

Conformance Testing Methodology

Framework for ANSI/NIST-ITL 1-

2011 Update: 2013, Data Format for

the Interchange of Fingerprint, Facial

& Other Biometric Information

[er|(Integrated Errata Edition)|er]1

 Christofer J. McGinnis

Dylan J. Yaga

Fernando L. Podio

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.SP.500-304

1 [er|This edition integrates all errata discovered since NIST SP 500-304 was published. Any modifications from the

originally published document are marked and contained within the [er||er] markers and highlighted for easy

reference.|er]

DRAFT NIST Special Publication 500-304 Rev.1

Conformance Testing Methodology

Framework for ANSI/NIST-ITL 1-

2011 Update: 2013, Data Format for

the Interchange of Fingerprint, Facial

& Other Biometric Information

[er|(Integrated Errata Edition)|er]

Christofer J. McGinnis

Dylan J. Yaga

Fernando L. Podio

Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.500-304

November 2015

U.S. Department of Commerce
Penny Pritzker, Secretary

DRAFT NIST Special Publication 500-304 Rev. 1

National Institute of Standards and Technology

Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director
Certain commercial entities, equipment, or materials may be identified in this

 document in order to describe an experimental procedure or concept adequately.
Such identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 500-304
Natl. Inst. Stand. Technol. Spec. Publ. 500-304, 75 pages (Original: June 2015;

Draft: November 2015)
CODEN: NSPUE2

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.500-304

vi

Reports on Information Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology

(NIST) stimulates U.S. economic growth and industrial competitiveness through technical leadership

and collaborative research in critical infrastructure technology, including tests, test methods,

reference data, and forward-looking standards, to advance the development and productive use of

information technology. To overcome barriers to usability, scalability, interoperability, and security

in information systems and networks, ITL programs focus on a broad range of networking, security,

and advanced information technologies, as well as the mathematical, statistical, and computational

sciences. Special Publication 500-series reports on ITL's research in tests and test methods for

information technology, and its collaborative activities with industry, government and academic

organizations.

This publication is a contribution of the National Institute of Standards and Technology and is not

subject to copyright. Any organization interested in reproducing “Conformance Testing Framework

for ANSI/NIST-ITL 1-2011 Update 2013, Data Format for the Interchange of Fingerprint, Facial &

Other Biometric Information” is free to do so. However, there shall be no alteration to any of the

material information contained in the publication. NIST retains the sole right to submit this

publication to any other forum for any purpose.

Certain commercial entities, equipment, or materials may be identified in this document in order to

describe an experimental procedure or concept adequately. Such identification is not intended to

imply recommendation or endorsement by the National Institute of Standards and Technology, nor is

it intended to imply that the entities, materials, or equipment are necessarily the best available for the

purpose.

National Institute of Standards and Technology

Special Publication 500-304

Natl. Inst. Stand. Technol.

75 pages

vii

Foreword

The existence of biometric standards alone is not enough to demonstrate that products meet the

technical requirements specified in the standards. Conformance testing captures the technical

description of a specification and measures whether an implementation faithfully implements the

specification. Conformance testing provides developers, users, and purchasers with increased levels

of confidence in product quality and increases the probability of successful interoperability. Lack of

conformance to the required standard(s) can, in many cases, jeopardize the expected biometric

recognition performance or prevent access to the data (as well as impact the overall operational

performance) since implementers may handle non-conformant records in different ways during

processing.

Although no conformance test can be comprehensive enough to test all the different combinations of

mandatory requirements of a standard and all possible combinations of conditional and optional

characteristics that could be included in American National Standards Institute (ANSI)/NIST-ITL

2011 Update: 2013 (AN-2013) transactions, a well-designed conformance test tool that faithfully

implements a standard conformance testing methodology could raise the level of confidence on the

test results. Therefore, transactions tested with such a tool (and reported to be conformant to the

standard), are more likely to conform to the standard.

The Computer Security Division (CSD) of NIST/ITL supports the development of biometric

conformance testing methodology standards and other conformity assessment efforts through active

technical participation in the development of biometric standards and associated conformance test

architectures and test suites and develops these test tools to support users who require conformance

to selected biometric standards and product developers interested in conforming to biometric

standards by using the same testing tools available to users. Testing laboratories can also benefit

from the use of these test tools. Under the conformance test software called “BioCTS”, NIST/ITL

CSD develops Conformance Test Architectures (CTAs) and Conformance Test Suites (CTSs) to test

implementations of national and international biometric data interchange formats. The initial version

of a CTA/CTS designed to test implementations of the ANSI/NIST-ITL 1-2011 Update: 2013 was

recently released. These testing tools and related documentation can be found and downloaded at:

http://www.nist.gov/itl/csd/biometrics/biocta_download.cfm.

http://www.nist.gov/itl/csd/biometrics/biocta_download.cfm

viii

Table of Contents

Foreword ... vii

1 Introduction .. 1

2 Conformance Test Tool Characteristics .. 2

3 References ... 2

4 Terms and definitions .. 2

5 Conformance testing methodology .. 4

5.1 AN-2013 Requirements and Conformance Test Assertions 4

5.2 Limitations and exceptions .. 5

5.3 Hierarchy of conformance tests ... 5

5.4 Functional Documentation of Requirements and Test Assertions 6

5.5 Claim of Supported Test Assertions .. 27

Annex A: Minimum Support for AN-2013 Record Types and Interrelated Fields 29

A.1 Minimum Conformance ... 29

A.2 Interrelated Field Support.. 29

Annex B: Sample Requirement and Assertion Table Format 31

Annex C: Tables of Requirements and Assertions .. 32

Annex D: Test Notes and Test Exceptions ... 67

Acknowledgements .. 68

ix

List of Tables and Figures

Table 5.1 - Assertion Syntax: Value-Type Definitions.. 7

Table 5.2 - Assertion Syntax: Defined Values .. 9

Table 5.3 - Assertion Syntax: Value-based Image Metadata Tags 11

Table 5.4 - Assertion Syntax: Marker-based Image Metadata Tags 12

Table 5.5 - Assertion Syntax: Expression Definitions ... 13

Table 5.6 - Assertion Syntax: Complex Expression Definitions 22

Table 5.7 - Assertion Syntax: Complex Value-Type Definitions.................................... 23

Table 5.8 - Assertion Syntax: Complex Procedure Definitions 23

Figure 5.9 - Generic AN-2013 Field Structure ... 24

Table A.1 - AN-2013 Interrelated Field Support .. 29

Figure B.1 – Sample Requirements and Assertions Table .. 31

Table C.1 - Assertions for Transaction-related Requirements 33

Table C.2 - Assertions for Record Type 1: Transaction information record 40

1

1 Introduction

This publication defines a conformance testing methodology framework (CTMF) which includes

elements of a conformance testing methodology (CTM), conformance test assertions, and

conformance test procedures applicable to ANSI/NIST-ITL 2011 Update: 2013 (AN-2013). It

discusses three levels of conformance testing (Level 1, Level 2, and Level 3) and provides a detailed

Test Assertion Syntax for describing conformance test procedures. The Conformance Test Assertion

Syntax formalizes a method for representing these conformance tests using Expressions, Value-

Types, Operators, and Operands.

A table-based format for documenting AN-2013 requirements and conformance test assertions is

included. The table-based format indicates the association between requirements in AN-2013 and

the test assertions and test procedures required to test each assertion. It includes information on the

applicability of each test assertion indicating whether it only applies to the Traditional encoding as

described in Annex B of AN-2013 (“T”), to the National Information Exchange Model (NIEM)-

conformant Extensible Markup Language (XML) encoding as described in Annex C of AN-2013

(“X”), or to both Traditional and NIEM (XML) encoding (“B”).

AN-2013 specifies a data-interchange transaction format comprised of Record Types (collections of

biometric and/or forensic modality data and related metadata). The test assertion tables included in

Annex C identify requirements and assertions that are required for every transaction (regardless of its

containing Record Types) according to the terms specified in AN-2013. These types of requirements

are referred to as transaction-related requirements and are defined as requirements that are not related

to a specific Record Type. Examples of transaction-related requirements include:

 The transaction adheres to its specified encoding (Traditional or NIEM-XML) requirements.

 The transaction includes one and only one Record Type-1.

 Record Type-1 is encoded exclusively in 7-bit ASCII (for Traditional Encoding).

 Record Type-1 is conformant to the requirements specified for its fields, subfields, and

information items:

o All mandatory fields, subfields, and information items in Record Type-1 must be

present (with data), and the requirements for those entities must be met.

o Optional and dependent fields, subfields, and information items that are present in

Record Type-1 must be conformant to the requirements specified for those entities.

 the transaction includes at least one other record of a type other than Record Type-1

 the transaction does not include deprecated or reserved record types or fields.

The test assertions for Record Type-1 are also documented. The requirements in Annex C are silent

regarding requirements for any specific Record Type included in the transaction other than Record

Type-1. Tables of AN-2013 requirements and test assertions pertaining to specific Record Types

(other than Record Type-1) are not documented in this CTMF document, but plans exist to document

them in separate publications (National Institute of Standards and Technology Interagency

Reports/NISTIRs).

Annex D includes test notes and test exceptions that apply to requirements and assertions

documented in Annex C as well as test notes and exceptions for those requirements which may be

released in separate publications.

2

Definitions of Type A and B testing are included in Section 4. Level 1, 2, and 3 testing are discussed

in Section 5.3. The tables of requirements and test assertions in this publication address only Level 1

and 2 testing and Type-A testing. Assertions for Type-B testing are not included.

The CTMF does not establish tests of characteristics (i.e., performance, acceptance, security,

robustness) of products that generate the AN-2013 transactions.

2 Conformance Test Tool Characteristics

AN-2013 conformance test tools that fully implement the CTMF for testing the AN-2013

requirements are expected to implement all the requirements of Section 5, the Conformance Testing

Methodology section, including the procedures defined by Level 1 and Level 2 test assertions. Such

tools are also expected to be capable of testing AN-2013 implementations against the assertions

specified in Annex A for the mandatory requirements in AN-2013 and any requirements associated

with Optional entities that are included in the transaction. Although many constructs (such as fields

and subfields) specified in the AN-2013 standard are optional, their presence in a specific transaction

indicates that the requirements specified for those constructs are mandatory (see “Implementation

Required” in the table headers of the Tables of requirements and assertions format in Annex A).

3 References

NIST Special Publication 500-290 Version 2 (2013), ANSI/NIST-ITL 1-2011 Update:2013,

December 2013, Information Technology: American National Standard for Information Systems -

Data Format for the Interchange of Fingerprint, Facial & Other Biometric Information, Incorporating

ANSI/NIST 1-2011 Sup:Dental & ANSI/NIST-ITL 1-2011 Sup:Voice with additional new material

Available at http://biometrics.nist.gov/cs_links/standard/ansi_2012/Update-

Final_Approved_Version.pdf

JPEG (Joint Photographic Experts Group), JPEG File Interchange Format, Version 1.02.

Available at http://www.jpeg.org/public/jfif.pdf

ISO/IEC 15444-1, JPEG 2000, Information Technology - Digital Compression and

Coding of Continuous-Tone Still Images Part 1: Requirements and Guidelines.

ISO/IEC 15444-2, Information technology — JPEG 2000 image coding system:

Extension, available at: http://www.jpeg.org/metadata/15444-2.PDF

ISO/IEC 15948:2004 Information Technology -- Computer graphics and image

processing -- Portable Network Graphics (PNG): Functional specification.

IAFIS-IC-0110 (V3.1) WSQ Gray-scale Fingerprint Image Compression Specification,

October 4, 2010.

4 Terms and definitions

 AN-2013

ANSI/NIST-ITL 2011 Update: 2013

http://biometrics.nist.gov/cs_links/standard/ansi_2012/Update-Final_Approved_Version.pdf
http://biometrics.nist.gov/cs_links/standard/ansi_2012/Update-Final_Approved_Version.pdf
http://www.jpeg.org/public/jfif.pdf
http://www.jpeg.org/metadata/15444-2.PDF

3

assertion

A test procedure that represents a specific aspect of a requirement found in the base standard. The

assertion is expressed using the test assertion syntax defined by the CTMF.

base standard

ANSI/NIST-ITL 1-2011 Update: 2013, Data Format for the Interchange of Fingerprint, Facial &

Other Biometric Information, NIST Special Publication 500-290 Version 2 - Incorporating

ANSI/NIST 1-2011 Sup:Dental & ANSI/NIST-ITL 1-2011 Sup:Voice with additional new material.

conformance

The adherence of an implementation to all specified requirements as defined in the base standard.

