The analysis so far of the operations involved in converting a PR QMF bank into an SWT has focuse
	Figure
	C E(l,3) ' X 0 2No-1 
	Figure 8: The Symmetric Signal Extension y = EJ1,3lx. 
	For coding applications in which expansiveness is an issue) it makes sense to restrict attention to critically downsampled filter banks. In the nonuniform case, we define the expansiveness of the ith channel to be generalizing (20). Since f,y, = I:, p; -No, the relationship (21) continues to hold for critically downsampled nonuniform filter banks. This means that all of the results we shall present in Section IV concerning individual channels in M-channel SWT's are applicable to the design of nonuniformly d
	zero-padding of x followed by the addition of an impulse, CON,, at n = No: n=O, ... ,No where + { x(n), 0 S: n < No X (n) = 0, n =No Then y = y+ +CON,, where y+ = 1E\1')x+, so the result of filtering y by his The redundancy inherent in the symmetry of b =LM (y * h) can be removed by windowing, as described above, but the redundancy 1·esulting from the one-point extension x -+ x' is spread out across the subband by the (coN, * h) term. In particular, the effects of the one-sample redundancy are not manifest 
	Table VII:(!, !)-Symmetric Wavelet Transform Channels, M = 2. 
	Signal x: Filter h: Subband b: Shifts: Exten. Expan. No Sym. Center 1 Sym. 1 Center Dim. p (3 ry E f 2v OPS, V No/2 V 0 E\'•') 0 wss Even 2v+ 1 OPS, v + 1/2 No/2 v+l 0 El'·') 0 Eil,2) (K Odd) 2v OPA, I/ No/2 -I V 1 -1 WSA E(2,l) 2v+ 1 OPA, v+ 1/2 No/2 -I v+l 0 a -1 2v WSS, V (No+ 1)/2 V 0 EF·1) 1/2 wss Ep,2) Odd 2v+ I IISS, v + 1/2 (No -1)/2 v+l 0 -1/2 Eil,1) (K Even) 2v WSA,v (No -3)/2 V 1 -3/2 WSA E~2,2) 2v+ I !ISA, v+ 1/2 (No -1)/2 v+l 0 -1/2 
	Signal x: Filter h: Subband b: Shifts: Exten. Expan. No Sym. Center 1 Sym. 1 Center Dim. p (3 ry E f 2v OPS, V No/2 V 0 E\'•') 0 wss Even 2v+ 1 OPS, v + 1/2 No/2 v+l 0 El'·') 0 Eil,2) (K Odd) 2v OPA, I/ No/2 -I V 1 -1 WSA E(2,l) 2v+ 1 OPA, v+ 1/2 No/2 -I v+l 0 a -1 2v WSS, V (No+ 1)/2 V 0 EF·1) 1/2 wss Ep,2) Odd 2v+ I IISS, v + 1/2 (No -1)/2 v+l 0 -1/2 Eil,1) (K Even) 2v WSA,v (No -3)/2 V 1 -3/2 WSA E~2,2) 2v+ I !ISA, v+ 1/2 (No -1)/2 v+l 0 -1/2 
