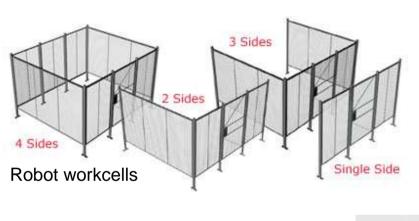


Existing Related Standards

Exoskeleton Standard Technical Interchange Meeting; January 26-27, 2017; NIST, Gaithersburg

Burkhard Zimmermann; Technical project leader of JWG 36; IEC TC 62D & ISO TC 299 WG5

Summary of Presentation


Changing world of robotics
Industrial ⇒ Service

- New requirements for personal care robots
 - ISO 13482:2014
- Wearable medical devices ; standards and other regulative aspects
- Conclusions

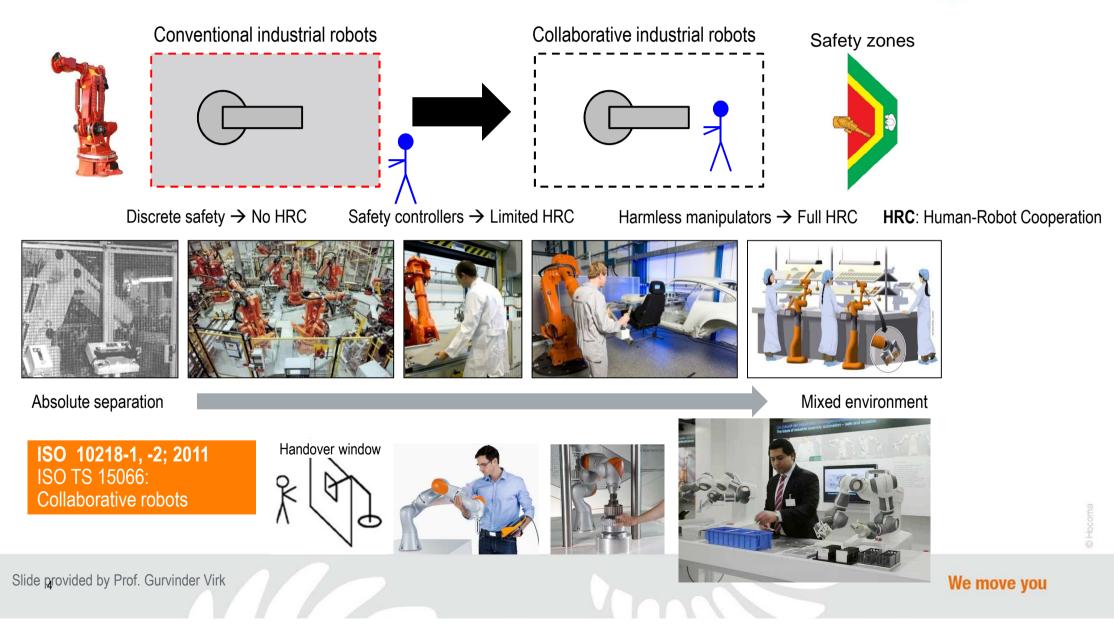
Traditional Industrial Robot Applications

- Powerful machines operating at high speeds and with great precision and dexterity
- Designed to operate in workcells separated from humans for safety

Traditional robot workcell setup

Human access to the robot's operational space in the workcell is strictly controlled and regulated

Safety switches



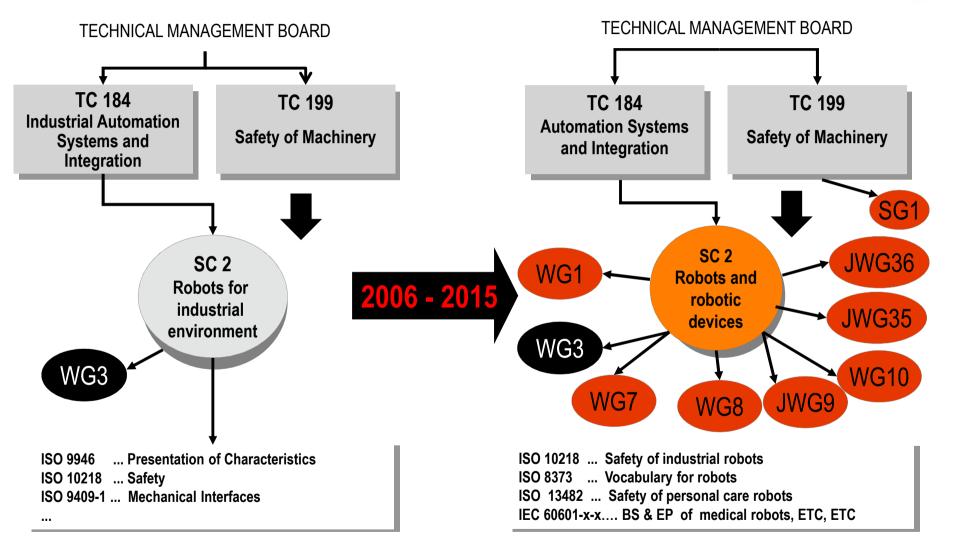
Light curtains, lasers and pressure mats, etc.

