\qquad
Do not round answers. Show your work!
The problems below will be covered during the Balance Calibration Seminar and are Recommended to be completed prior to the seminar.
If you wish feedback on your preparedness for these topics submit the problems in either hand written or MSExcel workbook (any version) form. MSExcel is preferred. Title the workbook file:\{Your name\} Balance Math Exercises Recommended \{Date\}.
Return the completed exercises by e-mail with the subject line
"Balance Math Exercises Recommended" to aid in tracking your message.

Metrology-Related Examples

Given the following values:
$100,100.5,100.4,99.9,99.8,100.1,99.6,99.9,100.3,100.2$,
Calculate
R1. Mean (\bar{x}) : \qquad

R2. Range: \qquad

R3. Standard Deviation: \qquad

R4. Average: \qquad
Identify your choice of method for computing the average. Circle the one that applies:
Mean, Mode, Median, Other (explain) \qquad

The problems below will be covered during the Balance Calibration Seminar and are
Recommended to be completed prior to the seminar.
If you wish feedback on your preparedness for these topics submit the problems in either hand written or MSExcel workbook (any version) form. MSExcel is preferred. Title the workbook file:\{Your name\} Balance Math Exercises Recommended \{Date\}.
Return the completed exercises by e-mail with the subject line
"Balance Math Exercises Recommended" to aid in tracking your message.
R5: Given:
Old mean $\left(\bar{x}_{0}\right)\left(\mathrm{n}_{\mathrm{O}}=10\right)$: 99.5
New mean $\left(\bar{x}_{n}\right)\left(\mathrm{n}_{\mathrm{N}}=15\right)$: 100.07
Old standard deviation $\left(s_{o}\right): 0.09954$
New standard deviation $\left(s_{N}\right): 0.283039$
Calculate the value of the t-test using: $t=\left|\frac{\bar{x}_{0}-\bar{x}_{n}}{\left\lvert\, \sqrt{\frac{s_{O}^{2}}{n_{O}}+\frac{s_{N}^{2}}{n_{N}}}\right.}\right|$
$t=$ \qquad

R6:Given:
New value $\left(x_{i}\right)$: 100.5
Reference value ($\mu_{r e f}$): 100.2
New uncertainty $\left(\mathrm{U}_{i}\right)(\mathrm{k}=2): 0.2$
Reference value uncertainty $\left(U_{\text {ref }}\right)(\mathrm{k}=2): 0.16$
Find the E-normal value for the data using the equation: $E_{n}=\left|\frac{\left(x_{i}-\mu_{r e f}\right)}{\sqrt{\left(U_{i}^{2}+U_{r e f}^{2}\right)}}\right|$.
$\boldsymbol{E}_{n}=$

The problems below will be covered during the Balance Calibration Seminar and are Recommended to be completed prior to the seminar.
If you wish feedback on your preparedness for these topics submit the problems in either hand written or MSExcel workbook (any version) form. MSExcel is preferred. Title the workbook file:\{Your name\} Balance Math Exercises Recommended \{Date\}.
Return the completed exercises by e-mail with the subject line
"Balance Math Exercises Recommended" to aid in tracking your message.
R7:Given:
Old standard deviation $\left(s_{O}\right): 0.09954$
New standard deviation $\left(s_{N}\right): 0.283039$
Calculate the F value using the equation: $\quad F=\frac{\left(s_{O}\right)^{2}}{\left(s_{n}\right)^{2}}$
$F=$ \qquad

R8: Given:
Tolerance: 2.3 g
Measurement uncertainty $\left(U_{k=2}\right): 150 \mathrm{mg}$
Calculate the Pn value using the equation: $\quad P_{n}=\frac{U_{k=2}}{\frac{1}{3} \text { Tolerance }}$
$P_{n}=$ \qquad

The problems below will be covered during the Balance Calibration Seminar and are Recommended to be completed prior to the seminar.
If you wish feedback on your preparedness for these topics submit the problems in either hand written or MSExcel workbook (any version) form. MSExcel is preferred. Title the workbook file:\{Your name\} Balance Math Exercises Recommended \{Date\}.
Return the completed exercises by e-mail with the subject line
"Balance Math Exercises Recommended" to aid in tracking your message.
R9:Given:
Uncertainty of standard ($U s \mathrm{k}=2$): $\quad 0.01 \mathrm{mg}$
Standard deviation of process $\left(s_{p}\right): \quad 0.05 \mathrm{mg}$
Calculate the expanded uncertainty (U) using the equation: $U=2 \sqrt{\left(\frac{U_{s}}{2}\right)^{2}+\left(s_{P}\right)^{2}}$
$U=$

The problems below will be covered during the Balance Calibration Seminar and are Recommended to be completed prior to the seminar.
If you wish feedback on your preparedness for these topics submit the problems in either hand written or MSExcel workbook (any version) form. MSExcel is preferred. Title the workbook file:\{Your name\} Balance Math Exercises Recommended \{Date\}.
Return the completed exercises by e-mail with the subject line
"Balance Math Exercises Recommended" to aid in tracking your message.

Units, Conversions, and Related Problems

Use units instructions from NIST Special Publication 811 (attached).
R10: Select the correct form of the abbreviation for the unit: grams

\square
\square $\square \mathrm{gr}$ \square
R11: Select the correct form of the abbreviation for the unit: micro-grams

R12: Select the correct form of the abbreviation for the unit: kilograms
\square
R13: Select the correct form of the abbreviation for the unit: liters
\square
R14: Select the correct form of the abbreviation for the unit: milligrams
\square
\square
\square
\square $\square \mu \mathrm{gs}$
$\square \mathrm{mg}$

R15: Select the correct form of the abbreviation for the unit: milliliters

\square $\mu 1$ \square mL \square ml . \square $\square \mathrm{cc}$ml

R16: Select the acceptable forms for writing the value: $1 / 4$

\square 0.25 \square

Rounding values

Rounding instructions can be found in NISTIR 6969 GLP 9 found at http://www.nist.gov/pml/wmd/labmetrology/upload/GLP 9_20140911.pdf

R17: Round the value 4.9459 g to two significant digits: \qquad g

R18: Round the value 0.2 kg to two significant digits: \qquad kg

R19: Round the value 1059 mg to two significant digits: \qquad mg
\qquad minutes

