
FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	1	of	15	
	

	1	

	2	

	3	

Face	Recognition	Vendor	Test	(FRVT)		4	

(Ongoing)	5	

	6	

	7	

	8	

	9	

Still	Face	1:1	Verification	10	

Concept,	Evaluation	Plan	and	API	11	

Version	2.0	12	

	13	
Updates	since	version	1.0	of	this	document	are	highlighted	in	green.		14	

	15	

Patrick	Grother	and	Mei	Ngan	16	

Contact	via	frvt@nist.gov		17	

	

	
	

Image	Group	
Information	Access	Division		

Information	Technology	Laboratory	
	

	

May	22,	2017	

	18	
	19	

																	20	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	2	of	15	
	

Table	of	Contents	21	
1.	 FRVT	...	3	22	

1.1.	 Scope	..	3	23	
1.2.	 Audience	...	3	24	
1.3.	 Rules	for	Participation	..	3	25	
1.4.	 Reporting	..	3	26	
1.5.	 Hardware	specification	...	3	27	
1.6.	 Operating	system,	compilation,	and	linking	environment	..	4	28	
1.7.	 Software	and	Documentation	...	4	29	
1.8.	 Runtime	behavior	...	6	30	
1.9.	 Single-thread	Requirement/Parallelization	..	6	31	
1.10.	 Time	limits	..	6	32	

2.	 Data	structures	supporting	the	API	..	7	33	
2.1.	 Requirement	...	7	34	
2.2.	 File	formats	and	data	structures	...	7	35	

3.	 API	Specification	...	10	36	
3.1.	 Namespace	...	10	37	
3.2.	 Overview	...	10	38	
3.3.	 API	...	11	39	

	40	
List	of	Tables	41	

Table	1	–	Implementation	library	filename	convention	...	5	42	
Table	2	–	Processing	time	limits	in	milliseconds,	per	640	x	480	image	..	6	43	
Table	3	–	Structure	for	a	single	image	..	7	44	
Table	4	–	Labels	describing	categories	of	Images	...	7	45	
Table	5	–	Structure	for	a	set	of	images	from	a	single	person	...	8	46	
Table	6	–	Structure	for	a	pair	of	eye	coordinates	...	8	47	
Table	7	–	Labels	describing	template	role	..	8	48	
Table	8	–	Enumeration	of	return	codes	..	8	49	
Table	9	–	ReturnStatus	structure	...	9	50	
Table	10	–	Structure	containing	subject	metadata	information	..	9	51	
Table	11	–	Structure	representing	face	image	and	associated	attributes	..	10	52	
Table	12	–	Functional	summary	of	the	1:1	application	..	10	53	
Table	13	–	Initialization	..	12	54	
Table	14	–	GPU	index	specification	..	12	55	
Table	15	–	Template	generation	..	12	56	
Table	16	–	Template	matching	...	13	57	
Table	17	–	Training	...	14	58	
		59	

List	of	Figures	60	

Figure	1	–	Schematic	of	1:1	verification	...	10	61	
Figure	2	–	Schematic	of	training	...	14	62	
	63	

64	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	3	of	15	
	

1. FRVT		65	

1.1. Scope	66	
This	document	establishes	a	concept	of	operations	and	an	application	programming	interface	(API)	for	evaluation	of	face	67	
recognition	(FR)	implementations	submitted	to	NIST's	ongoing	Face	Recognition	Vendor	Test.		This	API	is	for	the	1:1	68	
identity	verification	track.		Separate	API	documents	will	be	published	for	future	additional	tracks	to	FRVT.		All	images	69	
include	exactly	one	face.	70	

1.2. Audience	71	

Participation	in	FRVT	is	open	to	any	organization	worldwide.		There	is	no	charge	for	participation.		The	target	audience	is	72	
researchers	and	developers	of	FR	algorithms.	While	NIST	intends	to	evaluate	stable	technologies	that	could	be	readily	73	
made	operational,	the	test	is	also	open	to	experimental,	prototype	and	other	technologies.		All	algorithms	must	be	74	
submitted	as	implementations	of	the	API	defined	in	this	document.	75	

1.3. Rules	for	Participation	76	

1.3.1. Participation	Agreement	77	
A	participant	must	properly	follow,	complete,	and	submit	the	FRVT	Participation	Agreement.		This	must	be	done	once,	78	
either	prior	or	in	conjunction	with	the	very	first	algorithm	submission.		It	is	not	necessary	to	do	this	for	each	submitted	79	
implementation	thereafter	UNLESS	there	are	major	organizational	changes	to	the	submitting	entity.	80	

1.3.2. Number	and	Schedule	of	Submissions	81	

Participants	may	send	up	to	two	initial	submissions	that	run	to	completion.		After	that,	participations	may	send	one	82	
submission	as	often	as	every	120	days	three	calendar	months	from	the	last	submission	for	evaluation.		NIST	will	evaluate	83	
implementations	on	a	first-come-first-served	basis,	and	quickly	publish	results.		84	