	Signal x: Filter h: Subband b: Shifts: Exten. Expan. No Sym. Center 1 Sym. 1 Center Dim. p (3 ry E f 2v OPS, V No/2 V 0 E\'•') 0 wss Even 2v+ 1 OPS, v + 1/2 No/2 v+l 0 El'·') 0 Eil,2) (K Odd) 2v OPA, I/ No/2 -I V 1 -1 WSA E(2,l) 2v+ 1 OPA, v+ 1/2 No/2 -I v+l 0 a -1 2v WSS, V (No+ 1)/2 V 0 EF·1) 1/2 wss Ep,2) Odd 2v+ I IISS, v + 1/2 (No -1)/2 v+l 0 -1/2 Eil,1) (K Even) 2v WSA,v (No -3)/2 V 1 -3/2 WSA E~2,2) 2v+ I !ISA, v+ 1/2 (No -1)/2 v+l 0 -1/2 
	Signal x: Filter h: Subband b: Shifts: Exten. Expan. No Sym. Center 1 Sym. 1 Center Dim. p (3 ry E f 2v OPS, V No/2 V 0 E\'•') 0 wss Even 2v+ 1 OPS, v + 1/2 No/2 v+l 0 El'·') 0 Eil,2) (K Odd) 2v OPA, I/ No/2 -I V 1 -1 WSA E(2,l) 2v+ 1 OPA, v+ 1/2 No/2 -I v+l 0 a -1 2v WSS, V (No+ 1)/2 V 0 EF·1) 1/2 wss Ep,2) Odd 2v+ I IISS, v + 1/2 (No -1)/2 v+l 0 -1/2 Eil,1) (K Even) 2v WSA,v (No -3)/2 V 1 -3/2 WSA E~2,2) 2v+ I !ISA, v+ 1/2 (No -1)/2 v+l 0 -1/2 
	Signal x: Filter h: Subband b: Shifts: Exten. Expan. No Sym. Center 1 Sym. 1 Center Dim. p (3 ry E f 2v OPS, V No/2 V 0 E\'•') 0 wss Even 2v+ 1 OPS, v + 1/2 No/2 v+l 0 El'·') 0 Eil,2) (K Odd) 2v OPA, I/ No/2 -I V 1 -1 WSA E(2,l) 2v+ 1 OPA, v+ 1/2 No/2 -I v+l 0 a -1 2v WSS, V (No+ 1)/2 V 0 EF·1) 1/2 wss Ep,2) Odd 2v+ I IISS, v + 1/2 (No -1)/2 v+l 0 -1/2 Eil,1) (K Even) 2v WSA,v (No -3)/2 V 1 -3/2 WSA E~2,2) 2v+ I !ISA, v+ 1/2 (No -1)/2 v+l 0 -1/2 
	Signal x: Filter h: Subband b: Shifts: Exten. Expan. No Sym. Center 1 Sym. 1 Center Dim. p (3 ry E f 2v OPS, V No/2 V 0 E\'•') 0 wss Even 2v+ 1 OPS, v + 1/2 No/2 v+l 0 El'·') 0 Eil,2) (K Odd) 2v OPA, I/ No/2 -I V 1 -1 WSA E(2,l) 2v+ 1 OPA, v+ 1/2 No/2 -I v+l 0 a -1 2v WSS, V (No+ 1)/2 V 0 EF·1) 1/2 wss Ep,2) Odd 2v+ I IISS, v + 1/2 (No -1)/2 v+l 0 -1/2 Eil,1) (K Even) 2v WSA,v (No -3)/2 V 1 -3/2 WSA E~2,2) 2v+ I !ISA, v+ 1/2 (No -1)/2 v+l 0 -1/2 
	Signal x: Filter h: Subband b: Shifts: Exten. Expan. No Sym. Center 1 Sym. 1 Center Dim. p (3 ry E f 2v OPS, V No/2 V 0 E\'•') 0 wss Even 2v+ 1 OPS, v + 1/2 No/2 v+l 0 El'·') 0 Eil,2) (K Odd) 2v OPA, I/ No/2 -I V 1 -1 WSA E(2,l) 2v+ 1 OPA, v+ 1/2 No/2 -I v+l 0 a -1 2v WSS, V (No+ 1)/2 V 0 EF·1) 1/2 wss Ep,2) Odd 2v+ I IISS, v + 1/2 (No -1)/2 v+l 0 -1/2 Eil,1) (K Even) 2v WSA,v (No -3)/2 V 1 -3/2 WSA E~2,2) 2v+ I !ISA, v+ 1/2 (No -1)/2 v+l 0 -1/2 