Slide provided by Prof. Gurvinder Virk

WG3: Industrial Robot Safety

Changing Scene of Robotics: Industry to Services

Distinction Between Industrial and Service Robots



	Industrial Robots	Service Robots
Working environments	Controlled and defined environments	Information structured/ unstructured environments
Users	Training for specified tasks in defined environments	Training to cover wide range of tasks in info structured/ unstructured environments
Safety	Machine dependent (ISO 10218-1)	Dependent on the robot and the user (ISO 13482)
Working philosophy	To keep robots and humans separated (see ISO 10218-1, -2; ISO PD TS 15066)	Robots and humans must share workspace for providing/ receiving the services (see ISO 13482)
Machine design	Flexible on commissioning for defined task	Flexible on demand for generic tasks/ users

Slide provided by Prof. Gurvinder Virk

Changing Face for ISO Robot Standardization



Slide provided by Prof. Gurvinder Virk

From Jan 2016: ISO TC 299 Robotics

We move you

Slide provided by Prof. Gurvinder Virk

Generic Safety Design Methodology

- ISO 12100 defines a standard approach to designing machines to achieve safety requirements:
 - 1. First, try to achieve the safety requirements by means of inherently safe design
 - 2. If inherently safe designs are not possible, then try to achieve the requirements by means of safeguarding or protective measures
 - 3. If neither of these solutions are possible, then provide information for use to the operator (warnings, instructions) to assist the operator in achieving acceptable safety
 - 4. (implicit) If none of these are possible, then acceptable safety cannot be achieved and the machine should not be used
- Harmonised safety standards for robots
 - EN ISO 10218-1:2011, Safety requirements for industrial robots Robots
 - EN ISO 10218-2:2011, Safety requirements for industrial robots Robot systems and integration
 - EN ISO 13482: 2014, Safety requirements for personal care robots

ISO Definition: Robot

- Old ISO 8373 definition: industrial robot
 - an automatically controlled, reprogrammable, multipurpose manipulator, programmable in three or more axes which may be either fixed in place or mobile for use in industrial automation applications
- Current ISO 8373 (2012) definition: robot
 - actuated mechanism programmable in two or more axes with a degree of autonomy, moving within its environment, to perform intended tasks
- New ISO TC299 definition: robot
 - programmed actuated mechanism with a degree of autonomy, moving within its environment, to perform intended tasks

WG1: Latest Robot Definitions

- Service Robot: robot that <u>performs useful tasks</u> for humans or equipment excluding industrial automation applications
- Industrial Robot: automatically controlled, <u>reprogrammable multipurpose manipulator</u>, <u>programmable in three or more axes</u>, which can be either fixed in place or <u>mobile</u> for <u>use in</u> <u>industrial automation applications</u>
- Autonomy: <u>ability to perform the intended tasks</u> based on current state and sensing, without human intervention; *medical robots use anther definition*
- Personal Care Robot: service robot that <u>performs actions</u> contributing directly towards <u>improvement in the quality of life of humans</u>, excluding medical applications
- Medical Robot: a robot intended to be used as medical electrical equipment (MEE) or as medical electrical systems (MES)

Summary of Presentation

- Changing world of robotics
 - Industrial ⇒ Service
 - New requirements for Personal Care Robots • ISO 13482:2014
- Wearable Medical Devices ; standards and other regulative aspects
- Conclusions

New Requirements for Personal Care Robots

WG2: Personal care robot safety (non-medical). ISO 13482:2014

- 1. **Mobile servant robot:** personal care robot that is capable of travelling to perform serving tasks in interaction with humans, such as handling objects or exchanging information
- Physical assistant robot (PAR): personal care robot that physically assists a user to perform 2. required tasks by providing supplementation or augmentation of personal capabilities
 - restraint type PAR: PAR that is fastened to a human during use
 - restraint-free type PAR: PAR that is not fastened to a human during use
- 3. **Person carrier robot:** personal care robot with the purpose of transporting humans to an intended destination.

Slide provided by Prof. Gurvinder Virk

3. Person carrier robot

Specific Safety Clauses in 13482

Safety requirements and protective measures. Hazards due to:

- Charging battery
- Energy storage and supply
- Robot shape
- Emissions
- Electromagnetic interference
- Stress, posture and usage
- Robot motion
- Insufficient durability
- Incorrect autonomous actions
- Contact with moving components
- Lack of awareness
- Environmental conditions
- Localization & navigation errors

Safety related control system requirements for:

- Robot stopping
- Safety related speed control
- Safety related environmental sensing
- Stability control
- Safety related force control
- Singularity protection
- Design of human interface
- Manual control devices
- Operational modes