1.4. Reporting	85	
For	all	algorithms	that	complete	the	evaluations,	NIST	will	post	performance	results	on	the	NIST	FRVT	website.	NIST	will	86	
maintain	an	email	list	to	inform	interested	parties	of	updates	to	the	website.		Artifacts	will	include	a	leaderboard	87	
highlighting	the	top	performing	submissions	in	various	areas	(e.g.,	accuracy,	speed	etc.)	and	individual	implementation-88	
specific	report	cards.		NIST	will	maintain	reporting	on	the	two	most	recent	algorithm	submissions	from	any	organization.		89	
Prior	submission	results	will	be	archived	but	remain	accessible	via	a	public	link.			90	
	91	
Important:		This	is	an	open	test	in	which	NIST	will	identify	the	algorithm	and	the	developing	organization.	Algorithm	92	
results	will	be	attributed	to	the	developer.	Results	will	be	machine	generated	(i.e.	scripted)	and	will	include	timing,	93	
accuracy	and	other	performance	results.	These	will	be	posted	alongside	results	from	other	implementations.	Results	will	94	
be	expanded	and	modified	as	additional	implementations	are	tested,	and	as	analyses	are	implemented.	Results	may	be	95	
regenerated	on-the-fly,	usually	whenever	additional	implementations	complete	testing,	or	when	new	analysis	is	added.	96	
	97	
NIST	may	additionally	report	results	in	workshops,	conferences,	conference	papers	and	presentations,	journal	articles	and	98	
technical	reports.	99	

1.5. Hardware	specification	100	
NIST	intends	to	support	high	performance	by	specifying	the	runtime	hardware	beforehand.	There	are	several	types	of	101	
computer	blades	that	may	be	used	in	the	testing.		Each	CPU	has	512K	cache.	The	bus	runs	at	667	Mhz.		The	main	memory	102	
is	192	GB	Memory	as	24	8GB	modules.		We	anticipate	that	16	processes	can	be	run	without	time	slicing,	though	NIST	will	103	
handle	all	multiprocessing	work	via	fork()1.		Participant-initiated	multiprocessing	is	not	permitted.	104	

																																																																				
1	http://man7.org/linux/man-pages/man2/fork.2.html	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	4	of	15	
	

NIST	is	requiring	use	of	64	bit	implementations	throughout.			105	

1.5.1. Central	Processing	Unit	(CPU)-only	platforms	106	
The	following	list	gives	some	details	about	the	hardware	of	each	CPU-only	blade	type:	107	

• Dual	Intel	Xeon	X5680	3.3	GHz	CPUs	(6	cores	each)		108	

• Dual	Intel	Xeon	X7560	2.3	GHz	CPUs	(8	cores	each)	109	

• Dual	Intel(R)	Xeon(R)	CPU	E5-2630	v4	@	2.20GHz	(10	cores	each)	110	

1.5.2. Graphics	Processing	Units	(GPU)-enabled	platforms	111	
The	following	provides	some	details	about	the	hardware	of	GPU-enabled	machines:	112	

• Dual	Intel	Xeon	E5-2695	3.3	GHz	CPUs	(14	cores	each;	56	logical	CPUs	total)	with	Dual	NVIDIA	Tesla	K40	GPUs,	113	
with	12GB	of	memory	per	GPU	114	

All	GPU-enabled	machines	will	be	running	CUDA	version	7.5.		cuDNN	v5	for	CUDA	7.5	will	also	be	installed	on	these	115	
machines.		Implementations	that	use	GPUs	will	only	be	run	on	GPU-enabled	machines.		Please	note	that	GPU-dependent	116	
implementations	submitted	to	FRVT	will	have	longer	test	turnaround	times	than	CPU-only	implementations	due	to	117	
resource	constraints.		Developers	submitting	GPU	implementations	are	encouraged	to	submit	“CPU-equivalent”	118	
implementations	of	their	algorithms	for	timing	comparisons.			Algorithms	using	GPUs	will	be	identified	as	such	in	public	119	
reports.	120	

1.6. Operating	system,	compilation,	and	linking	environment	121	

The	operating	system	that	the	submitted	implementations	shall	run	on	will	be	released	as	a	downloadable	file	accessible	122	
from	http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso,	which	is	the	64-bit	version	of	CentOS	123	
7.2	running	Linux	kernel	3.10.0.	124	

For	this	test,	Windows	machines	will	not	be	used.	Windows-compiled	libraries	are	not	permitted.		All	software	must	run	125	
under	CentOS	7.2.	126	

NIST	will	link	the	provided	library	file(s)	to	our	C++	language	test	drivers.		Participants	are	required	to	provide	their	library	127	
in	a	format	that	is	dynamically-linkable	using	the	C++11	compiler,	g++	version	4.8.5.			128	

A	typical	link	line	might	be	129	
g++ -std=c++11 -I. -Wall -m64 -o frvt11 frvt11.cpp -L. –lfrvt11_acme_07_cpu 130	

The	Standard	C++	library	should	be	used	for	development.		The	prototypes	from	this	document	will	be	written	to	a	file	131	
"frvt11.h"	which	will	be	included	via		132	

#include	<frvt11.h>	

The	header	files	will	be	made	available	to	implementers	at	https://github.com/usnistgov/frvt.		133	

All	compilation	and	testing	will	be	performed	on	x86_64	platforms.		Thus,	participants	are	strongly	advised	to	verify	134	
library-level	compatibility	with	g++	(on	an	equivalent	platform)	prior	to	submitting	their	software	to	NIST	to	avoid	linkage	135	
problems	later	on	(e.g.	symbol	name	and	calling	convention	mismatches,	incorrect	binary	file	formats,	etc.).	136	

1.7. Software	and	Documentation	137	

1.7.1. Library	and	Platform	Requirements	138	
Participants	shall	provide	NIST	with	binary	code	only	(i.e.	no	source	code).		The	implementation	should	be	submitted	in	139	
the	form	of	a	dynamically-linked	library	file.	140	
	141	
The	core	library	shall	be	named	according	to	Table	1.		Additional	supplemental	libraries	may	be	submitted	that	support	142	
this	“core”	library	file	(i.e.	the	“core”	library	file	may	have	dependencies	implemented	in	these	other	libraries).		143	
Supplemental	libraries	may	have	any	name,	but	the	“core”	library	must	be	dependent	on	supplemental	libraries	in	order	144	
to	be	linked	correctly.	The	only	library	that	will	be	explicitly	linked	to	the	FRVT	1:1	test	driver	is	the	“core”	library.	145	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	5	of	15	
	