CTA

Conformance Testing Architecture.

CTM

Conformance Testing Methodology. A description of the procedures necessary to test an

implementation for conformance to the requirements specified in the base standard.

CTMF

Conformance Testing Methodology Framework. The foundational specification of the format and

procedures that must be utilized to properly document and test requirements according to the base

standard, and therefore establish a Conformance Testing Methodology.

CTS

Conformance Testing Suite.

implementation

A specific AN-2013 transaction.

IUT

Implementation under test. The implementation supplied by a vendor to a laboratory for conformance

testing.

test

Also known as a conformance test or assertion test, it is the execution of the testing procedure

defined by an assertion or set of assertions in order to obtain a statement of conformance. The result

of the test is a Boolean value that determines the implementation’s conformity for the assertion. For a

4

given requirement, if all tests pass for the associated assertions, then the implementation is

considered to be conformant for that requirement.

Type-A testing

Type-A conformance testing checks the conformance of AN-2013 transactions to the requirements in

the base standard.

Type-B testing

Type-B testing checks the ability to use an AN-2013 transaction, for example in a software

application.

5 Conformance testing methodology

The CTMF addresses only Level 1 and 2 testing and Type-A testing. Annex A lists test assertions

for Level-1 and Level-2 requirements. While Level-3 requirements may be identified in Annex A, no

related test assertions are documented (see “Hierarchy of conformance tests” for information

regarding the three levels of conformance testing). Type-B testing is not addressed.

5.1 AN-2013 Requirements and Conformance Test Assertions

Tables of AN-2013 requirements and conformance test assertions are documented in this publication

and included in Annex A. AN-2103 transaction-related requirements (defined as requirements that

are not related to a specific Record Type) as well as AN-2013 requirements and test assertions for

Record Type 1 are included. The tables provide the information necessary to facilitate the

development of conformance test assertions and testing tools. Each AN-2013 requirement identified

in this publication is associated with one or more specified test assertions which collectively expect

to form the complete set of procedures required to test an implementation for conformance to that

requirement. More details on these types of test assertions are included below:

 Transaction-related Requirements and Associated Test Assertions Table

Includes AN-2013 requirements and associated test assertions related to all AN-2013

transactions, their data conventions, encodings, content, and other information not related to a

specific Record. Examples include requirements and associated test assertions that describe (and

document how to test) the structure and ordering of constructs that make up all AN-2013

transactions; nonexistence checks for deprecated Record Types 3, 5, and 6 as well as reserved

Record Types 22 through 97; and requirements defined in Annex B, C, and G of AN-2013

related to AN-2013 transactions.

 Record Type-1: Transaction Information Record Requirements and Associated Test

Assertions

Includes AN-2013 requirements and test assertions related to mandatory fields, subfields,

information items, and XML Elements in Record Type-1 that must be met for every AN-2013

transaction; optional constructs for Record Type-1 (if any optional construct is present in a

transaction, the defined requirements for those constructs become mandatory); and those related

5

to testing that one and only one instance of Record Type-1 is present in every AN-2013

transaction.

5.2 Limitations and exceptions

Section 1 describes the AN-2013 requirements that are documented with the associated required test

assertions. Complementary publications are planned to be released which will document AN-2013

requirements and test assertions for specific AN-2013 Record Types in a format that complies with

the CTMF described in this publication. A comprehensive AN-2013 CTMF (for testing all Record

Types specified in the AN-2013 standard) would consist of the methodology documented in this

publication as well as the set of requirements and assertions for each Record Type in AN-2013.

While conformance of an implementation to all relevant requirements can be determined, no test tool

is guaranteed to be comprehensive and prove that a given system generating or using AN‐2013

transactions is conformant under all possible circumstances. Well‐designed conformance tests can,

however, test the most likely sources of problems and demonstrate non‐conformity (i.e., if errors are

found, non‐conformance of the transaction is likely), but the absence of detected errors does not

necessarily imply full conformance to the standard.

5.3 Hierarchy of conformance tests

Three levels of conformance testing are briefly described. For each assertion included in the tables

of requirements and assertions, a level of conformance testing is indicated.

Level 1 conformance testing

Level 1 conformance testing deals with the form and structure of the internal content and verifies that

data structures exist and have allowable values. Specifically, it checks for the presence, structure,

and value of each field, subfield, and information item in a transaction for conformance with the

specification of the standard, both in terms of ranges and cardinality. Since Level 1 testing can be

performed by a simple field-by-field reading of the standard and comparison to known values and

their encoding, only the AN-2013 transactions are required for conformance testing, and no hardware

or software components are used to create those transactions.

Level 2 conformance testing

Level 2 conformance testing deals with explicit requirements that check for internal consistency.

Specifically, morphological conformance checks the relationships between fields, subfields, or

information items within a transaction, including comparisons of values, as specified in the AN-2013

standard. Level 2 tests involve interactions between multiple values from different parts of the

standard and sometimes from implicit observations that are not explicitly stated in the base standard.

Thus, Level 2 tests require more complex validation than Level 1. Similar to Level 1 testing, Level 2

conformance testing only requires an AN-2013 transaction(s).

Level 3 conformance testing

6

Level 3 conformance testing checks if the biometric transaction is a faithful representation of the

parent biometric data and ensures requirements are satisfied that are not merely Level 1 and Level 2

tests. Individual fields may have explicit semantic requirements for which conformance testing is

significantly difficult or even impossible to test. Unlike Level 1 and Level 2 testing, Level 3 testing

may require software and hardware components used to create the AN-2013 transactions, and may

also require the subject and samples from which the biometric information stored in the transaction

was collected. The requirements and assertion tables indicate whether Level 1 or Level 2

conformance testing is required to address the assertion identified in the test assertion. Required

Level 3 conformance tests are not performed but they may be identified in the tables to indicate that

the requirement is not addressed or that it is not currently testable.

XML Schemas and Conformance Testing

This CTMF, where possible, leverages the conformance-related information contained in the XML

Schemas specified within the AN-2013 standard; however, the XML Schemas are only part of the

overall testing. Section C.5.1 in the ANSI/NIST-ITL 1-2011 Update: 2013 standard specifies:

To the extent possible, the schema defines data types and constraints that enforce the

allowable content rules of the base standard. Nevertheless, the XML schema may not strictly

enforce the allowable content. The base standard defines allowable content, and its

requirements shall be met by implementers regardless of encoding method.

Careful analysis of the XML Schemas, distributed on the ANSI/NIST-ITL Homepage Website,

reveal discrepancies between the XML Schema requirements and the AN-2013 standard

requirements:

 Level 1 conformance testing – Not all allowable values have been specified within the

XML Schema files.

 Level 2 conformance testing – Many interrelationship, internal consistency, and

interaction tests between multiple values from different sections of a transaction are

incapable of being specified within the XML Schemas.

The XML Schema files may not strictly enforce the allowable content in two ways:

 By Being Overly Broad – Which allows for the testing of more values than the allowable

values as specified in the AN-2013 standard requirements. If this is the case, there are

additional Assertions specified in this CTMF to test for the actual range of values.

 By Preventing Requirements – This case is when the XML Schema explicitly prevents

base requirements specified in the AN-2013 standard from being tested. If this is the case

the only option is to modify the XML Schema files. This modified Schema file is not

included in this CTMF, but will be documented separately and made available at:

http://www.nist.gov/itl/csd/biometrics/biocta_download.cfm.

5.4 Functional Documentation of Requirements and Test Assertions

This section defines the syntax and format required to explicitly identify and document AN-2013

requirements and conformance test assertions in a concise manner that conveys the necessary

information for conformance testing.

Test Assertion Syntax

http://www.nist.gov/itl/csd/biometrics/biocta_download.cfm

7

Test Assertions represent the set of tests performed to determine conformance for a specific

Requirement specified in AN-2013. The Test Assertion Syntax described in this section formalizes a

method for representing these conformance tests using Expressions, Value-Types, Operators, and

Operands to describe Test Assertions.

In some instances, a Test Assertion cannot be clearly or easily represented using this syntax. These

cases are referred to as Complex Assertions and English is used to express the assertion in the

following format: Complex (Description), where Description is a summary of the Test Assertion.

Additional syntax is described for use in complex Test Assertions only to help clarify their meaning.

Test Assertions

Test Assertions are evaluated to obtain a Test Result, which may be Pass, Fail, or Warning. Pass

indicates the likelihood that the implementation conforms to that specific requirement, while Fail

indicates again the likelihood that the implementation does not meet that specific requirement in the

standard. Warning indicates that no errors were detected but provides additional information useful

for the implementer.

Test Assertions are made up of one or more Expressions as defined in the Expression Definitions

table. The outermost Expression in any Test Assertion must return a Boolean or Test Result value as

defined in the Value-Type Definitions table. If the outermost Expression returns a Boolean, it is

converted to a Test Result in the following manner: True becomes Pass, and False becomes Fail.

Value Types

The following table lists the Value Types that may be used in the Expressions that make up the

Assertion Syntax. The actual value, represented by VALUE in the table, is contained in parentheses

just after the Value Type identifier. Value Types differ from Expressions, because Value Types

cannot accept any operands; they accept only the defined values specified in the Valid Values

column. For example, Int(-1) is the Integer value negative one.

Due to the nature of AN-2013 transactions which may include multiple instances of each record type

other than Type-1, any specified entity Value Type is not necessarily unique. For example,

Fld(10.001) represents every occurrence of Field 1 in any Record Type-10.

Table 5.1 - Assertion Syntax: Value-Type Definitions

Value-Type Definitions

Value Type Valid Values Syntax

Boolean True, False. Bool(VALUE)

TestResult Pass, Fail, Warning.
Any of the values may be followed by a description in the form:
Pass(description), Fail(description), Warning(description).
The description is a message that should be displayed with the
result. A description is optional.

Result(VALUE)

Numeric Any rational numeric value, for example: …-2,-1,0,1,2…, 1.1, -10.01,
0x32... Note that NumericInteger and NumericByte can be used in
place of Numeric in any instance, since they are of type Numeric.
However, the reverse is not true.
Numeric values do not have leading zeros. For example, Num(02) is
invalid, and should instead be Num(2).

Num(VALUE)

8

NumericInteger Any Integer Value: …-2,-1,0,1,2…, Int(VALUE)

NumericByte One byte of binary data, represented in Hex. The value is
represented using “0x”. For example: 0x30

Byte(VALUE)

String Any sequence of valid Unicode characters represented by text. If the
string contains characters that cannot be represented visually, the
Unicode expression may be used to return a string given a set of
Unicode codepoint values. If a string should be verbatim (for
example there is a need to represent U+0030 as a string and not the
Unicode equivalent) quotes should surround the value. To represent
quotes in a string, “” is used.
Examples:
Str(123) is equal to Unicode(Set-Str([U+0031, U+0032, U+0033])).
Both represent the string “123”
Str(“”U+0030””) is “U+0030”
Str(“U+0300”) is U+0300
Str(U+0030) is 0

Str(VALUE)

StringList A list of valid String Value-Types separated by the | character in the
form: firstValue|secondValue|...
Examples:
StrList(This is|a|List)
StrList(Unicode(U+001C)|1|2|Unicode(Set-Str([U+001E,U+001F])))

StrList(VALUE)

Set Any set of values included in the [] characters. The comma is used to
separate values. The “to” term is used to represent a range for
Integer Numeric types. For example,
Set-Num([0,2, 5 to 100]), Set-Str([A, B, C, Alfa, Bravo, Charlie]), Set-
Fld([1.001, 1.002 to 1.005]), Set-Byte([0x00, 0xFF])
Note that for sets of Strings, the comma is reserved as a separator
between values. To represent a comma in a Set-Str, use U+002C.