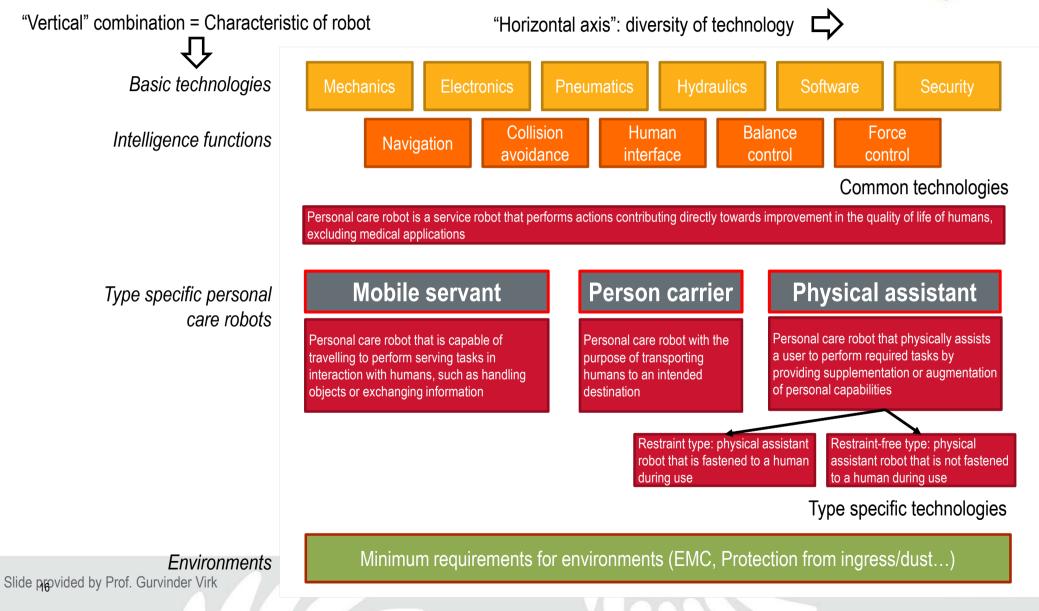
EN ISO 13482: Safety requirements for personal care robots published in Feb 2014

Slide provided by Prof. Gurvinder Virk

Current Work Within ISO TC 299; WG2; Personal care robot safety;

• ISO 13482:2014

Robots and robotic devices -- Safety requirements for personal care robots (published)

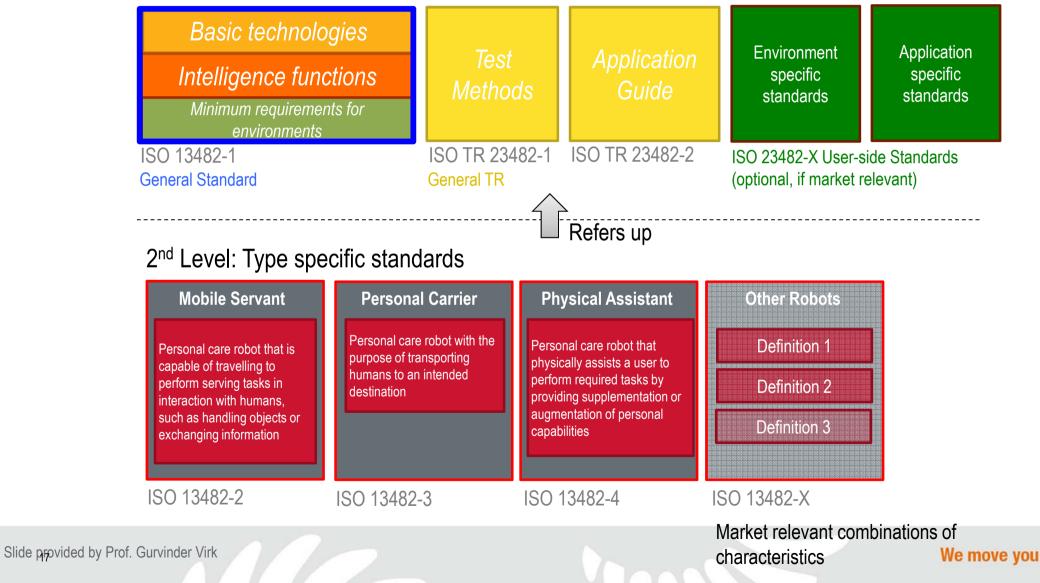

ISO/CD TR 23482-1

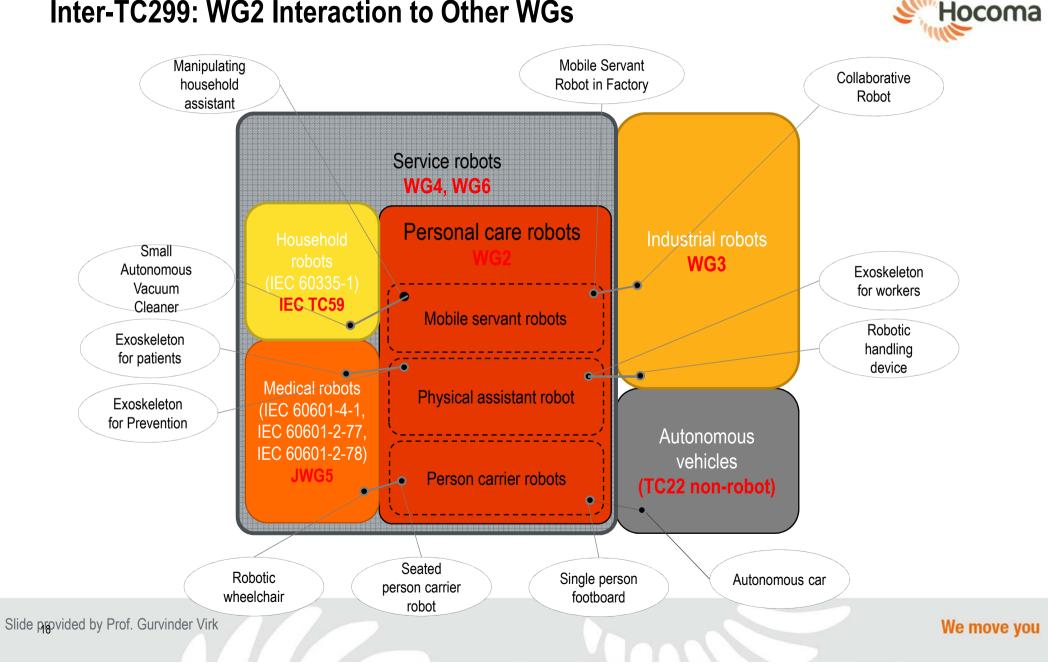
Robotics -- Application of ISO 13482 -- Part 1: Safety-related test methods (underway)