	146	
Intel	Integrated	Performance	Primitives	(IPP)	®	libraries	are	permitted	if	they	are	delivered	as	a	part	of	the	developer-147	
supplied	library	package.	It	is	the	provider’s	responsibility	to	establish	proper	licensing	of	all	libraries.		The	use	of	IPP	148	
libraries	shall	not	prevent	running	on	CPUs	that	do	not	support	IPP.		Please	take	note	that	some	IPP	functions	are	149	
multithreaded	and	threaded	implementations	are	prohibited.			150	
	151	
NIST	will	report	the	size	of	the	supplied	libraries.		152	

Table	1	–	Implementation	library	filename	convention	153	

Form	 libfrvt11_provider_sequence_processor.ending	 	
Underscore	
delimited	parts	of	
the	filename	

libfrvt11	 provider	 sequence	 processor	 ending	

Description	 First	part	of	the	
name,	required	to	
be	this.	

Single	word,	non-
infringing	name	of	
the	main	provider	
EXAMPLE:		Acme	

A	three	digit	decimal	
identifier	to	start	at	000	
and	incremented	by	1	
every	time	a	library	is	
sent	to	NIST.		EXAMPLE:	
007	

“gpu”	if	
implementation	
uses	GPUs;	
“cpu”	otherwise	
	
	

.so	

Example	 libfrvt11_acme_007_cpu.so	
Important:	Public	results	will	be	attributed	with	the	provider	name	and	the	3-digit	sequence	number	in	the	submitted	154	
library	name.	155	

1.7.2. Configuration	and	developer-defined	data	156	
The	implementation	under	test	may	be	supplied	with	configuration	files	and	supporting	data	files.		NIST	will	report	the	157	
size	of	the	supplied	configuration	files.	158	

1.7.3. Submission	folder	hierarchy	159	
Participant	submissions	shall	contain	the	following	folders	at	the	top	level	160	

• lib/	-	contains	all	participant-supplied	software	libraries	161	
• config/	-	contains	all	configuration	and	developer-defined	data	162	
• doc/	-	contains	any	participant-provided	documentation	regarding	the	submission	163	
• validation/	-	contains	validation	output	164	

1.7.4. Installation	and	Usage	165	
The	implementation	shall	be	installable	using	simple	file	copy	methods.	It	shall	not	require	the	use	of	a	separate	166	
installation	program	and	shall	be	executable	on	any	number	of	machines	without	requiring	additional	machine-specific	167	
license	control	procedures	or	activation.		The	implementation	shall	not	use	nor	enforce	any	usage	controls	or	limits	based	168	
on	licenses,	number	of	executions,	presence	of	temporary	files,	etc.		The	implementation	shall	remain	operable	for	at	169	
least	six	months	from	the	submission	date.	170	

1.7.5. Documentation	171	
Participants	shall	provide	documentation	of	additional	functionality	or	behavior	beyond	that	specified	here.		The	172	
documentation	must	define	all	(non-zero)	developer-defined	error	or	warning	return	codes.	173	

1.7.6. Modes	of	operation	174	
Implementations	shall	not	require	NIST	to	switch	“modes”	of	operation	or	algorithm	parameters.	For	example,	the	use	of	175	
two	different	feature	extractors	must	either	operate	automatically	or	be	split	across	two	separate	library	submissions.	176	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	6	of	15	
	

1.8. Runtime	behavior	177	

1.8.1. Interactive	behavior,	stdout,	logging	178	
The	implementation	will	be	tested	in	non-interactive	“batch”	mode	(i.e.	without	terminal	support).	Thus,	the	submitted	179	
library	shall:	180	

- Not	use	any	interactive	functions	such	as	graphical	user	interface	(GUI)	calls,	or	any	other	calls	which	require	181	
terminal	interaction	e.g.	reads	from	“standard	input”.	182	

- Run	quietly,	i.e.	it	should	not	write	messages	to	"standard	error"	and	shall	not	write	to	“standard	output”.	183	

- Only	if	requested	by	NIST	for	debugging,	include	a	logging	facility	in	which	debugging	messages	are	written	to	a	184	
log	file	whose	name	includes	the	provider	and	library	identifiers	and	the	process	PID.	185	

1.8.2. Exception	Handling	186	
The	application	should	include	error/exception	handling	so	that	in	the	case	of	a	fatal	error,	the	return	code	is	still	187	
provided	to	the	calling	application.	188	

1.8.3. External	communication	189	
Processes	running	on	NIST	hosts	shall	not	side-effect	the	runtime	environment	in	any	manner,	except	for	memory	190	
allocation	and	release.		Implementations	shall	not	write	any	data	to	external	resource	(e.g.	server,	file,	connection,	or	191	
other	process),	nor	read	from	such,	nor	otherwise	manipulate	it.	If	detected,	NIST	will	take	appropriate	steps,	including	192	
but	not	limited	to,	cessation	of	evaluation	of	all	implementations	from	the	supplier,	notification	to	the	provider,	and	193	
documentation	of	the	activity	in	published	reports.	194	