Set-TYPE(VALUE),
where TYPE is any of
the Value-Type Syntax
representations.

EntityTransaction The transaction that contains all other entities in the file. Transaction

EntityRecord A Record represented by the numeric value of the Record Type.
Ex: Rec(10) is Record Type-10.

Rec(VALUE)

EntityField The Field represented by the string in the form: RT.FN
RT is Record Type, FN is Field Number
Ex: 10.998 is Field 998 in Record Type-10

Fld(VALUE)

EntitySubField The Subfield represented by the string operand in the form: RT.FN.SI
RT is Record Type, FN is Field Number, SI is the Subfield Index.
If no SI is specified, then this refers to any Subfield in the Field.
1.003.1 is Subfield 1 in Field 1.003,
1.003 is each Subfield in Field 1.003; this is useful when subfields are
unbounded, so that an assertion may address each subfield without
knowing the number of subfields that will be present.

[er|SubFld(VALUE)|er]

EntityInfoItem The Information Item represented by the string in the form:
RT.FN.IM
RT is Record Type, FN is Field Number, IM is InfoItem Mnemonic
Ex: 1.003.IDC is Info Item IDC in Field 1.003

InfoI(VALUE)

EntityElement XML Element with name indicated by the string in the form:
RT.FN.XN
RT is Record Type, FN is Field Number, XN is the Xml element name
Ex:1.002.biom:TransactionMajorVersionValue

XElm(VALUE)

EntityContainerElement XML Container Element (has no Field Number, and is only used to
organize other Xml Elements) indicated by the string in the form:
RT.XN

XCont(VALUE)

9

RT is Record Type, FN is Field Number, XN is the Xml element name
Ex: XElmC(10.biom:FaceImage)

In order to decrease redundancy, predefined values are listed here and used multiple times throughout

the tables of requirements and assertions.

Table 5.2 - Assertion Syntax: Defined Values

Defined Values

Defined Value Containing Values Notation

Integer Set Set of all Integers (positive and negative integral values, including zero)
represented as a Set-Int.

Integers

Numeric
Leading Zero

The string value is a Regular Expression in the form:
Str(^(\+|-){0,1}0([0-9]+|[0-9]+\.[0-9]+)$)
The expression represents any numeric value (with or without a + or – sign) that
has a leading zero followed by one or more numeric digits (which optionally may
be followed by a decimal point and one or more numeric digits after the
decimal).

LeadingZer
oNum

Time Index The string value is a Regular Expression in the form:
Str(^([0,1][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9].[0-9]{3}$)
The expression represents time in the form hh:mm:ss.nnn, where hh is the two-
digit hour,mm is the two-digit minute, ss is the two-digit seconds, and nnn is the
three-digit milliseconds. (See section 7.7.2.5 of the standard).

ValidTimeI
dx

Date Range
Estimate

The string expression is a Regular Expression in the form:
^((Y[0-9]{1,2}){0,1}(M[0-9]{1,2}){0,1}(D[0-9]{1,2}){0,1})$
The expression represents the amount of time used as an offset (plus or minus),
in the form YyyMmmDdd . Any of Yyy, Mmm, or Ddd may be omitted. Bold
letters are constants; yy is the 2-digit year offset, mm is the 2-digit month offset,
and dd is the 2-digit day offset. The bold letters are constants.

DateRange
Estimate

Date Time
Range Estimate

The string expression is a Regular Expression in the form:
^((Y[0-9]{1,2}){0,1}(M[0-9]{1,2}){0,1}(D[0-9]{1,2}){0,1}(h[0-9]{1,2}){0,1}(m[0-
9]{1,2}){0,1})$
The expression represents the amount of time used as an offset (plus or minus),
in the form YyyMmmDddhhhmmm . Any of Yyy, Mmm, Ddd, hhh, or mmm may
be omitted. The bold letters are constants.

DateTimeR
angeEstima

te

Numeric
Characters

Set-Str([0,1,2,3,4,5,6,7,8,9]) CharNum

Alphabetic
Characters

Set-Str
([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,a,b,c,d,e,f,g,h,I,j,k,l,m,n,o,p,
q,r,s,t,u,v,w,x,y,z])

CharAlpha

Alphanumeric
Characters

Set-Str ([0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,
a,b,c,d,e,f,g,h,I,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z])

CharAlpha
Num

Hexadecimal
Characters

Set-Str([0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F]) CharHex

Unicode
Characters

Set of all Unicode characters excluding the Special Reserved Characters
(CharReserved) defined in this table. (Represented as a Set-Str of single-
character strings).

CharU

Base64
Characters

Set-Str([0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,
a,b,c,d,e,f,g,h,I,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,/,+,=])

CharBase6
4

10

7-bit ASCII
Characters

All characters starting with Unicode(U+0000) and ending with Unicode(U+007F)
excluding the Special Reserved Characters defined in this table. (Represented as
a Set-Str of single-character strings).

CharAscii

ASCII-Printable
Characters

All characters starting with Unicode(U+0020) and ending with Unicode(U+007E). CharAsciiPr
intable

Special
Reserved
Characters

Set-Str([Unicode(U+0002), Unicode(U+0003), Unicode(U+001C),
Unicode(U+001D), Unicode(U+001E), Unicode(U+001F)])
(Special characters “STX”, “ETX”, “FS”, “GS”, “RS”, and “US”)

CharReserv
ed

Control
Characters

Set-Str([Unicode(U+0000), Unicode(U+0001), Unicode(U+0004),
Unicode(U+0005), Unicode(U+0006), Unicode(U+0007), Unicode(U+0008),
Unicode(U+0009) , Unicode(U+000A), Unicode(U+000B), Unicode(U+000C),
Unicode(U+000D), Unicode(U+000E), Unicode(U+000F), Unicode(U+0010),
Unicode(U+0011), Unicode(U+0012), Unicode(U+0013), Unicode(U+0014),
Unicode(U+0015), Unicode(U+0016), Unicode(U+0017), Unicode(U+0018),
Unicode(U+0019), Unicode(U+001A), Unicode(U+001B), Unicode(U+007F)])
(Control characters “NUL”, “SOH”, “EOT”, “ENQ”, “ACK”, “BEL”, “BS”, “HT”, “LF”,
“VT”, “FF”, “CR”, “SO”, “SI”, “DLE”, “DC1”, “DC2”, “DC3”, “DC4”, “NAK”, “SYN”,
“ETB”, “CAN”, “EM”, “SUB”, “ESC” and “DEL”)

CharCtrl

Resolution
Migration Path
(ppi)

Set-Int([500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]) (This represents 500
ppi minimum with 100% increase and a 5-digit maximum set by the field width
for THPS/TVPS)

Resolution
Path-ppi

Resolution
Migration Path
(ppcm)

Set-Int([197, 394, 787, 1575, 3150, 6299, 12598, 25197, 50394]) (This represents
197 ppcm minimum with 100 % increase and a 5-digit maximum set by the field
width for THPS/TVPS)

Resolution
Path-ppcm

ISO-3166-1
Codes

Set-Str representing all values in the ISO Country Code Standard ISO-3166-1.

ISO-3166-1

ISO-3166-1
Alpha 2 Codes

Set-Str of all 2-character alphabetic codes in the ISO Country Code Standard ISO-
3166-1.

ISO-3166-
1-Alpha2

ISO-3166-1
Alpha 3 Codes

Set-Str of all 3-character alphabetic codes in the ISO Country Code Standard ISO-
3166-1.

ISO-3166-
1-Alpha3

ISO-3166-1
Numeric Codes

Set-Str of all numeric codes in the ISO Country Code Standard ISO-3166-1.

ISO-3166-
1-Numeric

GENC Codes Set-Str representing all values in the GENC Country Code Standard, Edition 2.0
(NGA.STND.0033_2.0).

GENC

GENC Alpha 2
Codes

Set-Str of all 2-character alphabetic codes in the GENC Country Code Standard,
Edition 2.0 (NGA.STND.0033_2.0).

GENC-
Alpha2

GENC Alpha 3
Codes

Set-Str of all 3-character alphabetic codes in the GENC Country Code Standard,
Edition 2.0 (NGA.STND.0033_2.0).

GENC-
Alpha3

GENC Numeric
Codes

Set-Str of all numeric codes in the GENC Country Code Standard, Edition 2.0
(NGA.STND.0033_2.0).

GENC-
Numeric

The following String values represent image metadata tags that are defined for use in the syntax.

Their positions within an image are based upon the compression algorithm of the image, indicated by

the Image Type(s) column. Table 5.3 indicates tags that contain data, while Table 5.4 indicates tags

that are used as positioning or identification markers in the image. For both tables, the Image Types

may also be represented by the associated numeric code from Table 15 in AN-2013. Note: for PNG

11

values in this table, values are converted from ppm to ppi or ppcm as indicated. This syntax follows

the recommendation for rounding indicated in 7.7.8.5 of AN-2013 (round up).

Table 5.3 - Assertion Syntax: Value-based Image Metadata Tags

Image Metadata

Term Image
Type(s)

Implementation

Width

JPEG 4th parameter of the Frame Header not counting the SOF marker

JP2 2nd parameter of Image Header box
PNG 1st parameter of IHDR chunk

WSQ 5th parameter of SOF not counting the SOF marker

Height

JPEG 3rd parameter of the Frame Header not counting the SOF marker

JP2 1st parameter of Image Header box

PNG 2nd parameter of IHDR chunk

WSQ 4th parameter of SOF not counting the SOF marker

SamplingUnits

JPEG 4th parameter in JFIF Header not counting the APP0 Marker

JP2 Undefined

PNG 3rd parameter of PHYS chunk (optional)

WSQ Undefined

HorzDensity-ppi

JPEG 5th parameter in JFIF Header not counting the APP0 Marker

JP2 Undefined

PNG 0.0254 (meters/inch) x 1st parameter in PHYS Chunk (optional)

WSQ Undefined

HorzDensity-ppcm

JPEG 5th parameter in JFIF Header not counting the APP0 Marker

JP2 Undefined

PNG 0.01 (meters/cm) x 1st parameter in PHYS Chunk (optional)

WSQ Undefined

VertDensity-ppi

JPEG 6th parameter in JFIF Header not counting the APP0 Marker

JP2 Undefined

PNG 0.0254 (meters/inch) x 2nd parameter in PHYS Chunk (optional)

WSQ Undefined

VertDensity-ppcm

JPEG 6th parameter in JFIF Header not counting the APP0 Marker

JP2 Undefined

PNG 0.01 (meters/cm) x 2nd parameter in PHYS Chunk (optional)

WSQ Undefined

AspectRatio

JPEG 5th parameter in JFIF Header / 6th parameter in JFIF Header (not
counting the APP0 Marker)

JP2 Undefined

PNG 1st parameter in PHYS Chunk / 2nd parameter in PHYS Chunk
(optional)

WSQ Undefined

BPX JPEG 2nd parameter of the Frame Header not counting the SOF marker

JP2 7 LSB of 4th parameter of ImgBox + 1 if 4th parameter of ImgBox is
not 255

PNG 3rd parameter of IHDR chunk

WSQ Undefined

CSP JPEG Undefined

12

JP2 4th parameter of Colour Specification box

PNG 4th parameter of IHDR chunk

WSQ Undefined

Table 5.4 - Assertion Syntax: Marker-based Image Metadata Tags

Image Metadata

Image Type Valid Image
Markers

Implementation

JPEG SOI Start of JPEG type image.

SOF Start of frame in a JPEG type image.

EOI End of a JPEG image.

JFIF Header Frame for specifying JPEG type image metadata. Its inclusion is
required by the standard.

JP2 SigBox Signature Box that marks the start of a JP2 type image.

HeadBox Header Box in a JP2 type image.

ImgBox Image Header Box in a JP2 type image.

EOI End of JP2 image.

PNG PNGSig Signature of a PNG image.

IHDR Image Header Chunk in a PNG image.

IDAT Image Data Chunk in a PNG image.

IEND Image End Chunk in a PNG image.

WSQ SOI Start of WSQ type image.

SOF Start of frame in a WSQ type image.

EOI End of a WSQ image.