	can never be part of a (!, 1)-SWT. In general, we will not. bother listing signal/filter symmetry or phase combinations that do not result in symmetric subbands. Let N0 be even (so I( is odd), and consider WSS filters, h. From Table V we see there are two distinct cases, depending on whether the group delay of his even (1 = 2v) or odd (1 = 2v + 1). Both cases work since NI is even, resulting in OPS subbands with centers v and v + 1/2, respectively, and requiring shift factors, /3, of v and v+ 1. The di1nens
	Figure
	Figure
	Table VIII: (2, 2)-Symmetric Wavelet Transform Channels, M = 2. 
	Signal x: Filter h: Subband b: Shifts: 
	Signal x: Filter h: Subband b: Shifts: 
	Signal x: Filter h: Subband b: Shifts: 
	Exten. Expan. 

	No Syrn. Center 1 Syn1., Center Dim. p /3 211 + 1/2 WSS, II No/2+ 1 II RSS Even 211 + 3/2 HSS, 11 + 1/2 No/2 11+1 (I< Even) 211+ 1/2 WSA, II No/2-1 II RSA 211 + 3/2 RSA, 11+ 1/2 No/2 11+1 211 + 1/2 OPS, II (No+ 1)/2 II RSS Odd 211+ 3/2 OPS, 11 + 1/2 (No+ 1)/2 11+1 (K Odd) 211 + 1/2 OPA, 11 (No -1)/2 II RSA 211 + 3/2 OPA, 11 + 1/2 (No -1)/2 11+1 
	No Syrn. Center 1 Syn1., Center Dim. p /3 211 + 1/2 WSS, II No/2+ 1 II RSS Even 211 + 3/2 HSS, 11 + 1/2 No/2 11+1 (I< Even) 211+ 1/2 WSA, II No/2-1 II RSA 211 + 3/2 RSA, 11+ 1/2 No/2 11+1 211 + 1/2 OPS, II (No+ 1)/2 II RSS Odd 211+ 3/2 OPS, 11 + 1/2 (No+ 1)/2 11+1 (K Odd) 211 + 1/2 OPA, 11 (No -1)/2 II RSA 211 + 3/2 OPA, 11 + 1/2 (No -1)/2 11+1 
	ry E c E\1,1) 0 1 0 E\'•') 0 E~l,1) 1 -1 E~2,2) 0 0 E)l,2) 0 1/2 E\2,1) 0 1/2 Ell,2) 1 -1/2 E~2,1) 0 -1/2 