1.8.4. Stateless	behavior	195	
All	components	in	this	test	shall	be	stateless,	except	as	noted.			This	applies	to	face	detection,	feature	extraction	and	196	
matching.		Thus,	all	functions	should	give	identical	output,	for	a	given	input,	independent	of	the	runtime	history.			NIST	197	
will	institute	appropriate	tests	to	detect	stateful	behavior.	If	detected,	NIST	will	take	appropriate	steps,	including	but	not	198	
limited	to,	cessation	of	evaluation	of	all	implementations	from	the	supplier,	notification	to	the	provider,	and	199	
documentation	of	the	activity	in	published	reports.		200	

1.9. Single-thread	Requirement/Parallelization	201	
Implementations	must	run	in	single-threaded	mode,	because	NIST	will	parallelize	the	test	by	dividing	the	workload	across	202	
many	cores	and	many	machines.		Implementations	must	ensure	that	there	are	no	issues	with	their	software	being	203	
parallelized	via	the	fork()	function	–	this	applies	to	both	GPU	and	CPU	implementations	submitted	to	FRVT.	204	

For	implementations	using	the	GPU:	For	any	given	GPU,	NIST	will	run	a	single	implementation	process	(i.e.,	fork()	once	per	205	
GPU),	with	12GB	of	main	memory	available	for	use	by	the	algorithm.		NIST	machines	are	equipped	with	dual	GPUs,	and	206	
the	NIST	test	harness	will	load	balance	by	telling	the	implementation	which	GPU	to	use	via	the	section	3.3.2.1	setGPU()	207	
function	call.		All	calls	to	setGPU()	will	be	performed	after	a	call	to	fork().		Implementations	using	the	GPU	are	encouraged	208	
to	perform	initialization	within	the	setGPU()	function	where	1.	which	GPU	to	use	is	provided	to	the	implementation	and	2.	209	
to	support	known	limitations	of	commonly	used	deep	learning	frameworks	such	as	Caffe,	where	initialization	must	take	210	
place	in	the	worker	process.	211	

1.10. Time	limits	212	
The	elemental	functions	of	the	implementations	shall	execute	under	the	time	constraints	of	Table	2.		These	time	limits	213	
apply	to	the	function	call	invocations	defined	in	section	3.		Assuming	the	times	are	random	variables,	NIST	cannot	regulate	214	
the	maximum	value,	so	the	time	limits	are	90-th	percentiles.		This	means	that	90%	of	all	operations	should	take	less	than	215	
the	identified	duration.	216	

The	time	limits	apply	per	image.		When	K	images	of	a	person	are	present,	the	time	limits	shall	be	increased	by	a	factor	K.	217	

Table	2	–	Processing	time	limits	in	milliseconds,	per	640	x	480	image	218	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	7	of	15	
	

Function	 1:1	verification		
Training	 12	hours	for	an	input	set	of	6000	images	
Feature	extraction	enrollment	 1000	(1	core)	

640x480	pixels	
Feature	extraction	for	verification	 1000	(1	core)	

640x480	pixels	
Matching	 5	(1	core)	

	219	

2. Data	structures	supporting	the	API	220	

2.1. Requirement	221	
FRVT	1:1	participants	shall	implement	the	relevant	C++	prototyped	interfaces	of	clause	3.		C++	was	chosen	in	order	to	222	
make	use	of	some	object-oriented	features.	223	

2.2. File	formats	and	data	structures	224	

2.2.1. Overview	225	

In	this	face	recognition	test,	an	individual	is	represented	by	K	³	1	two-dimensional	facial	images.		All	facial	images	in	the	226	
test	will	contain	one	and	only	one	face	per	image.		227	

Table	3	–	Structure	for	a	single	image	228	

C++	code	fragment	 Remarks	
typedef struct Image 	
{ 	
 uint16_t image_width; Number	of	pixels	horizontally	
 uint16_t image_height; Number	of	pixels	vertically	
 uint16_t image_depth; Number	of	bits	per	pixel.	Legal	values	are	8	and	24.	
 std::shared_ptr<uint8_t> data; Managed	pointer	to	raster	scanned	data.	Either	RGB	color	or	

intensity.	
If	image_depth	==	24	this	points	to	3WH	bytes		RGBRGBRGB...	
If	image_depth	==		8	this	points	to		WH	bytes		IIIIIII	

 Label description; Single	description	of	the	image.		The	allowed	values	for	this	field	
are	specified	in	the	enumeration	in	Table	4.	

} Image; 	
	229	
An	Image	will	be	accompanied	by	one	of	the	labels	given	below.			Face	recognition	implementations	should	tolerate	230	
Images	of	any	category.	231	

Table	4	–	Labels	describing	categories	of	Images	232	

Label	as	C++	enumeration	 Meaning	
enum class Label { 	
 UNKNOWN=0, Either	the	label	is	unknown	or	unassigned.	
 ISO=1, Frontal,	intended	to	be	in	conformity	to	ISO/IEC	19794-5:2005.	
 MUGSHOT=2, From	law	enforcement	booking	processes.	Nominally	frontal.	
 PHOTOJOURNALISM=3, The	image	might	appear	in	a	news	source	or	magazine.	The	images	are	

typically	taken	by	professional	photographer	and	are	well	exposed	and	
focused	but	exhibit	pose	and	illumination	variations.	

 EXPLOITATION=4 The	image	is	taken	from	a	child	exploitation	database.		This	imagery	has	
highly	unconstrained	pose	and	illumination,	expression	and	resolution.	

WILD=5 Unconstrained	image,	taken	by	an	amateur	photographer,	exhibiting	wide	
variations	in	pose,	illumination,	and	resolution.	