• ISO/CD TR 23482-2

Robotics -- Application of ISO 13482 -- Part 2: Application guide (underway)

Current Contents of ISO 13482





Possible Restructuring of ISO 13482

1st Level: General Standard and Collateral Standards

Inter-TC299: WG2 Interaction to Other WGs

Summary of Presentation

- Changing world of robotics
 - Industrial ⇒ Service
- New requirements for Personal Care Robots
 - ISO 13482:2014

Wearable Medical Devices ; standards and other regulative aspects

Conclusions

Wearable medical device development; exoskeletons Standards and other regulative aspects

- 1. What is a medical device (MD)?
- 2. What are main regulative aspects for a MD?
- 3. Which standards should be observed for MD in the area of exoskeletons

1.) What is a Medical Device?

Definition for MEDICAL DEVICE:

- There is no worldwide uniform definition
- Definitions given in MD registration requirements and standards are different

When is a device a MEDICAL DEVICE

 Defined from the manufacturer of the MD by the intended use!

2.) Main Regulative Aspects During Development

Good manufacturing practice system in place

 Most countries accepted / requires quality managements systems (based on / or according to) ISO 13485 (with national deviations or additional); US: 21 CFR Part 820

Complete technical file for each kind of MD

Medical device registrations through national authorities

- Most countries differentiate between MD- categories based on different "risk-" levels
 - according to defined rules, or according to lists of generic types of MD's
- Evidence of fulfilment of MD regulations is mostly needed
 - range depends on risk-class and national requirements
 - very often international standards are used to demonstrate MD conformity about specific aspects
 - → performance must be shown by clinical data!! (not based on international standards (norms))

Complete technical file for each kind of MD

US (21 CFR Part 820)

• Sec. 820.3 Definitions

(e) Design history file (DHF) means a compilation of records which describes the design history of a finished device.

• 820.30 Design control

(j) *Design history file.* Each manufacturer shall establish and maintain a DHF for each type of device. The DHF shall contain or reference the records necessary to demonstrate that the design was developed in accordance with the approved design plan and the requirements of this part.

International

 Summary Technical Documentation (STED) for Demonstrating Conformity to the Essential Principles of Safety and Performance of Medical Devices

http://www.imdrf.org/docs/ghtf/final/sg1/technical-docs/ghtf-sg1-n063-2011-summary-technical-documentation-ivd-safety-conformity-110317.pdf

2.) Main Regulative Aspects During Development

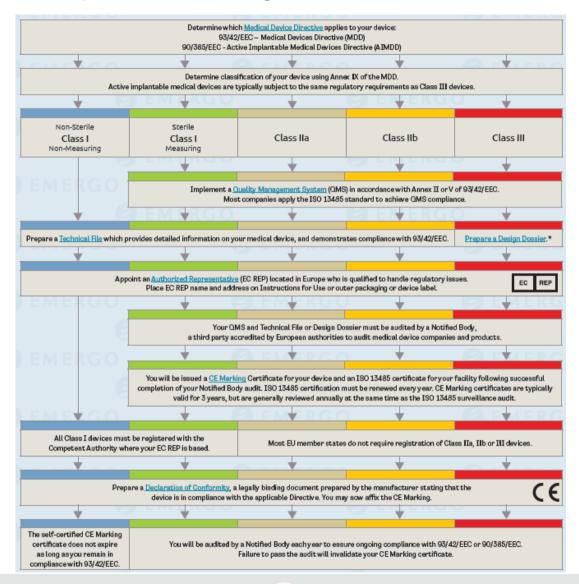
Medical device registrations through national authorities

- In most countries the efficiency of the medical device must be shown based on clinical data
- Most interesting aspects for e.g. therapeutic devices:
 - patient outcome (improvement)
 - That's much more interesting than the fulfilment of technical parameters provided by performance standards

Conclusion:

> No need for performance standards in the area of medical exoskeletons

Examples for MD Regulations *) (EU)