	III-B. Two-Channel Discrete Wavelet Transforms. In this section we will determine all possible combinations of filter symmetry and phase for SWT's based on two-channel PR QMF banks. The input-output relationship for such a system (see Figure 1) is The coefficient of .X(-z), the "aliasing term" in the system function, can be eliminated by defining the synthesis filters according to the following anti-aliasing relations: (AA) This produces a linear translation-invariant system with transfer function _ X(z) z-
	III-B. Two-Channel Discrete Wavelet Transforms. In this section we will determine all possible combinations of filter symmetry and phase for SWT's based on two-channel PR QMF banks. The input-output relationship for such a system (see Figure 1) is The coefficient of .X(-z), the "aliasing term" in the system function, can be eliminated by defining the synthesis filters according to the following anti-aliasing relations: (AA) This produces a linear translation-invariant system with transfer function _ X(z) z-
	Figure
	1111Ho(-z-)H1(z-) -Ho(z-)H1(-z-) z',0+2,, [(-1)2'0+2,, Ho(-z)H1 (z) -( -1)4'' Ho(z)H1 (-z)] z',,+2,, [Ho(-z)H1(z) -Ho(z)H1(-z)] 
	The process of designing a two-channel PR QMF bank therefore reduces to the following: given an analysis bank satisfying Ho(-z)H1(z) -Ho(z)H1(-z) = 2Az-D" , Da odd, (PR2) the anti-aliasing relations (AA) define a PR QMF system with transfer function T(z) = ±Az-D , D = Da + D, . (TF2) According to (TF2)i we can advance or delay the synthesis bank by an arbitrary factor, Dsi with a concomitant advance or delay of the transfer function. In particulari any PR QMF bank can be made into a zero-delay system by cho
	Figure
	Ho(-z)H1(z)-Ho(z)H1(-z) Da odd, 
	Figure
	Figure
	Figure
	since 411 is even and 210 + 2/1 is even in the nontrivial cases. Thus, Da = /o + /1. II The crucial assumption that 2,o + 211 is even fails for the trivial mixed-type filter banks mentioned above. As a corollary of Theorein 4, we get the following result characterizing the possible phase shifts for a nontrivial linear phase PR QMF analysis bank. Corollary 5. If{H0(z),H1(z)} is a nontrivial linear phase PR QMF bank and Hb(z) = z-m,Ho(z), H[(z) = z-m,H1(z), then {H!(z), H((z)} is a PR QMF bank if and only ifm
	No Even: This (1, 1)-SWT is defined by the first two lines in Table VII. The subband ranks and the channel expansions are Po= No/2 = p1 [Q = 0 = €1 ) so this is a nonexpansive equal-rank transform. N0 Odd: The (1, 1)-SWT for odd-length signals necessarily has unequal ranks, Po= (No+ 1)/2 , Pl = (No -1)/2 Nonetheless, it is nonexpansive: Co= 1/2 and €1 = -1/2 so €sys = 0. While one could always duplicate an endpoint on an odd-length signal and apply an even-length transform, such a procedure would necessaril
	Figure
	Figure
	The standard dictates a class of SWT dec01npositions that a decoder must be capable of reconstructing. As of the publication of (29] there is just one approved filter bank for fingerprint image coding-a WSS-WSS lowpass-highpass filter pair with nine and seven impulse response taps, respectively: 8 6 Ho(z) = L ho(n)z-n H,(z) = L h1(n)z-n n=O n=O Values for the taps can be found in (29); the filters correspond to a pair of smooth biorthogonal wavelet bases constructed in (14, 6]. Although the above expression
	symmetry/phase combinations and system expansiveness values for NI-channel SWT's like we did for the two-channel case in Section III-C. Instead, we shall tabulate all possible individual channels for NI-channel coders that result in symmetric subbands, as we did for the two-channel case in the tables of Section III-A. It should be clear to the reader, based on the presentation in Section III-C, that it's quite easy to design specific SWT systems using such tables. Channel expansiveness values are included t
	IV-A. Divisibility Constraints on Signal Length. Unlike the two-channel case1 when M > 2 there do not always exist SWT's for input signals1 xi of arbitrary length. Recall fron1 Section 11-B that we imposed the divisibility constraint MIN (DIV) to ensure that ]Vf : 1 circular decimation of y coincides with lvf l linear decimation of the infinite) N-periodic signal. This prevents us fron1 using the (2N-1)-periodic extension y == EF120 )x when Mis even. The periods of the even-length analysis extensions in Tab
	K +l p 2 
	Table IX: Divisibility Constraints on Signal Length, No, 
	M N res (No, M) I(= N/M 0 Even 2No M/2 Odd Even 1 Even 2No-2 M/2+ 1 Odd 2No 0 Even Odd 2Na -1 (M+l)/2 Odd 2No -2 1 Even 
	M N res (No, M) I(= N/M 0 Even 2No M/2 Odd Even 1 Even 2No-2 M/2+ 1 Odd 2No 0 Even Odd 2Na -1 (M+l)/2 Odd 2No -2 1 Even 
	M N res (No, M) I(= N/M 0 Even 2No M/2 Odd Even 1 Even 2No-2 M/2+ 1 Odd 2No 0 Even Odd 2Na -1 (M+l)/2 Odd 2No -2 1 Even 
	M N res (No, M) I(= N/M 0 Even 2No M/2 Odd Even 1 Even 2No-2 M/2+ 1 Odd 2No 0 Even Odd 2Na -1 (M+l)/2 Odd 2No -2 1 Even 
	M N res (No, M) I(= N/M 0 Even 2No M/2 Odd Even 1 Even 2No-2 M/2+ 1 Odd 2No 0 Even Odd 2Na -1 (M+l)/2 Odd 2No -2 1 Even 
	M N res (No, M) I(= N/M 0 Even 2No M/2 Odd Even 1 Even 2No-2 M/2+ 1 Odd 2No 0 Even Odd 2Na -1 (M+l)/2 Odd 2No -2 1 Even 
	M N res (No, M) I(= N/M 0 Even 2No M/2 Odd Even 1 Even 2No-2 M/2+ 1 Odd 2No 0 Even Odd 2Na -1 (M+l)/2 Odd 2No -2 1 Even 
	M N res (No, M) I(= N/M 0 Even 2No M/2 Odd Even 1 Even 2No-2 M/2+ 1 Odd 2No 0 Even Odd 2Na -1 (M+l)/2 Odd 2No -2 1 Even 