}; 	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	8	of	15	
	

	233	

Table	5	–	Structure	for	a	set	of	images	from	a	single	person	234	

C++	code	fragment	 Remarks	
using Multiface = std::vector<Image>; Vector	of	Image	objects	

2.2.2. Data	structure	for	eye	coordinates	235	
Implementations	should	return	eye	coordinates	of	each	facial	image.		This	function,	while	not	necessary	for	a	recognition	236	
test,	will	assist	NIST	in	assuring	the	correctness	of	the	test	database.		The	primary	mode	of	use	will	be	for	NIST	to	inspect	237	
images	for	which	eye	coordinates	are	not	returned,	or	differ	between	implementations.	238	

The	eye	coordinates	shall	follow	the	placement	semantics	of	the	ISO/IEC	19794-5:2005	standard	-	the	geometric	239	
midpoints	of	the	endocanthion	and	exocanthion	(see	clause	5.6.4	of	the	ISO	standard).	240	

Sense:	The	label	"left"	refers	to	subject's	left	eye	(and	similarly	for	the	right	eye),	such	that	xright	<	xleft.	241	

Table	6	–	Structure	for	a	pair	of	eye	coordinates	242	

C++	code	fragment		 Remarks	
typedef struct EyePair 	
{ 	
 bool isLeftAssigned; If	the	subject’s	left	eye	coordinates	have	been	computed	and	assigned	

successfully,	this	value	should	be	set	to	true,	otherwise	false.	
 bool isRightAssigned; If	the	subject’s	right	eye	coordinates	have	been	computed	and	assigned	

successfully,	this	value	should	be	set	to	true,	otherwise	false.	
 uint16_t xleft; X	and	Y	coordinate	of	the	center	of	the	subject's	left	eye.		If	the	eye	

coordinate	is	out	of	range	(e.g.	x	<	0	or	x	>=	width),	isLeftAssigned	
should	be	set	to	false.	

 uint16_t yleft;

 uint16_t xright; X	and	Y	coordinate	of	the	center	of	the	subject's	right	eye.		If	the	eye	
coordinate	is	out	of	range	(e.g.	x	<	0	or	x	>=	width),	
isRightAssigned	should	be	set	to	false.	

 uint16_t yright;

} EyePair; 	

2.2.3. Template	Role	243	
Labels	describing	the	type/role	of	the	template	to	be	generated	will	be	provided	as	input	to	template	generation.	244	

Table	7	–	Labels	describing	template	role	245	

Label	as	C++	enumeration	 Meaning	
enum class TemplateRole { 	
 Enrollment_11, Enrollment	template	for	1:1	matching	
 Verification_11 Verification	template	for	1:1	matching	
}; 	

2.2.4. Data	type	for	similarity	scores	246	
Identification	and	verification	functions	shall	return	a	measure	of	the	similarity	between	the	face	data	contained	in	the	247	
two	templates.		The	datatype	shall	be	an	eight	byte	double	precision	real.		The	legal	range	is	[0,	DBL_MAX],	where	the	248	
DBL_MAX	constant	is	larger	than	practically	needed	and	defined	in	the	<climits>	include	file.	Larger	values	indicate	more	249	
likelihood	that	the	two	samples	are	from	the	same	person.	250	

Providers	are	cautioned	that	algorithms	that	natively	produce	few	unique	values	(e.g.	integers	on	[0,127])	will	be	251	
disadvantaged	by	the	inability	to	set	a	threshold	precisely,	as	might	be	required	to	attain	a	false	match	rate	of	exactly	252	
0.0001,	for	example.	253	

2.2.5. Data	structure	for	return	value	of	API	function	calls	254	

Table	8	–	Enumeration	of	return	codes	255	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	9	of	15	
	

Return	code	as	C++	enumeration	 Meaning	
enum class ReturnCode { 	
 Success=0, Success	
 ConfigError=1, Error	reading	configuration	files	
 RefuseInput=2, Elective	refusal	to	process	the	input,	e.g.	because	cannot	handle	greyscale	
 ExtractError=3, Involuntary	failure	to	process	the	image,	e.g.	after	catching	exception		
 ParseError=4, Cannot	parse	the	input	data	
 TemplateCreationError=5, Elective	refusal	to	produce	a	template	(e.g.	insufficient	pixels	between	the	

eyes)	
 VerifTemplateError=6, For	matching,	either	or	both	of	the	input	templates	were	result	of	failed	

feature	extraction	
 NumDataError=7, The	implementation	cannot	support	the	number	of	images	
 TemplateFormatError=8, Template	file	is	in	an	incorrect	format	or	defective	
 GPUError=9, There	was	a	problem	setting	or	accessing	the	GPU	
 VendorError=10 Vendor-defined	failure.		Failure	codes	must	be	documented	and	

communicated	to	NIST	with	the	submission	of	the	implementation	under	test.	
}; 	

	256	

Table	9	–	ReturnStatus	structure	257	

C++	code	fragment	 Meaning	
struct ReturnStatus { 	
 ReturnCode code; Return	Code	
 std::string info; Optional	information	string	
 // constructors 	
}; 	

2.2.6. Data	structure	for	encapsulating	training	data	258	
The	following	structure	represents	subject	attributes	that	may	be	available	to	the	implementation	during	training.	259	

Table	10	–	Structure	containing	subject	metadata	information	260	

	 Meaning	
typedef struct Attributes { 	
 enum class Gender {Unknown, Male, Female}; 	
 enum class Race {Unknown, White, Black, EastAsian,
SouthAsian, Hispanic};

