
Video and Image Processing Lab

Face Recognition Using PDE-Textons

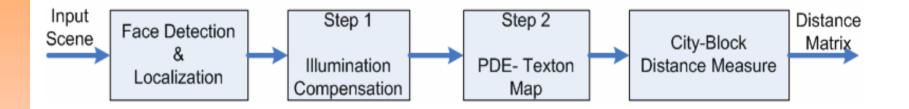
Umasankar Kandaswamy Donald Adjeroh Natalia Schmid Nathan Kalka

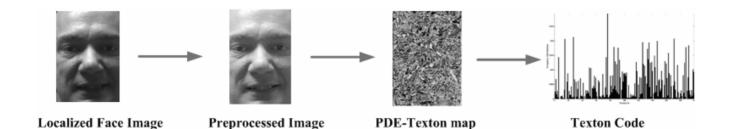
🎸 WestVırginiaUniversity.

Lane Dept of CSEE, West Virginia University, Morgantown, WV, 26505.

Preamble

- Steps followed in FRGC v.1
- Results of Preprocessing
- Results of PDE-Textons on AR dataset
 Comparison results between LBP, Textons, PDE-Textons
- Results on FRGC v.1 dataset with preprocessing





Steps Followed for FRGC v.1

Illumination Compensation

Minvariance-Lighting - Novel Technique
 Handle diffuse and specular reflectance
 Inspired from the dichromatic color model

Advantages
 Low computational cost
 Improved Performance

Results of Minvariance-Lighting

Original Image

Minvariance Lighting

Multiscale Scale Retinex

Histogram Equalization

Note: This Multiscale retinex is based on Land and McCann's work 4/7/2006

Results of Minvariance-Lighting

Original Image

Minvariance Lighting

Multiscale Scale Retinex

Histogram Equalization

4/7/2006

Results of Minvariance-Lighting

Original Image

Minvariance Lighting

Multiscale Scale Retinex

Histogram Equalization

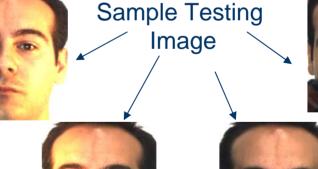
4/7/2006

Comparison with LBP and Textons

- Popular texture analysis schemes, namely Local Binary Patterns (LBP) and 3D Textons worked well under varying illumination and viewing condition.
- ≻ LBP
 - Works well for micro texture.
 - Very efficient
- > 3D Textons
 - Works well under Varying lighting direction and viewing condition
 - Computationally expensive

PDE-Textons

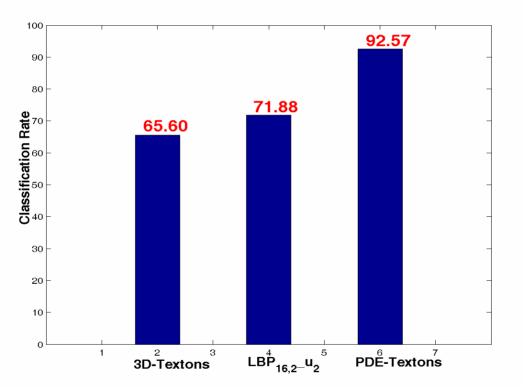
- Computationally cheap
- Better performance than both LBP and 3D textons.
- Requires relatively less learning and less training set.
- Better representation of Facial Features


Training Image

PDE-Textons - Analysis

- Test performed in AR database [1].
- ➢ No of classes: 120
- 1 image/class for Training
- 12 novel images/class for Testing (with expression, illumination variation and occlusion)
- 200 Textons were used to represent the face images.
- k-NN Classifier

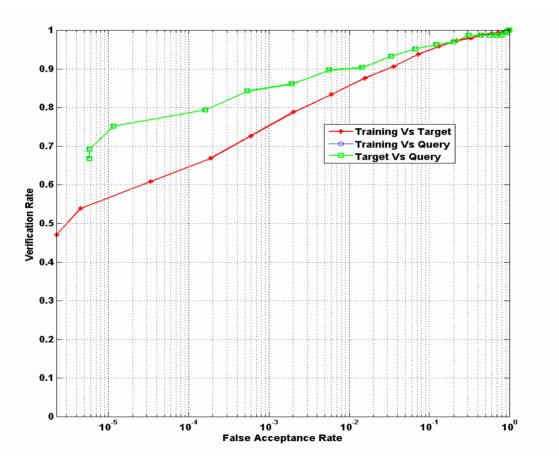
[1] A.M. Martinez and R. Benavente, ``The AR face database," CVC Tech. Report #24, 1998. 4/7/2006



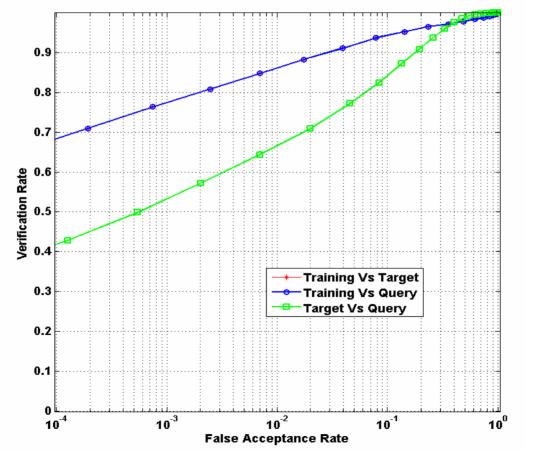
PDE-Textons Results

Note: The results are obtained without any preprocessing

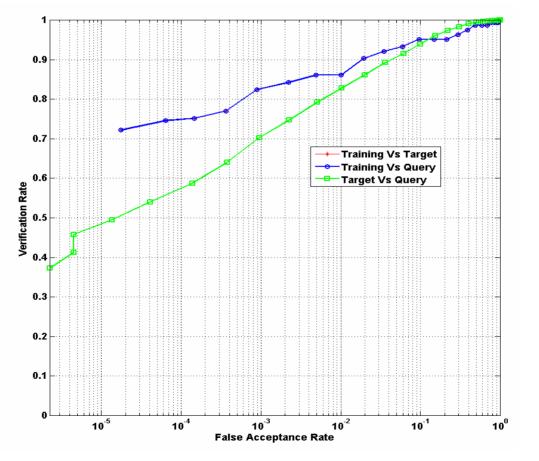
4/7/2006



FRGC v.1 – Experiment 1.0.1



FRGC v.1 – Experiment 1.0.2



FRGC v.1 – Experiment 1.0.3

Currently Studying

- Portability of Textons from set of images to another
- Possible extensions to Motons (to handle motion blur)
- Face retrieval (efficient automated retrieval)
- Modeling variations in feature with respect to resolution.
- Applications to Multimodal Biometrics

Thanks and Questions

Contact:

Umasankar Kandaswamy : <u>umasank@csee.wvu.edu</u> Donald Adjeroh: <u>don@csee.wvu.edu</u> Natalia Schmid: <u>Natalia.Schmid@mail.wvu.edu</u> Nathan Kalka: <u>Nathan.Kalka@mail.wvu.edu</u>