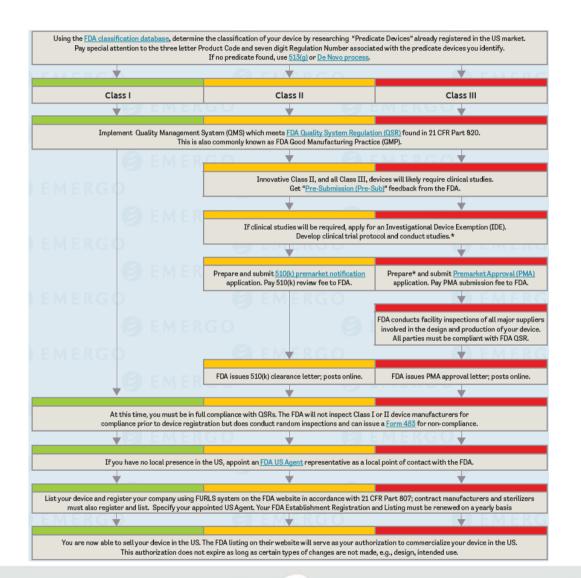

Medical Device Regulation … on the way (MDD at the moment 68 pages → MDR will be 680 pages… or more)

Device classification in Europe	How long you should expect to wait after submission until approval is granted. (See note 1)	Validity period for CE Marking certificate. (See note 2)	Registration renewal should be started this far in advance. (See note 3)	Complexity of the registration process for this classification. (See note 4)	Overall cost of gaining regulatory approval. (See note 5)
CLASS I * Non-sterile, non-measuring	<1 month	Does not expire	Not applicable	Simple Complex	Low High
CLASS I Sterile, measuring	3-5 months	3 years	2 months	Simple Complex	Low High
CLASS IIa	3-5 months	3 years	2 months	Simple Complex	Low High
CLASS IIb	3-6 months	3 years	2 months	Simple Complex	Low High
CLASS III	6-9 months	3 years	2 months	Simple Complex	Low High

* Class I devices which are not provided sterile and which do not have a measuring function can be self-certified (self-declared).

*) all graphics are publicly accessible: http://www.emergogroup.com

Examples for MD Regulations EU


Examples for MD Regulations (USA)

Device classification in USA	How long you should expect to wait after submission until approval is granted. (See note 1)	Validity period for device registrations. (See note 2)	Registration renewal should be started this far in advance. (See note 3)	Complexity of the registration process for this classification. (See note 4)	Overall cost of gaining regulatory approval. (See note 5)
CLASS I*	1 month	Does not expire	Not applicable	Simple Complex	Low High
CLASS II	3-6 months	Does not expire	Not applicable	Simple Complex	Low High
CLASS III**	18-30 months	Does not expire	Not applicable	Simple Complex	Low High

Examples for MD Regulations (USA)

MD Registrations

Summary MD registration:

- Medical device registrations in different countries are following the same general approach but the way to get the required national approvals variates in the details.
 - Post market surveillance is also required
 - Including incident or trend reporting
 - Maintain your technical file; including risk management and usability processes and clinical evaluation
 - Customer feedback system
 - ..
 - Design changes are related to existing MD registrations
 - Re-registration and re-certification activities
 - Payment of yearly fees for MD registrations
 - Audits from national authorities (announced and unannounced)
 - Factory inspections from third parties
 - Regularly reporting to national authorities or third parties
 - Technical maintenances including required safety inspections of your MD

3.) Which Standards should be observe for MD

... a lot ... a view... depends on your medical device

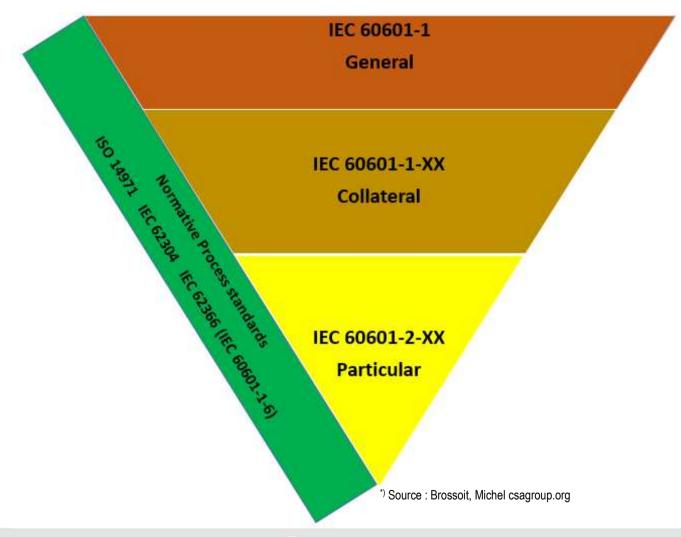
The most important standardization organizations in the area of medical devices are:

International Electrotechnical Commission

International Organization for Standardization

... for "medical" exoskeletons the IEC 60601- series is main important

3.) Which Standards Have to Observe for MD


• IEC TC 62 Electrical equipment in medical practice; 62 Scope

To prepare international standards and other publications concerning electrical equipment, electrical systems and software used in healthcare and their effects on patients, operators, other persons and the environment.

 NOTE : This scope includes items that are also within the scopes of other committees and will be addressed through cooperation. Attention will focus on safety and performance (e.g. radiation protection, data security, data integrity, data privacy and environmental aspects) and will contribute to regulatory frameworks. Healthcare includes medical practice as well as emergency medical services, homecare, and support of persons with disabilities in their daily lives (i.e. Ambient Assisted Living).