	

 enum class EyeGlasses {Unknown, NotWearing, Wearing}; 	
 enum class FacialHair {Unknown, Moustache, Goatee, Beard}; 	
 enum class SkinTone {Unknown, LightPink, LightYellow,
 MediumPinkBrown, MediumYellowBrown, MediumDarkBrown,
 DarkBrown};

	

 	
 std::string id; A	subject	ID	that	identifies	a	person.		Images	of	

the	same	person	will	have	the	same	subject	ID.	
 double age; Subject	age	(in	years).		A	negative	value	

indicates	age	is	unknown.	
 Gender gender; Subject	gender	
 Race race; Subject	race.		This	value	may	be	a	proxy.	
 EyeGlasses eyeglasses; Whether	the	subject	is	wearing	eyeglasses	
 FacialHair facialhair; Facial	hair	type	if	applicable	
 double height; Subject	height	(in	meters).		A	negative	value	

indicates	height	is	unknown.	
 double weight; Subject	weight	(in	kilograms).		A	negative	value	

indicates	weight	is	unknown.	
 SkinTone skintone; Subject	skin	tone	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	10	of	15	
	

} Attributes; 	

Table	11	–	Structure	representing	face	image	and	associated	attributes		261	

C++	code	fragment	 Remarks	
using faceAttributePair = std::pair<Image, Attributes>; A	pair	of	face	image	and	associated	

attributes	
	262	

3. API	Specification	263	

3.1. Namespace	264	
All	data	structures	and	API	interfaces/function	calls	will	be	declared	in	the	FRVT	namespace.	265	

3.2. Overview	266	
	267	

	268	
Figure	1	–	Schematic	of	1:1	verification		269	

	270	
The	1:1	testing	will	proceed	in	the	following	phases:	optional	offline	training;	preparation	of	enrollment	templates;	271	
preparation	of	verification	templates;	and	matching.		Note	that	training,	template	creation,	and	matching	may	all	be	272	
performed	as	separate	processes.		These	are	detailed	in	Table	12.	273	

Table	12	–	Functional	summary	of	the	1:1	application	274	

Phase	 Description	 Performance	Metrics	to	be	reported	by	NIST	
Training	
(Optional)	

Given	1)	K	³	1	images	with	associated	subject	ID	and	attribute	
data	and	2)	the	implementation’s	configuration	directory,	the	
implementation	may	use	the	provided	training	data	to	
populate	a	new	“trained”	configuration	directory.		This	
directory	will	be	used	to	initialize	the	algorithm	during	
subsequent	template	creation	and	matching	processes.		
Images	of	the	same	person	will	have	the	same	subject	ID.		
Images	with	different	subject	IDs	indicate	they	are	different	
people.		Attribute	data	may	include	the	subject’s	age,	gender,	
race,	and	other	information.		Please	note	that	this	function	
may	or	may	not	be	called	prior	to	creation	of	templates	or	
matching.		The	implementation’s	ability	to	create	or	match	
templates	should	not	be	dependent	on	this	function.	

	

Initialization	 Function	to	read	configuration	data,	if	any.	 None	

Enrollment	 Given	K	³	1	input	images	of	an	individual,	the	implementation	
will	create	a	proprietary	enrollment	template.		NIST	will	

Statistics	of	the	time	needed	to	produce	a	template.	
Statistics	of	template	size.	Rate	of	failure	to	produce	a	

Enrollment	initialization Verification	initialization

Multiface

	 	

Multiface

	
Enrollment	
template

Verification	
template

Comparison	
engine

Similarity	score

SDK

SDK

Match	initialization
SDK

Native	or	
updated	

configuration	
data

1:1	VERIFICATION

Algorithm
component	

behind	FRVT	API

Data	passed	by	
NIST	to	

algorithm

Key

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	11	of	15	
	

manage	storage	of	these	templates.	 template	

Verification	 Given	K	³	1	input	images	of	an	individual,	the	implementation	
will	create	a	proprietary	verification	template.		NIST	will	
manage	storage	of	these	templates.	

Statistics	of	the	time	needed	to	produce	a	template.	
Statistics	of	template	size.	Rate	of	failure	to	produce	a	
template.	

Matching	(i.e.	
comparison)	

Given	a	proprietary	enrollment	and	a	proprietary	verification	
template,	compare	them	to	produce	a	similarity	score.		

Statistics	of	the	time	taken	to	compare	two	templates.	
Accuracy	measures,	primarily	reported	as	DETs,	
including	for	partitions	of	the	input	datasets.	

	275	
NIST	requires	that	these	operations	may	be	executed	in	a	loop	in	a	single	process	invocation,	or	as	a	sequence	of	independent	process	276	
invocations,	or	a	mixture	of	both.	277	

3.3. API	278	

3.3.1.1. Interface	279	
The	software	under	test	must	implement	the	interface	Interface	by	subclassing	this	class	and	implementing	each	280	
method	specified	therein.	281	

	 C++	code	fragment		 Remarks	
1. class Interface 	
2. {

public:
	

3. virtual ReturnStatus initialize(
 const std::string &configDir) = 0;

	

4. virtual ReturnStatus createTemplate(
 const Multiface &faces,
 TemplateRole role,
 std::vector<uint8_t> &templ,
 std::vector<EyePair> &eyeCoordinates) = 0;

	

5. virtual ReturnStatus matchTemplates(
 const std::vector<uint8_t> &verifTemplate,
 const std::vector<uint8_t> &enrollTemplate,
 double &similarity) = 0;

	

6.	 virtual void ReturnStatus setGPU(uint8_t gpuNum) = 0; 	
7.	 static std::shared_ptr<Interface> getImplementation(); Factory	method	to	return	a	managed	pointer	to	the	

Interface	object.		This	function	is	implemented	by	
the	submitted	library	and	must	return	a	managed	
pointer	to	the	Interface	object.	