Expressions

Test Assertions are composed of one or more Expressions, which are statements that return a Value

Type as defined in the Value-Type Definitions table. Each Expression has a single Operator, a set of

valid Operands, and Return Type. Expressions may serve as Operands of other Expressions as long

as their Return Type is a valid Operand for that Expression.

The tables below include a complete description of the Expressions and their required Operators and

Operands used throughout the requirements and assertion tables. The Operators are categorized

according to the type of Expression in which they are used and the Return Type they produce.

Return Types must be a valid Value Type. The tables indicate the following information for each

Expression:

 Expression Name: the name of the Expression

 Description: an explanation of how the Expression is used to return the specified Value Type

 Return Type: the Return Type that is returned from the Expression. The Return Type must be

a valid Value Type.

 Operands Types: the number and type of operands accepted by the Expression. In addition to

the Value Type indicated, any Expression that returns that type can be used as an Operand.

13

Underlined Operands are optional. If operands are not formatted properly, the test assertion

that contains the expression has a failing TestResult.

 Operator Syntax: the Operator used to represent the Expression in the assertion tables

Boolean Expressions-

These Expressions return Boolean Values. There are several types of Boolean Expressions including

Relational (comparison between values), Logical (Boolean logic statements), and Conditional

(if/then) Boolean expressions.

Result Expressions-

These Expressions return a Test Result, meaning that the value may be Pass, Fail, or Warning. This is

the only expression type capable of generating a Warning.

Numeric Expressions-

These Expressions return a Numeric value or any of its sub-types: NumericInteger or NumericByte.

String Expressions-

These Expressions return a String value.

Generic Expressions-

These Expressions return values that depend upon the Operand Type used with the expression. Each

Generic Expression is intended to be used with various Value-Types.

Table 5.5 - Assertion Syntax: Expression Definitions

Expression Definitions
 Expression Name Description Return Type Operand Types Operator Syntax

B
o

o
le

an

Equal To Relational Test for equality between
two operands Op1 and Op2. For
comparisons between String and
Numeric types, the String value is
converted to Numeric first (if it cannot
be converted, the result is FALSE).
Ex. EQ(Str(4.0), Num(4)) is TRUE
Ex. EQ(Str(4.0), Str(4)) is FALSE

Boolean Op1: Numeric or
String
Op2: Numeric or
String

EQ(Op1, Op2)

Not Equal To Relational Test for non-equality
between two operands Op1 and Op2.
For comparisons between String and
Numeric types, the String value is
converted to Numeric first (if it cannot
be converted, the result is TRUE).

Boolean Op1: Numeric or
String
Op2: Numeric or
String

NEQ(Op1, Op2)

Greater Than Relational Test for if Op1 is greater
than Op2.

Boolean Op1: Numeric
Op2: Numeric

GT(Op1, Op2)

Greater Than or
Equal To

Relational Test for if Op1 is greater
than or equal to Op2.

Boolean Op1: Numeric
Op2: Numeric

GTE(Op1, Op2)

Less Than Relational Test for if Op1 is less than
Op2.

Boolean Op1: Numeric
Op2: Numeric

LT(Op1, Op2)

Less Than or Equal To Relational Test for if Op1 is less than or
equal to Op2.

Boolean Op1: Numeric
Op2: Numeric

LTE(Op1, Op2)

Range (Inclusive) Relational Test for if Op1 is in the range
of values specified Op2 and Op3, where

Boolean Op1: Numeric
Op2: Numeric

InRange(Op1, Op2,
Op3)

14

Expression Definitions
 Expression Name Description Return Type Operand Types Operator Syntax

Op2 is the minimum numeric value and
Op3 is the maximum numeric value.
Ex: InRange(Num(10.1), Num(10.0),
Num(10.3)) returns TRUE.

Op3: Numeric

Member Of Relational Test for if the value Op1 is a
contained within the set Op2.

Boolean Op1: Numeric or
String
Op2: Set-Numeric or
Set or Set-String
Op2 Set Type must
match Op1 Value
Type.

MO(Op1, Op2)

Any Member Of Relational Test for if any values in the
Set Op1 are a member of the Set Op2.

Boolean Op1: Set (any type)
Op2: Set (any type)
The Set type of Op1
and Op2 must be the
same.

AnyMO(Op1, Op2)

Is Subset Of Relational Test for if the Set Op1 is a
subset of the Set Op2, represented
mathematically as Op1 ⊆ Op2. This
means that every value in Set Op1 must
exist in Set Op2. If a value repeats in
set Op1, only one instance is required
in Set Op2. Note that this does not
have to be a proper subset. One use of
this Expression is to test for character
types, for example:
SubSet(Chars({Fld(1.002)}), CharNum)

Boolean Op1: Set (any type)
Op2: Set (any type)
The Set type of Op1
and Op2 must be the
same.

SubSet(Op1, Op2)

Logical And Logical Test returns the result of the
logical AND of two Boolean operands,
Op1 and Op2. Returns TRUE only if
both Op1 and Op2 are TRUE.

Boolean Op1: Boolean
Op2: Boolean

AND(Op1, Op2)

Logical Or Logical Test returns the result of the
logical OR of two Boolean operands,
Op1 and Op2. Returns TRUE if either
Op1 or Op2 is TRUE.

Boolean Op1: Boolean
Op2: Boolean

OR(Op1, Op2)

Logical Exclusive Or Logical Test returns the result of the
logical XOR of two Boolean operands,
Op1 and Op2. Returns TRUE if only one
of the operands is TRUE and the other
operand is FALSE.

Boolean Op1: Boolean
Op2: Boolean

XOR(Op1, Op2)

Logical Negate Logical Test returns a value that is the
logical opposite of the operand, Op1.
Returns TRUE only if Op1 is FALSE.

Boolean Op1: Boolean NOT(Op1)

Conditional If/Then Conditional Test evaluates the
conditional statement of IF Op1, THEN
Op2, where Op1 and Op2 are of
Boolean Value-Type. The expression
returns Op2 if Op1 is TRUE and TRUE
otherwise.

Boolean Op1: Boolean
Op2: Boolean

IfThen(Op1, Op2)

15

Expression Definitions
 Expression Name Description Return Type Operand Types Operator Syntax

Conditional
If/Then/Else

Conditinal Test evaluates the
conditional statement of IF Op1, THEN
Op2, ELSE Op3, where Op1, Op2, and
Op3 are of Boolean Value-Type. The
expression returns Op2 if Op1 is TRUE
and Op3 otherwise.

Boolean Op1: Boolean
Op2: Boolean
Op3: Boolean

IfThenElse(Op1, Op2,
Op3)

Conditional If and
Only If

Conditional Test evaluates the
conditional statement of Op1 IF AND
ONLY IF Op2. The expression is
equivalent to IF Op1, THEN Op2 AND IF
Op2, THEN Op1.

Boolean Op1: Boolean
Op2: Boolean

Iff(Op1, Op2)

Entity Present General Boolean Test returns a result
indicating whether the entity or set of
entities represented by the operand
Op1 is present. AnyPresent indicates if
any of the entities in the set Op2 are
present. AllPresent indicates if all of the
entities are present. Note: presence of
Information Items is indicated by both
the information separator tag and data
being present.
Ex:
Present(Fld(1.001)) checks if Field
1.001 is present.
Present(Set-Rec([10 to 15])) checks if
Record Types 10 to 15 are present.

Boolean Op1: Entity or Set-
Entity
Op2: Set-Entity

Present(Op1)
Or
AnyPresent(Op2)
Or
AllPresent(Op2)

Information Item
Structure

General Boolean Test that returns a
result indicating whether or not the
Information Items indicated by the 1-
based indexes in Op2 are present (with
data) in the Field or Subfield
represented by Op1. If Op2 is not
specified, then all Information Items
must have data. Note that Op1 is
permitted to be more than one
subfield, for example:
InfoItemsHaveData(SubFld(1.003), Set-
Int([1,2])) indicates that the first and
second information item in every
subfield of Field 1.003 must have data.

Boolean Op1: EntityField or
EntitySubField
Op2: Set-Integer

[er|
InfoItemsHaveData(
Op1, Op2)
|er]

Image Tags Match
Compression
Algorithm

A General Boolean Test that returns a
result indicating whether the Image in
the field Op2 contains the valid
metadata tags (indicated in Table 5.4)
for the compression type specified in
the field Op1. For uncompressed
images, this test always returns TRUE.

Boolean Op1: EntityField or
EntityElement
Op2: EntityField or
EntityElement

[er|
ImgTagsMatchCga (
Op1, Op2)
|er]

Image Tags Valid A General Boolean Test that returns a
result indicating whether the Image in

Boolean Op1: EntityField or
EntityElement

[er|
ImgTagsValid(Op1)

16

Expression Definitions
 Expression Name Description Return Type Operand Types Operator Syntax

field Op1 contains valid image
metadata tags for any of the Image
Types specified in Table 5.4. For
uncompressed images, this test always
returns TRUE.

|er]

Image Tag Value
Compare

A General Boolean Test that returns a
result indicating whether the Image Tag
Op2 in the Image in field Op3 matches
the value in field Op1. For
uncompressed images, this test always
returns TRUE (with a message
indicating that these tests are not
performed on uncompressed images).
Op2 is a Term value from Table 5.3.

Boolean Op1: EntityField or
EntityElement
Op2: String
Op3: EntityField or
EntityElement

[er|
ImgTagCompare(Op1,
Op2, Op3)
|er]

Image Tag Value
Compare Aspect
Ratio

A General Boolean Test that returns a
result indicating whether the Aspect
Ratio (Table 5.3) in the Image in field
Op3 matches the ratio of the values in
Op1 to Op2. For uncompressed images,
this test always returns TRUE (with a
message indicating that these tests are
not performed on uncompressed
images). For divide by zero, this test
returns FALSE.

Boolean Op1: EntityField or
EntityElement
Op2: EntityField or
EntityElement
Op3: EntityField or
EntityElement

[er|
ImgTagAspectRatio(
Op1, Op2, Op3)
|er]

R
e

su
lt

If/Then Result Conditional Test evaluates the
conditional statement of IF Op1, THEN
Op2. The expression returns Op2 if Op1
is TRUE and PASS otherwise.

Test Result Op1: Boolean
Op2: TestResult

IfThenResult(Op1, Op2)

If/Then/Else Result Conditional Test evaluates the
conditional statement of IF Op1, THEN
Op2, ELSE Op3. The expression returns
Op2 if Op1 is TRUE and Op3 otherwise.
If Op2 or Op3 is of type Boolean, the
Expression returns PASS for TRUE and
FAIL for FALSE values.

Test Result Op1: Boolean
Op2: TestResult or
Boolean
Op3: TestResult or
Boolean

At least one of Op2
and Op3 must be a
Test Result

IfThenElseResult(Op1,
Op2, Op3)

Generate Test Result Returns a TestResult that is provided as
the operand Op1. If Op1 is Boolean,
then True is converted to Pass and
False is Converted to Fail.

Test Result Op1: Boolean or
TestResult

ReturnResult(Op1)

N
u

m
e

ri
c

Numeric Value Returns the Numeric Value
represented by the operand Op1. If
Op1 is a String, it must be a properly
formatted number with no leading
zeros. If Op1 is a Byte Set, the entire
set of bytes is interpreted as a value.
Ex: NV(Set-Byte([0x01, 0x00])) is 256

Numeric Op1: String or Byte
Set

NV(Op1)

17

Expression Definitions
 Expression Name Description Return Type Operand Types Operator Syntax

Count Returns the number of values found in
the Set operand Op1.
This is frequently used with Entity Sets
to find the occurrence of an entity, for
example:
Count(Recs(Rec(10)) provides the
number of Record Type-10.
Also used to count the number of
characters or bytes:
Count(Chars({Fld(1.001)})) provides the
number of characters in the field.
Count(B{Rec(1)}) provides the number
of raw bytes in the record.

NumericIntege
r

Op1: Set (Any Type) Count(Op1)

Record Type Returns the Record Type of the
operand Op1.

Numeric Op1: EntityRecord,
EntityField,
EntitySubField,
EntityInfoItem, or
EntityElement

RecType(Op1)

Field Number Returns the field number of the
operand Op1.