IEC 60601(3rd) - Family 2nd amendment underway; 4th edition already planed

TC 62A Publications (~12) standards & technical reports and amendments (different versions / year of publication)

TC 62A Publications (~45) standards & technical reports and amendments (different versions / year of publication)

TC 62D Publications (~80) standards & technical reports and amendments (different versions / year of publication)

IEC 60601 Standard Series

"Basic standard" IEC 60601-1

Edition 3.1 2012-08 Medical electrical equipment – Part 1: General requirements for basic safety and essential performance

1 Scope, object and related standards

1.1 * Scope

1.2 Object

1.3 * Collateral standards

1.4 * Particular standards

2 * Normative references

3 * Terminology and definitions

4 General requirements

- 5 * General requirements for testing ME EQUIPMENT
- 6 * Classification of ME EQUIPMENT and ME SYSTEMS
- 7 ME EQUIPMENT identification, marking and documents
- 8 * Protection against electrical HAZARDS from ME EQUIPMENT

- 9 * Protection against MECHANICAL HAZARDS of ME EQUIPMENT and ME SYSTEMS
- 10 * Protection against unwanted and excessive radiation HAZARDS
- 11 * Protection against excessive temperatures and other HAZARDS
- 12 * Accuracy of controls and instruments and protection against hazardous outputs
- 13 * HAZARDOUS SITUATIONS and fault conditions for ME EQUIPMENT
- 14 * PROGRAMMABLE ELECTRICAL MEDICAL SYSTEMS (PEMS)
- **15 Construction of ME EQUIPMENT**
- 16 * ME SYSTEMS
- 17 * Electromagnetic compatibility of ME EQUIPMENT and ME SYSTEMS

IEC 60601 Standard Series

1.1 * Scope

This International Standard applies to the **BASIC SAFETY** and **ESSENTIAL PERFORMANCE** of **MEDICAL ELECTRICAL EQUIPMENT** and **MEDICAL ELECTRICAL SYSTEMS**, hereafter referred to as ME EQUIPMENT and ME SYSTEMS.

3.63 * MEDICAL ELECTRICAL EQUIPMENT (ME EQUIPMENT)

electrical equipment having an APPLIED PART or transferring energy to or from the PATIENT or detecting such energy transfer to or from the PATIENT and which is:

- a) provided with not more than one connection to a particular SUPPLY MAINS; and
- b) intended by its MANUFACTURER to be used:
 - 1) in the diagnosis, treatment, or monitoring of a PATIENT; or
 - 2) for compensation or alleviation of disease, injury or disability

IEC 60601 Collateral Standards; which should considered for exoskeletons

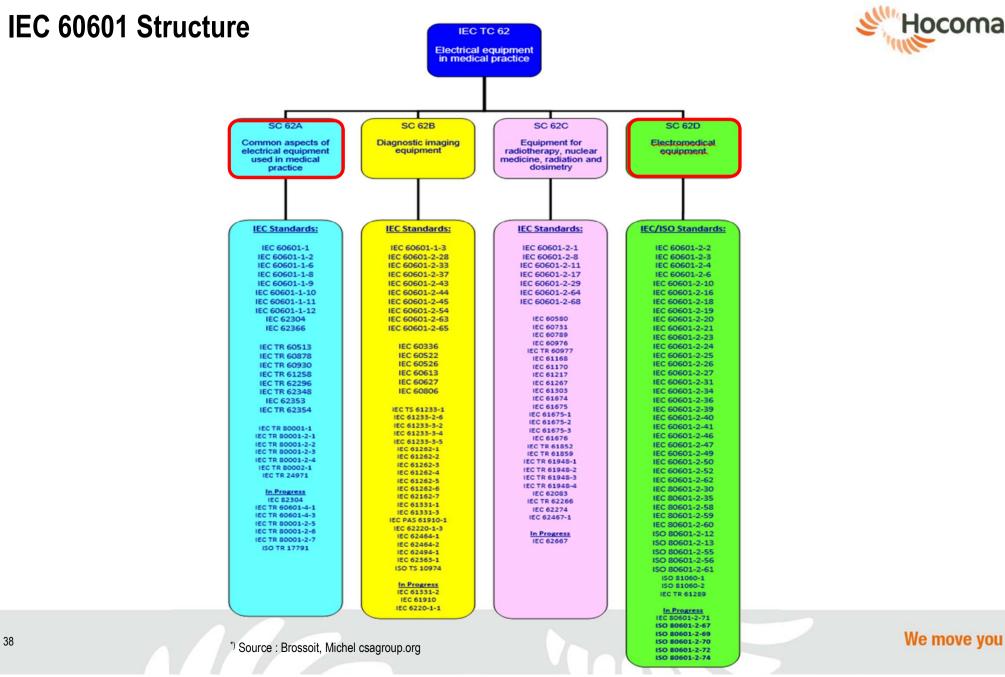
- Medical electrical equipment—Parts 1–2 General requirements for basic safety and essential performance— Collateral Standard: Electromagnetic compatibility—Requirements and tests (IEC 60601–1-2:2007)
- Medical electrical equipment—Parts 1–6: General requirements for basic safety and essential performance— Collateral Standard: Usability (IEC 60601–1-6:2010)
- Medical electrical equipment—Parts 1–8: General requirements for basic safety and essential performance—Collateral Standard: General requirements, tests, and guidance for alarm systems in medical electrical equipment and medical electrical systems (IEC 60601–1-8:2006)
- Medical electrical equipment—Parts 1–9: General requirements for basic safety and essential performance— Collateral Standard: Requirements for environmentally conscious design (IEC 60601–1-9:2007)
- Medical electrical equipment—Parts 1–10: General requirements for basic safety and essential performance—Collateral Standard: Requirements for the development of physiologic closed-loop controllers (IEC 60601–1-10:2007)
- Medical electrical equipment—Parts 1–11: General requirements for basic safety and essential performance— Collateral Standard: Requirements for medical electrical equipment and medical electrical systems used in the home healthcare environment (IEC60601–1-11:2010)