8. virtual ReturnStatus train(
 const std::string &configDir,
 const std::string &trainedConfigDir,
 const std::vector<faceAttributePair> &faces) = 0;

	

9. }; 	
	282	
There	is	one	class	(static)	method	declared	in	Interface.	getImplementation()	which	must	also	be	implemented	283	
by	the	implementation.	This	method	returns	a	shared	pointer	to	the	object	of	the	interface	type,	an	instantiation	of	the	284	
implementation	class.	A	typical	implementation	of	this	method	is	also	shown	below	as	an	example.	285	
	286	
	 C++	code	fragment		 Remarks	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	12	of	15	
	

 #include "frvt11.h"

using namespace FRVT;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<Interface>
Interface::getImplementation()
{
 return std::make_shared<NullImpl>();
}

// Other implemented functions

	

3.3.2. Initialization	287	
The	NIST	test	harness	will	call	the	initialization	function	in	Table	13	before	calling	template	generation	or	matching.		This	288	
function	will	be	called	BEFORE	any	calls	to	fork()	are	made.	289	

Table	13	–	Initialization		290	

Prototype	 ReturnStatus	initialize(
const	string	&configDir);	 Input	

Description	
	

This	function	initializes	the	implementation	under	test.		It	will	be	called	by	the	NIST	application	before	any	call	to	
createTemplate()	or	matchTemplates().		The	implementation	under	test	should	set	all	parameters.		This	
function	will	be	called	N=1	times	by	the	NIST	application,	prior	to	parallelizing	M	>=	1	calls	to	createTemplate()	
via	fork().	

Input	Parameters	 configDir	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	run-
time	data	files.		The	name	of	this	directory	is	assigned	by	NIST,	not	hardwired	by	the	
provider.		The	names	of	the	files	in	this	directory	are	hardwired	in	the	implementation	and	
are	unrestricted.	

Output	
Parameters	

none	 	

Return	Value	 See	Table	8	for	all	valid	return	code	values.	

3.3.2.1. GPU	Index	Specification	291	
For	implementations	using	GPUs,	the	function	of	Table	14	specifies	a	sequential	index	for	which	GPU	device	to	execute	292	
on.		This	enables	the	test	software	to	orchestrate	load	balancing	across	multiple	GPUs.		This	function	will	be	called	AFTER	293	
a	call	to	fork()	is	made.	294	

Table	14	–	GPU	index	specification	295	

Prototypes	 void	ReturnStatus	setGPU	(
uint8_t	gpuNum);	 Input	

Description	 This	function	sets	the	GPU	device	number	to	be	used	by	all	subsequent	implementation	function	calls.		gpuNum	is	
a	zero-based	sequence	value	of	which	GPU	device	to	use.		0	would	mean	the	first	detected	GPU,	1	would	be	the	
second	GPU,	etc.		If	the	implementation	does	not	use	GPUs,	then	this	function	call	should	simply	do	nothing.	

Input	
Parameters	

gpuNum	 Index	number	representing	which	GPU	to	use.	

Return	Value	 See	Table	8	for	all	valid	return	code	values.	

3.3.3. Template	generation	296	
The	function	of	Table	15	supports	role-specific	generation	of	a	template	data.		Template	format	is	entirely	proprietary.	297	

Table	15	–	Template	generation	298	

Prototypes	 ReturnStatus	createTemplate(
const	Multiface	&faces,	 Input	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	13	of	15	
	

TemplateRole	role,	 Input	
std::vector<uint8_t>	&templ,	
std::vector<EyePair>	&eyeCoordinates);	

Output	
Output	

Description	 Takes	a	Multiface	and	outputs	a	proprietary	template	and	associated	eye	coordinates.		The	vectors	to	store	the	
template	and	eye	coordinates	will	be	initially	empty,	and	it	is	up	to	the	implementation	to	populate	them	with	the	
appropriate	data.		In	all	cases,	even	when	unable	to	extract	features,	the	output	shall	be	a	template	that	may	be	
passed	to	the	matchTemplates()	function	without	error.		That	is,	this	routine	must	internally	encode	"template	
creation	failed"	and	the	matcher	must	transparently	handle	this.	

Input	
Parameters	

faces	 Implementations	must	alter	their	behavior	according	to	the	number	of	images	contained	in	
the	structure	and	the	TemplateRole	type.	

role	 Label	describing	the	type/role	of	the	template	to	be	generated	
Output	
Parameters	

templ	 The	output	template.		The	format	is	entirely	unregulated.		This	will	be	an	empty	vector	when	
passed	into	the	function,	and	the	implementation	can	resize	and	populate	it	with	the	
appropriate	data.	

eyeCoordinates	 For	each	input	image	in	the	Multiface,	the	function	shall	return	the	estimated	eye	centers.	
This	will	be	an	empty	vector	when	passed	into	the	function,	and	the	implementation	shall	
populate	it	with	the	appropriate	number	of	entries.		Values	in	eyeCoordinates[i]	shall	
correspond	to	faces[i].	

Return	Value	 See	Table	8	for	all	valid	return	code	values.	

3.3.4. Matching	299	
Matching	of	one	enrollment	against	one	verification	template	shall	be	implemented	by	the	function	of	Table	16.	300	

Table	16	–	Template	matching	301	

Prototype	 ReturnStatus	matchTemplates(
const	std::vector<uint8_t>	&verifTemplate,	 Input	
const	std::vector<uint8_t>	&enrollTemplate,	 Input	
double	&similarity);	 Output	

Description	
	

Compare	two	proprietary	templates	and	output	a	similarity	score,	which	need	not	satisfy	the	metric	properties.	
When	either	or	both	of	the	input	templates	are	the	result	of	a	failed	template	generation	(see	Table	15),	the	
similarity	score	shall	be	-1	and	the	function	return	value	shall	be	VerifTemplateError.	