Numeric Op1: EntityField,
EntitySubField,
EntityInfoItem, or
EntityElement

FieldNum(Op1)

Modulo Returns the remainder of the Op1
divided by Op2.

Numeric Op1: NumericInteger
Op2: NumericInteger

Mod(Op1, Op2)

Add Returns the sum of the two operands
Op1 and Op2.

Numeric Op1: Numeric
Op2: Numeric

Add(Op1, Op2)

Subtract Returns the difference of the two
operands Op1 and Op2.

Numeric Op1: Numeric
Op2: Numeric

Sub(Op1, Op2)

Multiply Returns the product of the two
operands Op1 and Op2.

Numeric Op1: Numeric
Op2: Numeric

Mult(Op1, Op2)

Divide Returns the quotient of the two
operands Op1 and Op2.

Numeric Op1: Numeric
Op2: Numeric

Div(Op1, Op2)

Minimum Returns the minimum numeric value in
the set Op1.

Numeric Op1: Set-Numeric Min(Op1)

Maximum Returns the maximum numeric value in
the set Op2.

Numeric Op1: Set-Numeric Max(Op1)

18

Expression Definitions
 Expression Name Description Return Type Operand Types Operator Syntax

St
ri

n
g

String Value Returns the String Value generated by
decoding the binary data of the Entity
Operand Op1 according to the
specified character encoding for that
Entity. For EntityElements, leading and
trailing whitespace is ignored. Use
WS{Op1} to force leading and trailing
whitespace to be included for
EntityElements. This is important
because XML Elements frequently
contain leading and trailing whitespace
e that is not part of the data, but rather
for formatting.

String Op1: EntityField,
EntityInfoItem, or
EntityElement

{Op1}

String Value (With
Leading and Trailing
Whitespace)

Returns the String Value (including
leading and trailing whitespace)
generated by decoding the binary data
of the EntityElement Operand Op1
according to the specified character
encoding for that Entity.

String Op1: EntityElement WS{Op1}

Element Name Returns the String Value that
represents the XML Element name.

String Op1: EntityElement or
EntityContainerEleme
nt

ElmName(Op1)

String from ASCII Returns the String Value of the ASCII
code operand Op1. If any value in the
operand is outside the range of 7-bit
ASCII values, this expression returns an
empty String. For Set-Numeric
operands, each number in the set
represents one ASCII character. Ex.
ASCII(Set-Num([0x30, 0x31])) is 01 and
ASCII(Num(33)) is !

String Op1: Numeric or Set-
Numeric

ASCII(Op1)

String from Unicode Returns the String Value of the Unicode
Codepoint operand Op1. If any
codepoint in the operand is invalid, it
returns an empty String. For String sets,
each string represents one Unicode
codepoint (and thus one character) Ex.
Unicode(Set-Str([U+0030, U+0033])) is
03

String Op1: String or String
Set

Unicode(Op1)

Se
t

Byte Values Returns a Set of Byte Values
representing the exact binary data
contained in the Entity Operand Op1 in
Big-Endian format. Note: this includes
any separator characters.
If Op1 is an EntityField, the field
number FN (e.g. “1.001:”) is not part of
the byte data. However, if Op1 is an
EntityRecord, all data in the record,

Set-
NumericByte

Op1: EntityField,
EntityInfoItem,
EntitySubField,
EntityRecord

Bytes(Op1)

19

Expression Definitions
 Expression Name Description Return Type Operand Types Operator Syntax

including field numbers, is part of the
data.

Character Values Returns a Set of String Values, with
each string representing one character
in the operand Op1.
Ex: Chars(Str(value)) is Set-
Str([v,a,l,u,e])

Set-String Op1: String Chars(Op1)

List Values Returns the Set of String Values found
in the StringList Op1.
Ex: ListValues(StrList(A|B|C)) is Set-
Str([A,B,C])

Set-String Op1: StringList ListValues(Op1)

String Values Returns the set of String Values
generated by decoding the binary data
of each of the Entities in the Entity-Set
Operand Op1 according to the
specified character encoding for that
Entity. For EntityElements, leading and
trailing whitespace is ignored. Use
WS{Op1} to force leading and trailing
whitespace to be included for
EntityElements. This is important
because XML Elements frequently
contain leading and trailing whitespace
e that is not part of the data, but rather
for formatting.

Set-String Op1: Set-Entity Set-{Op1}

Numeric Values Returns the set of Numeric Values
represented by the set of Strings in
Op1, which must be properly formatted
numbers with no leading zeros.

Set-Numeric Op1: Set-String Set-NV(Op1)

Binary from Base64 Returns a set of bytes that represents
the decoded Base-64 value found in
Op1. If Op1 is not a valid Base-64
encoded string, this expression returns
an empty set.

Set-
NumericByte

Op1: String

Op1 must be a valid
Base-64 string

B64toBytes(Op1)

Record Set Returns the Set of Records present in
the transaction. If Op1 is specified, it
represents the record type desired. An
Integer value represents the Record
Type. A Set-NumericInteger represents
any number of Record Types, and a
string represents the XML Element
name of the record types desired. For
example: Recs(Int(10)) returns the Set
of Type-10 Records present in the
transaction. Recs(Set-Int([13,14])) is the
Set of Type-13 and Type-14 Records.

Set-
EntityRecord

Op1: NumericInteger,
Set-NumericInteger,
or String

Recs(Op1)

20

Expression Definitions
 Expression Name Description Return Type Operand Types Operator Syntax

Recs represents all records in the
transaction.

Field Set In
Transaction

Returns the Set of Fields in the
Transaction with the specified Field
Number, that match the EntityField, or
that exist in the EntityRecord indicated
by operand Op1. For example:
FldsInTx(Int(999)) is the Set of Fields
999 in any Record Type in the
Transaction. FldsInTx(Fld(13.002)) is the
set of Field 002 in any Type-13 Record.
FldsInTx(Rec(10)) is the set of Fields in
every Record Type-10. FldsInTx is the
Set of all Fields in the Transaction.
Note: This is the set of Fields among
separate Records in the Transaction.
For Fields in a single Record instance
use FldsInRec.

Set-EntityField Op1: NumericInteger,
EntityField, or
EntityRecord

FldsInTx(Op1)

Field Set In Record Returns the Set of Fields in a given
Record operand Op1. If Op2 is specified
it is the Field Number desired. For
example: FldsInRec(Rec(1)) is the Set of
Fields in Record Type-1.
FldsInRec(Rec(10),Int(1)) is the set of
Fields 001 in a single Record Type-10.
Note: This is the set of Fields in one
instance of a record. For Fields among
several separate Records, use FldsInTx.

Set-EntityField Op1: EntityRecord
Op2: NumericInteger

FldsInRec(Op1, Op2)

Subfield Set Returns the Set of SubFields found in
the Field operand Op1.

Set-
EntitySubfield

Op1: EntityField SubFldsIn(Op1)

Information Item Set
In Transaction

Returns the Set of Information Items in
the Transaction. If Op1 is specified, it
represents the Information Item
mnemonic desired. For example:
InfoItemsInTx(Str(IDC)) is the Set of
Information Items with mnemonic
“IDC”. InfoItemsInTx is the Set of all
information items in the transaction.
This expression identifies information
items using their information separator
tags, so even empty information items
are returned by this expression.
Note: This is the set of Information
Items among separate Records in the
Transaction. For Information Items in

Set-
EntityInfoItem

Op1: EntityField or
EntitySubField

InfoItemsInTx(Op1)

21

Expression Definitions
 Expression Name Description Return Type Operand Types Operator Syntax

a single Record instance use
InfoItemsIn.

Information Item Set
In Record

Returns the Set of Information Items
found in the Field or Subfield operand
Op1. If Op2 is specified, it represents
the Information Item mnemonic
desired. For example:
InfoItemsIn(Fld(1.003), Str(IDC)) is the
Set of Information Items with
mnemonic “IDC” in field 1.003. This
expression identifies information items
using their information separator tags,
so even empty information items are
returned by this expression. Note: This
is the set of Information Items in one
instance of a record. For Information
Items among several separate
Records, use InfoItemsInTx.

Set-
EntityInfoItem

Op1: EntityField or
EntitySubField
Op2: String

InfoItemsIn(Op1, Op2)

Element Set in
Transaction

Returns the Set of XML elements in
every Op1 in the transaction. If Op2 is
used, it provides the name of the
desired elements. If ChElmsInTx is
used, only direct child elements are
considered. ElmsInTx with no operands
returns the set of all elements in the
transaction. Note: This is the set of
elements among all Op1 instances in
the Transaction. For elements in a
single Op1 instance use ElmsIn.

Set-
EntityElement
or
SetEntityConta
inerElement

Op1: EntityElement or
EntityContainerEleme
nt
Op2: EntityElement or
EntityContainerEleme
nt

ElmsInTx(Op1, Op2)
Or
ChElmsInTx(Op1,Op2)

Element Set Returns the Set of XML elements in a
specific Op1. If Op2 is used, it provides
the name of the desired elements. If
ChElmsIn is used, only direct child
elements are considered. Note: This is
the set of elements in one instance of
an Op1. For elements among several
instances of Op1, use ElmsInTx.

Set-
EntityElement
or
SetEntityConta
inerElement

Op1: EntityElement or
EntityContainerEleme
nt
Op2: EntityElement or
EntityContainerEleme
nt

ElmsIn(Op1, Op2)
Or
ChElmsIn(Op1,Op2)Op1
,Op2)

G
e

n
e

ri
c

Select From Set Returns the Value found at the
specified 1-based index in the Set Op1.
Example: Select(Int(2),Set-
Str([A,B,C,D])) will return Str(B), the
second String in the set.

Any Op1: NumericInteger
Op2: Set (Any Type)

Select(Op1, Op2)

Select SubSet Returns the subset of Set Op2 indicated
by the 1-based index values
represented by Set-Int Op1. Invalid
indices are ingored.
Example:

Set-Any Op1: Set-Int
Op2: Set (Any Type)

SelectSubSet(Op1, Op2)

22

Expression Definitions
 Expression Name Description Return Type Operand Types Operator Syntax

SelectSubSet(Set-Int[1,3,4], Set-
Str([A,B,C])) will return Set-Str([A,C])
(index 4 is ignored)

First Occurrence Returns the First Value in the Set Op1. Any Op1: Set (Any Type) FirstIn(Op1)

Last Occurrence Returns the Last Value in the SetOp2. Any Op1: Set (Any Type) LastIn(Op1)

Set Union Returns the Set Union of the two Set
operands Op1 and Op2 that contains all
of the members of both.
Ex: Union(Set-Num([1.0,2.2]),Set-
Num([2.2, 10, 200.1])) is Set-Num([1.0,
2.2, 10, 200.1])

Set (Any Type) Op1: Set (Any Type)
Op2: Set (Any Type)
Op1 and Op2 must be
of same set type.

Union(Op1, Op2)

Complex Test Assertions

Some Test Assertions cannot be represented using the well-defined Test Assertion Syntax, or require

specific instances of entities to be identified rather than every occurrence as defined by the Entity

Value-Types. Such Assertions require a textual description of the test that must be performed. To

assist in streamlining most of these textual descriptions, a Complex Assertion Syntax is included in

this section. This Complex Assertion Syntax does not represent a complete syntax, nor is it

necessarily well-defined; its purpose is only to provide a toolset to assist in explaining Complex Test

Assertions. The Complex Assertion Syntax is composed of Complex Expressions, Complex Value-

Types, and Complex Procedures. Complex Procedures are operations that are repeated for several

Assertions, but do not return a value. The format is: Complex(Description), where Description is

composed of Complex Expressions, Complex Value-Types, Complex Procedures, and plain English.

Description may also be a message such as “See Note” when the test assertion is too large to be

contained in the table, and must be explained in a note or other location.

Complex Expressions and Value-Types

The Expressions found in this section are used to help clarify Complex Assertions that cannot easily

be represented in the Assertion Syntax.

Table 5.6 - Assertion Syntax: Complex Expression Definitions

Complex Expression Definitions

Expression
Name

Description Return Type Operand Types Operator Syntax

Parent Returns the Parent of the Entity (the
Entity that contains the specified
Entity).