IEC 60601 Collateral Standards; which should considered for exoskeletons

1.4 * Particular standards

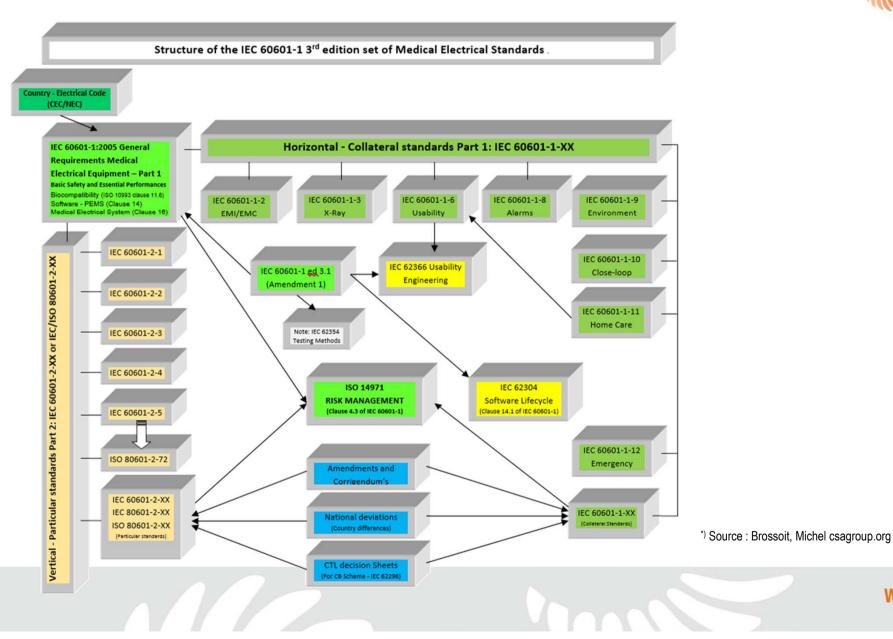
In the IEC 60601 series, particular standards may modify, replace or delete requirements contained in this standard as appropriate for the particular ME EQUIPMENT under consideration, and may add other BASIC SAFETY and ESSENTIAL PERFORMANCE requirements.

Potential applicable particular standards for wearable medical robots (exoskeletons):


- Medical electrical equipment Part 2-10: Particular requirements for the basic safety and essential performance of nerve and muscle stimulators (published)
- IEC 80601-2-78 Particular requirements for the basic safety and essential performance of MEDICAL ROBOT for rehabilitation, assessments, compensation or alleviation of disease, injury or disability in preparation

IEC 60601-1 Test Report

- ~150 Test report templates for the IEC 60601 standard family <u>https://webstore.iec.ch/searchform&q=IECEE%20TRF%2060601</u>
- Internally we use already a test dummy:



Interconnection of the IEC 60601 Series

Other Important IEC & ISO Standards

Software

IEC 62304:2006; Medical device software - software life cycle processes

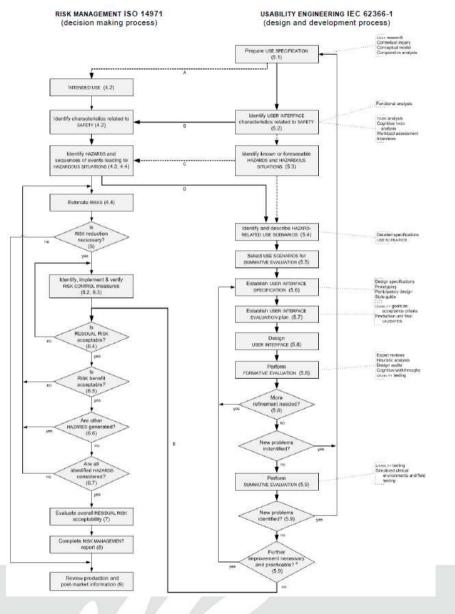
GUIDELINES ABOUT SOFTWARE AND SOFTWARE DEVELOPMENT CYCLE

- Design Control Guidance for Medical Device Manufacturers; FDA Center for Devices and Radiological Health. http://www.fda.gov/downloads/Medical/DeviceRegulationandGuidance/GuidanceDocuments/ucm085371.pdf
- General Principles of Software Validation, Final Guidance for Industry and FDA Staff; FDA Center for Devices and Radio logical Health. <u>http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm085371.pdf</u>
- Title 21—Food and Drugs; Chapter I—Food and Drug Administration; Department of Health and Human Services; Subchapter A—General Part 11 Electronic Records; Electronic Signatures.
 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=11&showFR=1
- Guidance for Industry Part 11, Electronic Records; Electronic Signatures—Scope and Application U.S. Department of Health and Human Services; Food and Drug Administration. <u>http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm125125.pdf</u>
- Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices; U.S. Department of Health and Human Services; Food and Drug Administration; Center for Devices and Radiological Health; Office of Device Evaluation. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm089593.pdf