Input	Parameters	 verifTemplate	 A	verification	template	from	createTemplate(role=Verification_11).		The	underlying	
data	can	be	accessed	via	verifTemplate.data().		The	size,	in	bytes,	of	the	template	
could	be	retrieved	as	verifTemplate.size().	

enrollTemplate	 An	enrollment	template	from	createTemplate(role=Enrollment_11).		The	
underlying	data	can	be	accessed	via	enrollTemplate.data().		The	size,	in	bytes,	of	
the	template	could	be	retrieved	as	enrollTemplate.size().	

Output	
Parameters	

similarity	 A	similarity	score	resulting	from	comparison	of	the	templates,	on	the	range	
[0,DBL_MAX].		See	section	2.2.4.	

Return	Value	 See	Table	8	for	all	valid	return	code	values.	

3.3.1. Training		302	
	303	

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	14	of	15	
	

	304	
Figure	2	–	Schematic	of	training	305	

The	NIST	test	harness	may	optionally	call	the	training	function	in	Table	17	as	a	separate	process	outside	of	the	template	306	
generation	and	matching	process.		The	implementation	will	be	provided	with	the	read-only	configuration	directory	as	307	
supplied	to	NIST	in	the	original	submission,	a	read-write	directory	to	store	output(s)	from	training,	and	a	set	of	face	308	
images	and	subject	attributes	where	available.	309	

Table	17	–	Training		310	

Prototype	 ReturnStatus	train(
const	std::string	&configDir,	 Input	
const	std::string	&trainedConfigDir,	 Input	
const	std::vector<faceAttributePair>	&faces);	 Input	

Description	
	

This	function	provides	the	implementation	with	face	images	and	associated	attributes	where	available.		Attributes	
include	a	subject	ID	(this	value	is	always	assigned),	and	where	available,	subject	data	such	as	age,	gender,	race,	and	
other	information.		Images	of	the	same	person	will	have	the	same	subject	ID.		Genuine	associations	can	be	created	
using	images	with	the	same	subject	ID,	and	imposter	associations	can	be	derived	using	images	with	different	subject	
IDs.		This	function	may	or	may	not	be	called	prior	to	creation	of	templates	or	matching.		The	implementation’s	ability	
to	create	or	match	templates	should	not	be	dependent	on	this	function.	

Input	Parameters	 configDir	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	run-
time	data	files.		The	name	of	this	directory	is	assigned	by	NIST,	not	hardwired	by	the	
provider.		The	names	of	the	files	in	this	directory	are	hardwired	in	the	implementation	and	
are	unrestricted.	

trainedConfigDir	 A	directory	with	read-write	permissions	where	the	implementation	can	store	any	training	
output.		The	name	of	this	directory	is	assigned	by	NIST,	not	hardwired	by	the	provider.		The	
names	of	the	files	in	this	directory	are	hardwired	in	the	implementation	and	are	
unrestricted.		Important:	This	directory	is	what	will	subsequently	be	provided	to	the	
implementation’s	initialize()	function	as	the	input	configuration	directory	if	this	
training	function	is	invoked.		Therefore,	at	a	minimum,	even	if	you	choose	not	to	implement	
this	function,	the	necessary	data	from	the	original	configuration	configDir must	be	
copied	over	into	this	directory.	

faces	 A	vector	of	face	image-attribute	pairs	provided	to	the	implementation	for	training	purposes	
Output	
Parameters	

none	 	

Return	Value	 See	Table	8	for	all	valid	return	code	values.	
Purpose	of	training:		Broadly	NIST	is	seeking	a	repeatable	and	robust	mechanism	to	provide	end	users	with	an	easy	to	311	
use,	automated,	mechanism	to	get	the	benefits	of	training	on	their	own	data.		The	training	function	is	intended	to	312	
improve	some	aspect	of	recognition.		 313	
 314	
NIST's	first	attempt	at	exploiting	the	functionality	of	the	train()	API	function	call	will	be	to	address	this	problem:	Some	315	
recognition	algorithms	give	different	impostor	distributions	for	different	age	groups.		So	NIST	will	call	train	with	thousands	316	
of	images	associated	with	an	identity	and	age	labels.		An	effective	training	mechanism	would	yield	some	configuration	317	

Training	
engine

Faces	+	attributes

	 	 	 	 	 SDK

Native
configuration	data

Updated	
configuration	data

MODEL	ADAPTATION	aka	TRAINING,	(optional)

Algorithm
component	behind	

FRVT	API

Data	passed	by	NIST	
to	algorithm

Key

FRVT	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	15	of	15	
	

data	that	allowed	the	recognition	components	(createTemplate()	and	matchTemplates())	to	improve	stability	of	the	318	
impostor	distribution	across	age	groups.		As	a	second	test,	we	will	then	repeat	this	with	race	labels.	 319	
 320	
That	said,	developers	can	use	this	function	for	any	purpose.		You	can	assume	that	the	tests	that	use	the	result	of	this	step	321	
will	be	with	images	of	the	same	type	as	that	passed	to	the	function.		The	training	and	test	sets	will	have	disjoint	sets	of	322	
people,	reflecting	the	operational	case	where	a	training	function	should	have	utility	over	new	users	of	a	system.		 323	