GenericEntity Op1: GenericEntity Parent(Op1)

23

Pair Returns a set of Entity Pairs that
satisfy the Entity Query. The pair is
represented in the rest of the
Assertion by A,B.

Set
(GenericEntity)

Op1: EntityQuery Pair(Op1)

Table 5.7 - Assertion Syntax: Complex Value-Type Definitions

Complex Value-Type Definitions

Value Type Valid Values Syntax

GenericEntity Any generic entity defined for either encoding: Transaction,
Record, Field, Subfield, InfoItem, or Element. This is a generic
representation that does not indicate a specific entity.

GenEntity(VALUE)

EntityQuery A search query for a specific instance of an Entity. The general
structure of the query is:
P:N in Q ST(condition)
For example, InfoItem:2 in Subfield ST(EQ({InfoItem}, Str(1))
Note that any of the elements of the query are optional, for
example: P:N or P in Q or P ST(condition) or simply P

Query(VALUE)

Complex Procedures

The procedures described in this section list common tasks that are repeated for several Complex

Assertions. They are not Expressions because they do not return a value.

Table 5.8 - Assertion Syntax: Complex Procedure Definitions

Complex Procedure Definitions

Name Description Return Type Operand Types Operator Syntax

Variable Uses the String value as a variable to
represent the containing expression
for the remainder of the Assertion
Text. This is used to avoid repetitions
in the assertion text.

None Op1: String Var(Op1)(Expression)

For Loop Evaluates the containing expressions
for each value in the specified range
of the operator values (Op1 to Op2). X
represents the current value in the
loop.

None Op1: NumericInteger
Op2: NumericInteger

ForX(Op1, Op2)
(Expressions)

For Each Loop The For Each Loop evaluates the
containing expressions for each value
in the set Operator. X represents the
current value in the loop. For nested
loops, XN represents the current value
of the loop, where N is the level of
nesting.

None Op1: Set (Any Type) ForEachX(Op1)
(Expressions)

Next Iteration Only for use in For Each Loop:
references the next occurrence of X.

None None Next(X)

Previous Iteration Only for use in For Each Loop:
references the previous occurrence of
X.

None None Previous(X)

24

Field Definitions and Structures (Traditional Encoding)

The test assertion syntax represents all field types as a field that contains a list of one or more

subfields, each of which contains a list of one or more information items. Fig. 5.9 is a representation

of how each field type is represented by the test assertion syntax:

 Single Information Item: Field with one subfield containing one information item.

 Multiple Information Items: Field with one subfield containing multiple information items.

 Subfields Repeating Sets of Information Items: Field with one or more subfields, each

containing sets of one or more information items.

 Subfields Repeating Values: Field with one or more subfields, each containing one

information item.

Figure 5.9 - Generic AN-2013 Field Structure

Unless otherwise stated, the Test Assertion Syntax expresses all field structures using the Traditional

notation of record type and field number (e.g., 1.001) as well as subfield and information item

indices when appropriate. However, the NIEM-XML encoding has no concept of subfields or

information items. Instead, the XML encoding uses sub elements. Annex G of the AN-2013

standard - NIEM-conformant Encoding Rules - can be used to translate the listed values for

Traditional structures to the XML equivalent. In some cases the tables of requirements and assertions

list the XML element names when necessary for clarifying an assertion.

Tables of requirements and assertions format

Table Layout

A Requirement is related to one or more Test Assertions. Therefore, a single Requirement may

require more than one test assertion row of a table. To represent this association (from left to right),

a Requirement is listed first, followed by the related assertion(s). Test notes may be included for any

specific assertion to help clarify its meaning when necessary. Information contained in the table is

described by the table column headers later in this section.

The AN-2013 contains requirements for several biometric record types, data conventions, and data

encodings contained in various clauses, tables, figures, and annexes throughout the standard. The

complex and detailed nature of the AN-2013 standard, including the variety of ways that

requirements are specified, increases the chance that certain requirements may be stated in more than

one section of the standard. In such cases, the table of requirements and assertions would indicate

that the requirement is a duplicate requirement. The AN-2013 section numbers where the

requirement is specified would be indicated. If there are too many to list, the requirement would be

labeled a generic requirement, where other sections define it with more clarity and detail. For all

duplicate or generic requirements, no assertions would be defined. The columns of the table

Field

Record

Type

Subfield(s) Field

Number Information Item(s) . : G
S

25

dedicated to assertion information may be merged and filled with a notification of the duplicate

requirement. The format would be as follows, where Optional Message is any text that helps

describe why the requirement is a duplicate or generic:

 Duplicate Requirement. Optional Message. See AN-2013 Section:

 Generic Requirement. Optional Message. Specific instances are defined more precisely in

several sections of AN-2013.

 For an example of the table layout specified by the CTMF, see Annex B.

Table Headers

The following describe the headings for the tables of requirements and assertions format:

 Requirement # and ID: Includes a unique AN-2013 requirement number and a unique

identifier for the requirement and associated assertion or set of assertions. For Record Type

requirements, the Requirement # is in the form RTN.M, where N is the Record Type and M

is the sequential number of the requirement (for requirements in the annexes the form is AN

followed the Annex letter). For sections not associated with a record type and annexes, the

prefix is SEC followed by the section number. If additional requirements must be entered in

the future, the number M may change. The Requirement ID provides reference to the type of

requirement (e.g., transaction, record, or field), and is in the form of “Type: Description”

where type may be “Transaction”, “Record”, or “Field”. For requirements found in Annex B

of the AN-2013 standard, the Requirement ID is preceded by “Traditional-”. For

requirements found in Annexes C and G of the AN-2013 standard, the Requirement ID is

preceded by “NIEM-”.

 Ref. in Base Std. (Reference in Base Standard): Identifies the clause (or section) where the

requirement is included in the AN-2013 standard. In some cases the reference includes

additional information such as a Table number.

 Requirement Summary: Provides a summary of the requirement detailed as textual

information or an interpretation of the requirement in the standard. It provides the essentials

of the requirement but may not provide all the text necessary to understand it.

 Level: Indicates whether Level 1 or Level 2 conformance testing is required to address the

assertion identified in the Assertion ID column of the same row. Level 3 conformance tests

are indicated only when necessary to show that the requirement is not currently testable or

addressed.

 Assertion ID: Provides an identifier of a specific test assertion within the set of test

assertions associated with a requirement.

 Test Assertion: Provides, whenever possible, a mathematical equation or a procedure using

the language specified by the Assertion Syntax.

 Notes: Contains the ID of the test note, in the form t##. Test notes provide additional

information related to the assertion and are included below the tables.

 Imp. Required (Implementation Required): The Imp. Required column indicates whether

or not the assertion must be supported in the Imp. Support column. The format is CondCode-

Entity, where:

Entity:

26

This indicates the entity (Field, Subfield, etc.) that is the primary subject of the assertion.

The assertion must be tested for every instance of this entity in the transaction. This is

particularly useful for assertions that contain more than one entity (generally Level-2

assertions). The syntax is any Entity type in Table 5.1 (Assertion Syntax: Value-Type

Definitions Value-Types) defined in the Assertion Syntax.

Cond Code:

This indicates the Cond Code (as specified in AN-2013) of the Entity that is the subject of the

assertion. The Cond Code indicates whether or not the entity must be present. For XML

Elements that do not relate exactly one-to-one with Traditional constructs, the Cond Code is

M (Mandatory) if the Cardinality is greater than 0 and O (Optional) otherwise. All assertions

associated with entities that have Mandatory Cond Codes must be claimed under

Implementation Support. Note that the Cond Code of an entity is dependent upon the

inclusion of the parent record or field in the IUT. For example, Field 10.001 with Cond Code

M is required to be present (and therefore its related assertions are required to be claimed)

only if a Type-10 Record is included. As another example, 1.013-DNM is mandatory only if

the optional field 1.013 is included. It should also be noted that the Cond Code only applies

if the assertion is related to the transaction’s encoding as indicated by the Enc. (Encoding)

column. The Cond Code values are:

o M: Mandatory – entity must be present, assertion must be claimed

o O: Optional – entity not required to be present, assertion not required to be claimed

o D: Dependent – presence of entity is dependent upon certain conditions specified in the

AN-2013 standard. If the entity is required to be present, the assertion must be claimed.

o M⇑: Mandatory within the optional field/subfield – entity must be present if the

containing field/subfield is present, and the assertion must then be claimed.

o O⇑: Optional within the optional field/subfield – entity is not required to be present, even

if the containing field/subfield is present. The assertion is not required to be claimed.

Note: For Optional or Dependent Cond Codes, if the entity is present in the IUT (although it

is not required to be), the related assertion must be claimed.

Example:

M-Fld(10.001). The subject of the assertion is Field 10.001 with Cond Code M, meaning

that the assertion must be tested for every instance of Field 10.001. This is a Mandatory field

(M), indicating that this assertion must be claimed given that Record Type-10 is present in

the IUT.

 Imp. Support (Implementation Support): Denotes a supplier’s implementation support of

a particular assertion (“Y”/”N”). A note can follow the table when providing more details of

implementation support (or the lack of it) is required. For assertions with Mandatory Imp.

Required values, the Imp. Support should be Y given that the parent Record or Field is also

supported.

 Supported Range: Indicates a range of values supported, especially when it is different than

the full range of values specified in the standard. When an information item is specified as a

single value, or does not address a range of values, a N/A should be used.

 Test Result: This column is used to denote the test results. The result is one of “Pass”,

“Fail”, or “Warning”. Explanatory notes can be added below the table, for example when a

27

Warning is given. The result is the value provided by evaluating the test described in the

Test Assertion column.

 Enc. – (Encoding): This table header indicates which assertions differ (in values required or

conditions) between Traditional and NIEM encoding. This table header does not indicate

which assertions are addressed by the XML Schema and which will need to be addressed in

code. Valid values are:

o T: The assertion only applies to the Traditional encoding as described in Annex B of

AN-2013.

o X: The assertion only applies to the NIEM-conformant (XML) encoding as described

in Annex C of AN-2013.

o B: The assertion is applicable to both Traditional and NIEM (XML) encoding.

 Following the conventions in the AN-2013 standard, test Assertions are expressed

using constructs (fields, records, etc.) found in Traditional encoding (such as

1.002). The same assertion applies for the XML elements that correspond to the

Traditional constructs. For example, 10.006 in Traditional Encoding corresponds

to XML Element <biom:ImageHorizontalLineLengthPixelQuantity>. Annex G of

the AN-2013 provides a mapping between Traditional and XML encodings.

5.5 Claim of Supported Test Assertions

The table format for requirements and assertions provides the means for the developers of

implementations under test (IUT) to claim in the tables the list of all the assertions supported.

This information is useful to the IUT supplier as a checklist on the content of their implementations

and also useful to testing laboratories that would evaluate conformance of these IUTs against the

supplier’s claims. Two columns in the tables are included to provide this information:

Implementation Support column (YES/NO/Partial) and Supported Range column (if Implementation

Support is “Partial”, the supported range should be provided).

The minimum implementation requirements are documented in Annex A. The Implementation

Required (Imp. Required) column indicates the entity related to each assertion, and the Cond Code

for that entity. A Mandatory Cond Code indicates that the entity must be present, and therefore the

assertion must be claimed. Such Cond Codes only apply if the containing Record or Field is also

present—for example, 10.001 is Mandatory, but only if the IUT contains a Record Type-10.

Regardless of the supplier claims, if an entity (Field, Subfield, etc.) is included in the IUT, the test

assertions related to that entity will be tested and should be reported by a conformance test tool.

It is recommended that if the IUTs are sent to a testing laboratory, the IUT provider submit the

information below to the laboratory:

 Provider name

 Provider address

 Transaction identifier

 Transaction version number

 Additional implementation information (optional)

 Submission date

28

 For each claimed Record Type, provide the Record Type number and whether or not (Yes or

No) there are any known deviations from (or exceptions to) the requirements found in the

base standard and identified in the Conformance Testing Methodology for the associated

Record Types in the IUT. For specific exceptions, the Implementation Support column of the

tables of requirements and assertions can be used to indicate the difference on a per-assertion

basis. In addition, if the deviation is general and applies to the entire Record Type, a

description should be provided. This option is useful for cases where there have been

modifications to the base standard that are not reflected in the conformance testing

methodology, where the IUT provider believes there is a defect in the base standard or

conformance testing methodology, and other instances where the implementation does not

fully conform to the AN-2013 standard requirements.