Other Important IEC & ISO Standards

Usability

IEC 62366-1:2015 Medical devices - Part 1: Application of usability engineering to medical devices IEC 60601-1-6:2010+AMD1:2013 CSV Medical electrical equipment - Part 1-6: General requirements for basic safety and essential performance - Collateral standard: Usability


Riskmanagement

ISO 14971:2007 Medical devices -- Application of risk management to medical devices

Relationship between Risk Management and Usability Engineering

*) Source : IEC 62366-1:2015-02 Medical devices – Part 1: Application of usability engineering to medical devices

We move you

42

Other Important IEC & ISO Standards

Product specific standards ISO 10535:2006

Hoists for the transfer of disabled persons -- Requirements and test methods

Biocompatibility

ISO 10993- series (24 documents)

Biological evaluation of medical devices -- Part 1: Evaluation and testing within a **risk management process**

Maintenance

IEC 62353:2014 Medical electrical equipment - Recurrent test and test after repair of medical electrical equipment

Medical devices in IT-networks

IEC 80001-series (8 documents)

Application of risk management for IT-networks incorporating medical devices - Part 1: Roles, responsibilities and activities

NWP for refurbishment of medical devices

General Statement about medical robots including exoskeletons

After several months of working on RACA ROBOTS and SURGERY ROBOTS and additionally six years on MEDICAL ROBOTIC, the JWG 35 & 36 project group leaders believe that:

- There are only a view topics which really relate to robotic technology in IEC 80601-2-77 and IEC 80601-2-78
 - Operator situation awareness with a high degree of autonomy as part of the usability engineering
 - More focus on risk management is needed for MEE / MES which have a high degree of autonomy

Both aspects are already covered by IEC 60601-1 and are adopted during each 80601-2-xx work according to the specific application of MEE/ MES.

 All other specific aspects which we identified during our work on IEC 80601-2-77 and IEC 80601-2-78 are more related to the specific application of the MEE / MES than to the DEGREE OF AUTONOMY or to the robotic technology

General Statement about medical robots

During the **Workshop on Medical robot standardization hold in** Orlando, Florida, USA at November 7th, 2016 the following national regulatory agencies

- U.S. Food and Drug Administration (FDA)
- Korean Food and Drug Administration (KFDA);
- Pharmaceuticals and Medical Devices Agency and the Ministry of Health, Labor and Welfare (PMDA);

confirmed that medical robots would be seen as «normal» medical devices, which could be handled according to existing regulations in their countries!

Summary:

Neither standards nor medical device regulations seen robotic technology as something specific, it always depends on the application / intended use

Summary Medical Device

- 1. What is a medical device?
 - Intended use given from the manufacturer defines, if a device is a medical device
 - Several definitions exist
- 2. What are main regulative aspects during the development of a MD?
 - Good manufacturing practice system must be in place; **including the design & design change process**
 - Medical device product registrations through national authorities based on a product specific technical file including clinical data are mostly needed
 - Evidence about **fulfilment of MD regulations** is required National MD registrations systems base on these aspects, but differentiate in details
- 3. Which standards should be observe for MD
 - IEC 60601 series and the referenced standards in IEC 60601
 - other medical and non medical standards can be helpful to show conformity

Summary Medical Device

- One of the main objective of the "Medical Standards" is the <u>Patient</u>
- The word <u>"PATIENT"</u> is unique for "Medical Standards"
- Other standards address **USER** safety
- Medical standards address <u>PATIENT</u> and <u>USER</u> safety
- Additionally, MD`s have to fulfil national / regional requirements
- Medical devices including exoskeleton are already highly regulated

Summary of Presentation

- Changing world of robotics
 - Industrial ⇒ Service
- New requirements for Personal Care Robots
 - ISO 13482:2014
- Wearable Medical Devices ; standards and other regulative aspects

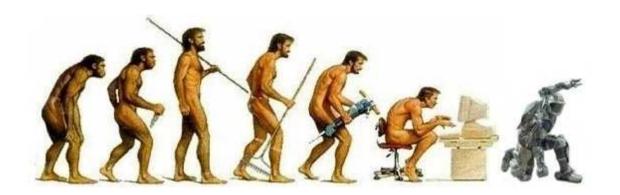
Conclusions

Conclusion

- Military
- Industrial
- Service
- Personal care
 - Mobile servant robot
 - Physical assistant robot
 - Person carrier robot
- Medical
- •

• Differentiate between different kinds of exoskeletons

- None walking Exoskeletons (upper extremities)
- Free-walking Exoskeletons
- Stationary Exoskeletons
- ...
- Upper and lower extremities
- Intended to be used by: soldiers, workers, elderly, handicapped, patient (adult; pediatric), ...
- for future standardization work


Hocoma

Thank you very much for your attention!

Special thanks to Prof Gurvinder Virk; Convenor of several ISO TC 299 working and joint working groups, for providing a couple of slides

Burkhard Zimmermann Hocoma AG Technical project leader of JWG 36 IEC TC 62D & ISO TC 299 WG5 burkhard.zimmermann@hocoma.com

Hocoma is a proud partner of

