The Need for Large-Scale Biometric Testing

Patrick Grother Information Access Division
NIST

NGT

The purposes of biometric testing

» Scientific discovery
» Basic research, sensors, algorithms,
» Research and development
» Is the method better than before?
» Internal commercial, or gov-industry cooperation
» Capability testing
» Is the technology viable?

- Benchmarking
- Core capability
» Establishing criteria
» Testing to know what's possible
» Could requirements be met
» Is the technology viable?
» Comparative testing
» Which technology?
» Which implementation?
» Conformance
» To requirements
» To standards
» Interoperability testing
» Can we upgrade, replace, while keeping our data?
» Jurisdictional interoperability
» Certification
» Can we leverage others' tests?
> Regression
» Has the update helped?

Stages of Testing

Why test at all?

» It's about money

» Biometric errors cause additional cost

- Failure to enroll \rightarrow additional time, procedures, modalities, processes, time
- In 1:N false non-match \rightarrow benefits fraud, immigration fraud
- In 1:N false match \rightarrow identity resolution processes
» Can the application requirements be met?
» Can the technical requirements be met?
» Risk mitigation
- Characterizing performance allows procedures to mitigate risk e.g. a finding that FTE > 0.03 prompts environmental redesign to regulate humidity, or ambient light.
> Conformance, Interoperability
- Entire system needs to be upgraded / junked if it doesn't interoperate with others

Trading Time for Accuracy

Large scale testing, eh? What's large?

» Statistical definition of large
> Depends on purpose

- e.g. show, with 99% confidence, that a match-on-card comparison algorithm has FAR < 10-4
- e.g. existence proof that a gummy finger can be enrolled in a biometric system
- e.g. given a choice of instructional modes for use of a biometric sensor, determine via live test, which is best
- e.g. testing whether a e-Passport conformance testing suite correctly rejects defective records or JPEG 2000 streams
» Technology dependent
- e.g. comparing AFIS systems vs. comparing 1:1 ePassport gates
» Practically...
> Systematic effects are larger than random effects and these can be identified efficiently
- Irises with radius greater than 150 pixels always fail to enroll
» Cost constraints limit population size, test duration
- Corners are cut (e.g. full-cross comparison of N samples)
» Test crews get tired

Test Size :: Vendor A vs. B

IBPC 2010

» International Biometric Performance Conference
» Novel test methods, metrics
» Specification, requirements, certification
» Accuracy, security, operational
» Emphasis on how systems are tested, vs. latest results
» Co-chairs
» Patrick Grother, Elham Tabassi, NIST
» Christoph Busch, Fraunhofer
» Tony Mansfield, NPL

NGT

Graphische
Datenverarbeitung
» March 2-4, 2010
» Gaithersburg, Maryland
» Call for papers: http://biometrics.nist.gov/ibpc2010

In 119 pages IREX covers

» http://iris.nist.gov/irex
» Compare algorithmic accuracy
» ROCs
» Fixed threshold - effect on FMR and FNMR
» Speed-accuracy trade-space
» False Match Rate Calibration
» How to set the threshold
» Effect of dataset
» On FNMR, on FMR
》 Algorithm interoperability
» Enroll on A - Identify on B
» Segmentation performance
» Image quality assessments
» Biometric zoo
» Compare lossy compression algs
» JPEG vs. JPEG 2000
» Limits of lossless compression
» Bounds on iris size
» How closely to crop an iris
» Comparison of specialized formats
» Masked vs. Polar
» Which is fit for purpose
» Effect of pupil dilation
» And change in dilation
» Effect of eyelid occlusion
» Effect of iris-pupil displacement

Thanks

 patrick.grother@nist.』ov

 patrick.grother@nist.』ov}

3019754157

Minutia interoperability: http://fingerprint.nist.gov/minex
Iris interoperability: http://iris.nist.gov/irex
Biometric Performance Conference: http://biometrics.nist.gov/ibpc2010

NGT