The testing laboratory may use testing tools that implement this CTMF and any the test assertions

included in any derivative conformant publications (such as those which document additional

requirements) to provide a determination of the level of conformance of the IUT to the AN-2013

standard.

29

Annex A: Minimum Support for AN-2013 Record Types and Interrelated Fields

A.1 Minimum Conformance

This document includes conformance test assertions for all the transaction-related requirements specified in AN-2013. This document does

not include test assertions for Record Types other than Record Type 1.

This section identifies the AN-2013 requirements and the conformance test assertions that are required for every transaction according to the

terms specified in the AN-2013 standard. At a minimum, AN-2013 requires that:

 the transaction adheres to its specified encoding (Traditional or NIEM-XML) requirements

 the transaction includes one and only one Record Type-1

 Record Type-1 is encoded exclusively in 7-bit ASCII (for Traditional Encoding)

 Record Type-1 is conformant to the requirements specified for its fields, subfields, and information items.

o All mandatory fields, subfields, and information items in Record Type-1 must be present (with data), and the requirements

for those entities must be met.

o Optional and dependent fields, subfields, and information items that are present in Record Type-1 must be conformant to

the requirements specified for those entities.

 the transaction includes at least one other record of a type other than Record Type-1

 the transaction does not include deprecated or reserved record types or fields

The AN-2013 requirements listed above constitute what is indicated in this document as the minimal conformance for any AN-2013

transaction, according to the requirements specified by AN-2013. Note, however, that minimal conformance is silent regarding the

requirements for individual Records other than Record Type-1. For example, a minimally conformant AN-2013 transaction may include a

non-conformant Record Type-10.

A.2 Interrelated Field Support

Section 7: Information Common to Several Record Types in the AN-2013 standard includes requirements for fields that are common among

various record types. These requirements are contained in Annex C, in the table of requirements and assertions associated with Section 7 of

the AN-2013 standard. Below is a list of the common fields with requirements specified in Annex C of this CTMF.

Table A.1 - AN-2013 Interrelated Field Support

30

Support for AN-2013 Interrelated Fields

Number Field Contents Support

xx.001 Record header All Record Types. See Field: xx.001-Record Header

xx.002 Information designation character / IDC All Record Types except Record Type-1. See Field: xx.002-IDC

xx.995 Associated Context / ASC Record Types 10 and above, not including 21 and 98. See Field: xx.995-ASC through Field:
xx.995-ASC-ASP

xx.997 Source Representation / SOR Record Types 10 and above, not including 18, 21, and 98. See Field: xx.997-SOR through
Field: xx.997-SOR-RSP

xx.016 Segments / SEG Record Types 20 and 21. See Field: xx.997-SOR-RSP and Field: xx.995-ASC-ASP

xx.021 SRN, ACN Record Types 20 and 21. See Field: xx.997-SOR-SRN and Field: xx.995-ASC-ACN

31

Annex B: Sample Requirement and Assertion Table Format

This section describes the layout of the table-based requirements and assertions format required by the CTMF.

Figure B.1 – Sample Requirements and Assertions Table

Req. # - ID Red. In
Base
Std.

Requirement
Summary

L
e
v
e
l

Assertion
ID

Test
Assertion

N
o
t
e
s

Imp.
 Required

Imp.
Support

Supported
Range

Test
Result

E
n
c
.

RTX.1 –
Requirement

ID

N.N,
Table Z

Requirement text: verbatim from the base
standard or a summary.

1 Assertion ID
1

Assertion summary written using the Test
Assertion Syntax – this one is for Traditional
encoding

 M-Fld(1.001) Warning T

1 Assertion ID
2

Assertion summary written using the Test
Assertion Syntax – this one is for XML encoding

t## O- X

2 Assertion ID
N

Assertion summary written using the Test
Assertion Syntax – one or more assertions are
listed per Requirement

 B

RTX.2–
Requirement

ID2

M.M Requirement text: verbatim from the base
standard or a summary.

1 Assertion ID
1

Assertion summary written using the Test
Assertion Syntax – this one is for both encodings

 B

32

Annex C: Tables of Requirements and Assertions

The CTMF allows for all requirements and assertions to be documented for AN-2013. The full range of requirements and assertions are not

included in this publication. The requirements necessary for minimum conformance as indicated in Annex A are included as are

requirements for data formats, encodings, and those related to several record types. This Annex lists the tables of requirements and

assertions common to most AN-2013 transactions; the AN-2013 requirement types and the reason for their inclusion are provided below:

AN-2013 Section 5: Data Conventions

Requirements for data conventions describe the structure and ordering of constructs that make up all AN-2013 transactions. Requirements

for deprecated Record Types 3, 5, and 6 are also included to check for nonexistence of these Record Types. Additionally an assertion is

specified that checks for the nonexistence of reserved Record Types 22 through 97.

AN-2013 Section 7: Information Common to Several Record Types

Information common to several record types refers to fields and other constructs that are defined once in the AN-2013 standard, and

repeated for several record types. While these requirements may not be relevant to every transaction, a portion of these requirements are

relevant to a large number of transactions.

AN-2013 Section 8.1 Record Type-1: Transaction information record

One and only one instance of Record Type-1 is required to be included in every AN-2013 transaction. The requirements associated with

mandatory fields, subfields, information items, and XML Elements in Record Type-1 must be met for every AN-2013 transaction. Note that

if any optional construct is present in any transaction, the defined requirements for those constructs are mandatory for conformance. An

optional construct does not indicate an optional requirement.

AN-2013 Annex B: Traditional Encoding

Traditional encoding specifies requirements that describe the general makeup of any traditionally-encoded AN-2013 transaction.

AN-2013 Annex C: NIEM Conformant encoding

NIEM conformant encoding specifies requirements that describe the general makeup of any XML-encoded AN-2013 transaction.

AN-2013 Annex G: Mapping to the NIEM IEPD

Mapping to the NIEM IEPD provides the information necessary to interpret requirements represented in Traditional Encoding notation for

XML-encoded transactions. The mapping indicates instances where the relationship between Traditional constructs (fields, subfields, etc.) is

not one-to-one with XML elements.

33

Table C.1 - Assertions for Transaction-related Requirements

Req. # - ID Ref.in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Transaction-related Requirements

TX.1 - Tran

saction:

Required

Record

Types

5.1,

5.3.1,

Annex G

There may be multiple records in a

transaction of each record type other than

Type-1. The only required record Type is
Type-1, which is used to describe the

transaction. There shall be at least one

other record type from Table 3
accompanying a Record Type-1.

Transmissions to be exchanged are
required to contain one and only one Type-

1 record per transaction.

Itl:PackageInformationRecord Cardinality

1..1

1 Transaction

-Type-1-

Required

EQ

(

Count(Recs(Int(1))),
 Int(1)

)

 M-

Transaction

 T

1 NIEM-

Transaction
-

PackageInf

ormationRe
cord-

Required

EQ

(
Count(Recs(Str(itl:PackageInformationRecord))),

Int(1)

)

 M-

Transaction

 X

1 Transaction

-Required-
Additional-

Record

GT

(
Count(Recs),

Int(1)

)

 M-

Transaction

 B

TX.2 - Tran

saction:

Single

Subject

5.1 All records in a transaction shall pertain to

a single subject. Biometric data used to

identify another individual requires a
separate transaction.

3 Transaction

-Single

Subject

ReturnResult

(

Result
(

Warning(Unchecked Level 3 – All records shall

pertain to a single subject.)
)

)

 M-

Transaction

 B

TX.3 - Tran

saction:

Records

Transmitted

Together

5.1 All of the records belonging to a single

transaction shall be transmitted together.

3 Transaction

-Records
Together

ReturnResult

(
Result

(

Warning(Unchecked Level 3 – All records
belonging to a single transaction shall be

transmitted together.)

)
)

 M-

Transaction

 B

TX.4 - Tran

saction: Size

5.2 The upper limit of 1000 records is

maintained in this version of the standard

1 Transaction

-Size

LTE

(

Count(Recs),

 M-

Transaction

 B

34

Req. # - ID Ref.in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Transaction-related Requirements

to ensure backward compatibility with the

2007 version.

Int(1000)

)

TX.5 - Tran

saction:

Reserved

Records

5.3
Table 3

22-97 reserved for future use. 1 Transaction
-Records

Reserved

EQ
(

Count(Recs(Set-Int(22 to 97))),

Int(0)

)

 M-
Transaction

 T

1 NIEM-

Transaction
-Records

Reserved

ReturnResult

(
Result

(

Pass(Element names are not defined for reserved
records. Invalid records will fail schema

validation.)

)
)

 M-

Transaction

 X

TX.6 - Tran

saction:

Type1-

Record_Firs

t

5.3.1 The Type-1 record shall always be the first

record within the transaction.

1 Transaction

-Type1-

First

EQ

(

RecType(FirstIn(Recs)),

Int(1)
)

 M-

Transaction

 T

1 NIEM-

Transaction

-Type1-
First

EQ

(

ElmName(FirstIn(Recs)),
Str(itl:PackageInformationRecord)

)

 M-

Transaction

 X

TX.7 - Tran

saction:

Type3-

Deprecated

5.3.3,

5.4,
Table 3.,

8.3

Record Type-3 shall not be contained in

transactions conforming to this version of
the standard.

No instances of Record Type-3 shall be

included in a transaction conformant with

this version of the standard.

Deprecated records for this version are

Record Types 3, 5 and 6.

1 Transaction

-Type3-
Zero

Occurrence

s

EQ(Count(Recs(Int(3)), Int(0))

 M-

Transaction

 T

1 NIEM-
Transaction

-Type3-

Zero
Occurrence

s

ReturnResult
(

Result

(
Pass(Deprecated Records are not defined for

NIEM-XML; invalid Records will fail Schema

validation)
)

)

 M-
Transaction

 X

35

Req. # - ID Ref.in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Transaction-related Requirements

TX.8 - Tran

saction:

Type5-

Deprecated

5.3.5,

5.4,
Table 3,

8.5

Record Type-5 shall not be contained in

transactions conforming to this version of
the standard.

No instances of Record Type-5 shall be

included in a transaction conformant with

this version of the standard.

Deprecated records for this version are

Record Types 3, 5 and 6.

1 Transaction

-Type5-
Zero

Occurrence

s

EQ

(
Count(Recs(Int(5))),

Int(0)

)

 M-

Transaction

 T

1 NIEM-

Transaction
-Type5-

Zero

Occurrence
s

ReturnResult

(
Result

(

Pass (Deprecated Records are not defined for
NIEM-XML, but invalid Records will fail Schema

validation)

)
)

 M-

Transaction

 X

TX.9 - Tran

saction:

Type6-

Deprecated

5.3.6,

5.4,

Table 3,

8.6

Record Type-6 shall not be contained in

transactions conforming to this version of

the standard.

No instances of Record Type-6 shall be
included in a transaction conformant with

this version of the standard.

Deprecated records for this version are

Record Types 3, 5 and 6.

1 Transaction

-Type6-

Zero

Occurrence

s

EQ

(

Count(Recs(Int(6)),

Int(0)

)

 M-

Transaction

 T

1 NIEM-

Transaction

-Type6-
Zero

Occurrence

s

ReturnResult

(

Result
(

Pass (Deprecated Records are not defined for

NIEM-XML, but invalid Records will fail Schema
validation)

)

)

 M-

Transaction

 X

TX.10 - Tra

nsaction:

Reserved

Character

Types

5.5 The special characters “STX”, “ETX”,

“FS”, “GS”, “RS”, and “US” are reserved

and shall not be included in any data
(except data marked as character type B).

1 Transaction

-Reserved

Character
Types

ReturnResult

(

Result
(

Pass(Character Type assertions are performed on

all data. These assertions test for the presence of
reserved characters. Refer to the individual tests

on data to determine the results.)