	is with unequal subband ranks. In light of the distinctions in Tables V and IX, the classification of channels will be presented in two parts: first for M even, then for M odd. IV-B. M Even. For both 2No-and (2Na -2)-periodic extensions, Table IX indicates two distinct classes of signal lengths, parameterized by res(No, M), that satisfy condition (DIV). As in Section III-A, for each class we shall list only those combinations of filter symmetry and phase that result in symmetric sub bands, bi, 1. The extens
	Table X: (1, !)-Symmetric Wavelet Transform Channels, M Even. 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Filter h: 
	Subband b: 
	Shifts: 
	Exten. 
	Expan. 

	res(No, M) 
	res(No, M) 
	Sym. 
	Center 1 
	Sym., Center Dim. p 
	f3 
	ry 
	E 
	£ 

	M/2+1 (K Odd) 
	M/2+1 (K Odd) 
	wss 
	Mv 
	OPS, V 
	(No -1)/M + 1/2 
	V 
	0 
	E~l,2) 
	1/2-1/M 

	Mv+M/2 
	Mv+M/2 
	OPS, v+ 1/2 
	(No -1)/M + 1/2 
	v+l 
	0 
	E;'•') 
	1/2 -
	1/M 

	TR
	Mv 
	OPA, V 
	(No -
	1)/M -
	1/2 
	V 
	1 
	Eil,2) 
	-1/2-1/M 

	TR
	WSA 
	Mv+M/2 
	OPA, v+ 1/2 
	(No -
	1)/M -
	1/2 
	v+l 
	0 
	E(2,1) a 
	-1/2-1/M 

	1 (K Even) 
	1 (K Even) 
	wss 
	Mv 
	WSS, V 
	(No 
	-1)/M + 1 
	V 
	0 
	El'·') 
	1-1/M 

	Mv+M/2 
	Mv+M/2 
	HSS, v + 1/2 
	(No 
	-l)/M 
	v+l 
	0 
	E;'•') 
	-1/M 

	TR
	Mv 
	WSA,v 
	(No -
	1)/M -
	1 
	V 
	1 
	Eil,1) 
	-1-1/M 

	TR
	WSA 
	Mv+M/2 
	HSA, v+ 1/2 
	(No 
	-1)/M 
	v+l 
	0 
	Ei'•') 
	-1/M 


	bank could be advanced or delayed to have its center at M /2. If it were then applied in a (1, 1 )-SWT to signals of length No, where res(No, M) = 1, it would produce a transform with overall expansiveness c,y, = M(-1/M) = -1 , regardless of the mix of WSS and WSA filters. This contradicts (22), implying Theorem 7. There are no concentric WS-type FIR PR QMF banks for M even. This generalizes one of the consequences of Theorem 4 in Section III-A. We do not know if there exist non-concentric WS-type QMF banks
	Table XI: (2, 2)-Symmetric Wavelet Transform Channels, M Even. 
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -
	Signal a:: Filter h: Subband b: Shifts: Exten. Expan. res(N0, M) Sym. Center 1 Sym., Center Dim. p (3 ry E f E(l,t) Mv+ 1/2 wss, // No/M + 1 V 0 1 ' HSS 0 Mv+(M+l)/2 RSS, v + 1/2 No/M //+ 1 0 EF'2) 0 (I{ Even) Mv+ 1/2 WSA,v No/M -1 V 1 Ef•') -1 RSA Ei2,2) Mv +(M + 1)/2 RSA, v + 1/2 No/M //+ 1 0 0 Mv + 1/2 OPS, V No/M + 1/2 V 0 El'•') 1/2 RSS M/2 Mv+ (M + 1)/2 OPS, I/+ 1/2 No/M + 1/2 v+l 0 E)'•') 1/2 (K Odd) Eil,2) Mv+ 1/2 OPA, V No/M -1/2 V 1 -1/2 RSA E(2,1J lvfo + (M + 1)/2 OPA, v+ 1/2 No/M -1/2 // + 1 0 -












