Mathematical Exercises	Name:
-------------------------------	-------

Do not round answers. Show your work!

The problems below will be covered during the Balance Calibration Seminar and are Recommended to be completed prior to the seminar.

If you wish feedback on your preparedness for these topics submit the problems in either hand written or MSExcel workbook (any version) form. MSExcel is preferred. Title the workbook file:{Your name} Balance Math Exercises Recommended {Date}.

Return the completed exercises by e-mail with the subject line

"Balance Math Exercises Recommended" to aid in tracking your message.

Metrology-Related Examples

Given the following values: 100, 100.5, 100.4, 99.9, 99.8, 100.1, 99.6, 99.9, 100.3, 100.2,
Calculate
R1. Mean (\bar{x}) :
R2. Range:
R3. Standard Deviation:
R4. Average: Identify your choice of method for computing the average. Circle the one that applies: Mean Mode Median Other (explain)

If you wish feedback on your preparedness for these topics submit the problems in either hand written or MSExcel workbook (any version) form. MSExcel is preferred. Title the workbook file:{Your name} Balance Math Exercises Recommended {Date}.

Return the completed exercises by e-mail with the subject line

"Balance Math Exercises Recommended" to aid in tracking your message.

R5: Given:

Old mean (\bar{x}_0) (n_O=10): 99.5

New mean (\bar{x}_n) (n_N=15): 100.07

Old standard deviation (s_o): 0.09954

New standard deviation (s_N): 0.283039

Calculate the value of the t-test using: $t = \frac{\frac{---}{x_0 - x_n}}{\sqrt{\frac{s_O^2}{n_O} + \frac{s_N^2}{n_N}}}$

t =	:										

R6:Given:

New value (x_i) : 100.5

Reference value (μ_{ref}): 100.2 New uncertainty (U_i) (k=2): 0.2

Reference value uncertainty (U_{ref}) (k=2): 0.16

Find the E-normal value for the data using the equation: $E_n = \left| \frac{\left(x_i - \mu_{ref} \right)}{\sqrt{\left(U_i^2 + U_{ref}^2 \right)}} \right|.$

If you wish feedback on your preparedness for these topics submit the problems in either hand written or MSExcel workbook (any version) form. MSExcel is preferred. Title the workbook file:{Your name} Balance Math Exercises Recommended {Date}.

Return the completed exercises by e-mail with the subject line

"Balance Math Exercises Recommended" to aid in tracking your message.

R7:Given:

Old standard deviation (s_o): 0.09954 New standard deviation (s_N): 0.283039

Calculate the F value using the equation: $F = \frac{(s_O)^2}{(s_n)^2}$

F =

R8:Given:

Tolerance: 2.3 g

Measurement uncertainty $(U_{k=2})$: 150 mg

Calculate the Pn value using the equation: $P_n = \frac{U_{k=2}}{\frac{1}{3} Tolerance}$

If you wish feedback on your preparedness for these topics submit the problems in either hand written or MSExcel workbook (any version) form. MSExcel is preferred. Title the workbook file:{Your name} Balance Math Exercises Recommended {Date}.

Return the completed exercises by e-mail with the subject line

"Balance Math Exercises Recommended" to aid in tracking your message.

R9:Given:

Uncertainty of standard (Us k=2): 0.01 mg Standard deviation of process (s_p): 0.05 mg

Calculate the expanded uncertainty (*U*) using the equation: $U = 2\sqrt{\left(\frac{U_s}{2}\right)^2 + \left(s_p\right)^2}$

U	=			

If you wish feedback on your preparedness for these topics submit the problems in either hand written or MSExcel workbook (any version) form. MSExcel is preferred. Title the workbook file:{Your name} Balance Math Exercises Recommended {Date}.

Return the completed exercises by e-mail with the subject line

"Balance Math Exercises Recommended" to aid in tracking your message.

Units, Conversions, and Related Problems

Use units instructions from NIST Special Publication 811 (attached).

R10:	Select the corre	ect form of the	abbreviation for gm	r the unit: gram	s □gr	\square G				
R11:	Select the corre	ct form of the a	abbreviation for	the unit: micro	-grams mgrs	mcgs.				
R12:	Select the corre	ct form of the a	abbreviation for	the unit: kilogi	rams KGs	kgs				
R13:	Select the corre	ct form of the a	abbreviation for Ls	the unit: liters	ltrs					
R14:	Select the corre	ct form of the a	ubbreviation formG	the unit: millig	grams □μgs	□mg				
R15:	Select the corre \square μ L	ct form of the a	ubbreviation for	the unit: milli	liters cc	☐ ml				
R16: Select the acceptable forms for writing the value: ¹ / ₄ .25										
Rounding values Rounding instructions can be found in NISTIR 6969 GLP 9 found at http://www.nist.gov/pml/wmd/labmetrology/upload/GLP_9_20140911.pdf										
R17: Round the value 4.9459 g to two significant digits: g										
R18:		_ kg								
R19: Round the value 1059 mg to two significant digits: mg										
Time	Time taken to complete these RECOMMENDED math exercises: minutes									