	the centers will be at 1/2 and the resulting (2, 2)-SWT will be nonexpansive, with the 1-ISS channels having rank p;' = No/4 + 1 and the !ISA channels having rank p;' = No/4 -1 when res(No,4) = 0, and ranks No/4 ± 1/2 when res(No,4) = 2. VVe can generalize this example: Proposition 8. For M even, any concentric HS-type PR QMF bank yields a nonexpansive equal-rank (2, 2)-SWT for inputs with res(No, M) = 0 if we shift the analysis bank so that its center is congruent to (lvl + 1)/2 mod 1\1. If the analysis ba
	Figure
	Table XII: (!, !)-Symmetric Wavelet Transform Channels, M Odd. 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Filter h: 
	Subband b: 
	Shifts: 
	Exten. 
	Expan. 

	res(No, M) 
	res(No, M) 
	Sym. 
	Center 1 
	Sym., Center Dim. p 
	/3 
	~ 
	E 
	£ 

	I 
	I 
	wss 
	M.v 
	wss,,., 
	(No -
	I)/M + I 
	1/ 
	0 
	EP·1
	) 
	1-I/M 

	WSA 
	WSA 
	Mv 
	WSA,v 
	(No -
	I)/M -
	I 
	,., 
	I 
	EP·1
	) 
	-]-1/M. 

	(I{ Even) 
	(I{ Even) 
	HSS 
	Mv+M/2 
	HSS, v + 1/2 
	(No 
	-I)/M 
	v+l 
	0 
	E\2•') 
	-1/M 

	TR
	HSA 
	Mv+M/2 
	HSA, v+ 1/2 
	(No 
	-I)/M 
	v+l 
	0 
	Ei'•') 
	-1/M 


	the following sy1nmetries. HSS, ,o = 27.5 (56 taps) WSS, ,1 = 26 (53 taps) !ISA, 12 = 27.5 (56 taps) (27) We will discuss the implementation of SWT's based on this example later in this section. 11. The y = 1extension E)')x. When N = 2Na -2, the only residue class satisfying condition (DIV) is res(No, M) = 1, but there are symmetric subband coders for all four classes of filters. The possible symmetry /relative phase combinations are listed in Table XII; the derivation is via Tables V and VI, as in precedin
	Table XIII: (1, 2)-Symmetric Wavelet Transform Channels, M Odd, 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Filter h: 
	Subband b: 
	Shifts: 
	Exten. 
	Expa.n. 

	res(No, M) 
	res(No, M) 
	Syrn. 
	Center 1 
	Sym.i Center Dim. p 
	/3 
	T/ 
	E 
	€ 

	(M + 1)/2 (K Odd) 
	(M + 1)/2 (K Odd) 
	wss 
	Mv 
	OPS, v 
	(2No -
	1 + M)/2M 
	l/ 
	0 
	2EP ·) 
	(M -1)/2M 

	WSA 
	WSA 
	Mv 
	OPA, v 
	(2No -
	1 -
	M)/2M 
	l/ 
	1 
	EP·') 
	-(M + l)/2M 

	IISS 
	IISS 
	Mv+M/2 
	OPS, v + 1/2 
	(2No -
	1 + M)/2M 
	v+l 
	0 
	E(2,l) ' 
	(M -
	1)/2lvl 

	HSA 
	HSA 
	Mv+M/2 
	OPA, v + 1/2 
	(2No -
	1 -
	M)/2lvl 
	11+1 
	0 
	E~2,l) 
	-(M + 1)/2M 


	Table XIV: (2, 2)-Syrnmetric Wavelet Transform Channels, M Ode!. 







































	Signal x: 
	Signal x: 
	Signal x: 
	Signal x: 
	Filter h: 
	Subband b: 
	Shifts: 
	Exten. 
	Expan. 

	res(No, M) 
	res(No, M) 
	Sym. 
	Center 1 
	Sym., Center Dim. p 
	/3 
	T/ 
	E 
	€ 

	0 (I{ Even) 
	0 (I{ Even) 
	wss 
	Mv+(M + 1)/2 
	IISS, v + 1/2 
	No/M 
	v+l 
	0 
	E\'•') 
	0 

	WSA 
	WSA 
	Mv+ (M + 1)/2 
	IISA, v + 1/2 
	No/M 
	v+l 
	0 
	Ei2,2) 
	0 

	IISS 
	IISS 
	Mv+ 1/2 
	WSS, V 
	No/M + 1 
	V 
	0 
	EJ1,l) 
	1 

	IISA 
	IISA 
	Mv+l/2 
	WSA,v 
	No/M -
	I 
	V 
	I 
	E~l,l) 
	-1 



	2. The extension y = E)12')x. The possible symmetric channels for the (1, 2)-SWT, M odd, are listed in Table XIII. The same one-sample delay of the filter bank (27) that was used in a (1,1)-SWT above now furnishes a (1,2)-SWT for inputs with res(N0,3)=2; the expansiveness is f,y, = 2(1/3)-(2/3) = 0. Now compute the expansiveness of a (1,2)-SWT based on a concentric paraunitary WS-type filter bank with center congruent to O 1110d M: 
	2. The extension y = E)12')x. The possible symmetric channels for the (1, 2)-SWT, M odd, are listed in Table XIII. The same one-sample delay of the filter bank (27) that was used in a (1,1)-SWT above now furnishes a (1,2)-SWT for inputs with res(N0,3)=2; the expansiveness is f,y, = 2(1/3)-(2/3) = 0. Now compute the expansiveness of a (1,2)-SWT based on a concentric paraunitary WS-type filter bank with center congruent to O 1110d M: 
	= (M+l) (M-1) (M-1) (-M+l) e,y, 2 2M + 2 2M 0 ' 
	3. The extension y = E\22•)x. The possible symmetric channels for the (2, 2)-SWT, M odd, are listed in Table XIV. The example (27) can be incorporated into a nonexpansive (2, 2)-SWT without added phase shifts since ,1 = 26 = 2 mod 3 and ,o = 12 = 27.5 = 1/2 mod 3. Note that both WS-type channels for the (2, 2)-SWT have expansiveness e; = 0. This means that a concentric WS-type PR QMF bank-regardless of the mix of symmetric and antisymmetric filters-would furnish a nonexpansive equal-rank (2, 2)-SWT for sign

	WS-type filter banks in Proposition 10. For M odd, any concentric WS-type PR QMF bank yields a nonexpansive equal-rank (2, 2)-SWT for inputs with res(No, M) = 0 if its center is congruent to (M + 1)/2 mod M. If the analysis bank contains (M + 1)/2 symmetric filters and (M -1)/2 antisymmetric filters {e.g., paraunitary filter banks} and the center of the analysis bank is congruent to O mod M, we get a none,:pansive {1,1)-SWT for inputs satisfying res{No, M )=1 and a nonexpansive (1,2)-SWT for inputs satisfyi
	V. CONCLUSIONS. This paper characterizes all possible nonexpansive symmetric wavelet transform algorithms based on a classification of the possible cmnbinations of symmetric signal extensions and linear phase filters that produce symmetric subbands in downsampled subband coders. Detailed algorithms are developed for direct-form implementations of all of these transforms. A general notion of transform expansiveness has been introduced to analyze the extent to which SWT's conserve data storage requirements. I
	prove the nonexistence of certain classes of linear phase PR QMF banks. In particular, we can show that concentric PR QMF banks based on WS-type filters are impossible for even M and that concentric PR QMF banks based on HS-type filters are impossible for odd M. V-A. Acknowledgements. The author would like to acknowledge the influence of Jonathan Bradley and Vance Faber of Los Alamos National Laboratory, whose work on image coding originally inspired this research. Thanks also to the many individuals who pr
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