)

 M-

Transaction

 T

36

Req. # - ID Ref.in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Transaction-related Requirements

)

TX.11 - Tra

nsaction:

IDC

Sequential

7.3.1 The value of the IDC shall be a

sequentially assigned positive integer
starting from zero and incremented by one

up to a maximum of 99. IDC references are

stated in Type-1 Field 1.003 Transaction

content / CNT and shall be used to relate

information items in the CNT field of the
Type-1 record to the other records in the

transaction.

2 Transaction

-
IDCSequen

tialValues

Complex

(
When arranged in numeric order, the set of all

IDC values in the transaction must begin with 0,

increment by 1, and the greatest value in the set

must be equal to or less than 99

)

t9 M-

Transaction

 T

TX.12 - Tra

nsaction:

IDC

Matching

Values

7.3.1 Two or more records may share a single

IDC solely to identify and link together
records that pertain to different

representations of the same biometric trait.

Two or more image records may share a

single IDC only when they are

enhancements of a single image; such
transformations shall have identical

dimensions.

2 Transaction

-
MatchingID

CValues-

Comparable
BiometricT

ypes

Complex(See Note) t2 M-

Transaction

 B

2 Transaction

-

MatchingID

CSameImag

eDimension

Complex

(

ForEach(Pair(A,B) of Records with matching IDC

fields)

{

{A.006} EQ {B.006}

AND
{A.007} EQ {B.007}

}
)

 M-

Transaction

 B

3 Transaction
-

IDCsFromS

ameImage

ReturnResult
(

Result

(
Pass(Not feasible to test if the samples are from

the same image, only that the samples come from

the same type of biometric trait)
)

)

 M-
Transaction

 B

TX.13 - Fiel

d: 1.003-

8.1.3,

Table 22,

IDC references are stated in Type-1 Field

1.003 Transaction content / CNT and shall

2 Transaction

-CNT-

Complex

(

 M-

Transaction

 T

37

Req. # - ID Ref.in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Transaction-related Requirements

Transaction

Content

Subfield 2

IDC

Matches

7.3.1

be used to relate information items in the

CNT field of the Type-1 record to the other
records in the transaction. It also specifies

the order in which the remaining records

shall appear in the file.

REC-IDC-

Matches
Records

ForEach (Record in Recs)

(
Present(Subfield in 1.003 ST

AND

(
EQ({InfoI(1.003.REC) in Subfield},

RecType(Record)),

EQ({InfoI(1.003.IDC) in Subfield},
{Record.002})

)
)

Note: The record types must appear in the same

order that they are listed in Fld(1.003)
)

 2 NIEM-

Transaction
REC-CNT-

IDC-

Matches

Records

Complex

(
ForEach (Record in Recs)

(

Present(XElm(1.003.biom:ContentRecordSummar

y) ST

AND

(
EQ({XElm(1.003.biomRecordCategoryCode) in

XElm(1.003.biom:ContentRecordSummary)},

RecType(Record)),
EQ({XElm(1.003.ImageReferenceIdentification)

in XElm(1.003.biom:ContentRecordSummary)},

{Record.002})
)

)

Note: The record types must appear in the same
order that they are listed in Fld(1.003)

)

 M-

Transaction

 B

TX.14 - Tra

nsaction:

SRN

Sequential

7.3.2.1 The value of the
SRN shall be a sequentially assigned

positive integer starting from one and

incremented by
one, not to exceed 255.

2 Transaction
-SRN-

SequentialV

alues

Complex
(

When arranged in numeric order, the set of all

SRN values in the transaction must begin with 1,
increment by 1, and the greatest value in the set

must be equal to or less than 255

)

t9 M-
Transaction

 B

38

Req. # - ID Ref.in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Transaction-related Requirements

TX.15 - Tra

nsaction:

ACN

Sequential

7.3,

7.3.3.1

The value of the ACN shall be a

sequentially assigned a positive integer
starting from one and incremented by one,

not to exceed 255.

2 Transaction

-ACN-
SequentialV

alues

Complex

(
When arranged in numeric order, the set of all

ACN values in the transaction must begin with 1,

increment by 1, and the greatest value in the set
must be equal to or less than 255

)

t9 M-

Transaction

 B

TX.16 - Tra

nsaction:

T10

Matching

7.3,
7.3.4

There may be several Type-10 images of a
particular part of the body. For instance, a

photograph of a tattoo may cover the entire

tattoo. Another may be a zoom-in shot of a
portion of the tattoo. In order to link these

two images, the same index number is

assigned to Field 10.039: Type-10
reference number / T10, which is new to

this version of the standard. Note that these

images would have different IDC values.

2

Transaction
-SameT10-

DiffIDC

Complex
(

ForEach(Pair (A,B) of Records ST

RecType(Records) EQ 10)
{

IF {A.039} EQ {B.039}

THEN
{A.002} NEQ {B.002}

}

)

 M-
Transaction

 T

2 NIEM-
Transaction

-SameT10-

DiffIDC

Complex
(

ForEach(Pair (A,B) of

XElm(itl:PackageFacialAndSMTImageRecord)
{

IF {XElm(nc:IdentificationID) in

XElm(biom:PhysicalFeatureReferenceIdentificati
on) in A} EQ { XElm(nc:IdentificationID) in

XElm(biom:PhysicalFeatureReferenceIdentificati

on) in B}
THEN

{XElm(nc:IdentificationID) in

XElm(biom:ImageReferenceIdentification) in A}
NEQ { XElm(nc:IdentificationID) in

XElm(biom:ImageReferenceIdentification) in B}

}
)

 M-
Transaction

 X

TX.17 - Tra

nsaction:

Schema

Validation

C.2, C.4,

C.5.1

The ordering of elements is strict. The

schemas referenced by this annex define

the order and nesting structure of elements.
The schemas also provide a W3C

representation of the order and hierarchical

structure of the XML content.

2 NIEM-

Schema

Validation

Complex
(
Perform and report Schema validation. Provide
warning that the schema does not strictly enforce
the standard, so the conformance of a

t10 M-

Transaction

 X

39

Req. # - ID Ref.in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Transaction-related Requirements

The XML schema referenced for this
encoding define the structure and order of

the elements in the information exchange

package. To the extent possible, the
schema define data types and constraints

that enforce the allowable content rules of

the base standard.
Nevertheless, the XML schema may not

strictly enforce the allowable content. The
base standard defines allowable content,

and its requirements shall be met by

implementers regardless of encoding
method.

All of this standard’s required elements

shall be present in a conforming instance
document even if the schema referenced by

this annex do not strictly enforce the

requirement.
The base standard defines allowable

content, and its requirements shall be met

by implementers regardless of encoding
method.

transaction cannot be claimed from the result of
schema validation. However, the Schema
validation does indicate that structural
requirements have been met, including
appropriate ordering of the elements.
)

TX.18 - Tra

nsaction

Valid

Encoding

C.4.1 Each XML information element, tags and

data content, shall be represented by a
character set that is a subset of Unicode

and that is allowable by W3C XML.

Characters shall be transmitted using a
Unicode encoding.

1 NIEM-

XML
Encoding

MO
(
{FirstIn(ElmsInTx)},
Set-Str([UTF-8, UTF-16, UTF-32])
)

 M-

Transaction

 X

TX.19 - Tra

nsaction

Encoding

Declaration

C.4.1 XML packages shall include an XML

declaration that specifies the encoding.

1 NIEM-

XML

Declaration

EQ
(
ElmName(FirstIn(ElmsInTx)),
Str(?xml)
)

 M-

Transaction

 X

TX.20 - NIE

M-

Transaction

Well-

Formed

XML

C.5.2,

C.5.3

All separators are defined by the W3C

XML recommendations. The characters
“<” and “>” are reserved exclusively for

enclosing XML element names. Every

element with a start tag <Name> shall have
an end tag of format </Name>. For all

1 NIEM-

Well-
Formed

XML

Complex
(
Test that the XML is well-formed according to
W3C XML recommendations.
)

 M-

Transaction

 X

40

Req. # - ID Ref.in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Transaction-related Requirements

logical records – including Types 4, 7, and

8 that do not have field tags in the
Traditional encoding -- data elements are

tagged according to XML rules. The

format for each element shall consist of a
start tag enclosed in angle brackets

followed by data followed by an end tag.

Table C.2 - Assertions for Record Type 1: Transaction information record

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

RT1.1 - Rec

ord:

RecordHead

erFirst

7.1 The record header appears as the first field
(xx.001) in each Record Type.

The record header exists only in

Traditional Encoding.

1 Type1-
Field001Firs

t

EQ
(

FieldNum(FirstIn(FldsInRec(Rec(1)))),

Int(1)
)

 M-Rec(1) T

1 NIEM-

Type1-

Field001Firs
t

EQ

(

ElmName(FirstIn(ElmsIn(itl:PackageInformation
Record))),

Str(biom:RecordCategoryCode)

)

 M-Rec(1) X

RT1.2 - Rec

ord: Type1-

7-bitASCII

8.1,

5.6,

Table 93

Note that since the alternate character

encoding is specified in this record, there

must be specified characters agreed upon
in order to read this Record Type,

particularly with Traditional encoding, and

the characters that can be represented by
the 7-bit ASCII code are those characters

(see Table 93 for these characters).

Record Type-1 shall always be recorded in

all encodings using the characters that

1 Type1-

ASCII

ReturnResult

(

Result
(

Pass(Character Type assertions are performed on

all data in Record Type-1. These assertions are
more restrictive because they test for character

ranges that are a subset of 7-bit ASCII. Refer to

the individual tests on data to determine the
results.)

)

 M-Rec(1) T

41

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

can be represented by the 7-bit

American National Standard Code for
Information Interchange (ASCII) found in

table 93 with the exception of the reserved

values.

)

RT1.3 - Rec

ord: Type1-

Reserved

Table 22 Table 22 specifies which fields are

permitted to be present in a Type-1 Record.

All others are reserved for future use.

1 Type1-

ReservedFie

lds

Not

(

AnyPresent(Set-Fld([1.019 to 1.999])
)

 M-Rec(1) T

1 NIEM-

Type1-
ReservedFie

lds

ReturnResult

(
Result

(

Pass(Reserved Fields are not defined for NIEM-
XML. The presence of any undefined elements

will fail Schema validation)

)
)

t10 M-Rec(1) X

RT1.4 - Rec

ord: Type1-

FieldOccurr

ence

Table 22,

Annex G

Table 22 specifies the Field Occurrence for

each field.

Annex G specifies the cardinality for the
XML elements.

1 Type1-

1.001-

Occurrences

EQ

(

Count(FldsInRec(Rec(1), Int(1))),
Int(1)

)

 M-Rec(1) T

1 Type1-

1.002-
Occurrences

EQ

(
Count(FldsInRec(Rec(1), Int(2))),

Int(1)

)

 M-Rec(1) T

1 Type1-
1.003-

Occurrences

EQ
(

Count(FldsInRec(Rec(1), Int(3))),

Int(1)

)

 M-Rec(1) T

1 Type1-

1.004-

Occurrences

EQ

(

Count(FldsInRec(Rec(1), Int(4))),
Int(1)

)

 M-Rec(1) T

1 Type1-

1.005-
Occurrences

EQ

(
Count(FldsInRec(Rec(1), Int(5))),

 M-Rec(1) T

42

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

Int(1)

)

1 Type1-
1.006-

Occurrences

MO
(

Count(FldsInRec(Rec(1), Int(6))),

Set-Int([0,1])

)

 M-Rec(1) T

1 Type1-

1.007-

Occurrences

EQ

(

Count(FldsInRec(Rec(1), Int(7))),
Int(1)

)

 M-Rec(1) T

1 Type1-

1.008-
Occurrences

EQ

(
Count(FldsInRec(Rec(1), Int(8))),

Int(1)

)

 M-Rec(1) T

1 Type1-
1.009-

Occurrences

EQ
(

Count(FldsInRec(Rec(1), Int(9))),

Int(1)
)

 M-Rec(1) T

1 Type1-

1.010-

Occurrences

MO

(

Count(FldsInRec(Rec(1), Int(10))),
Set-Int([0,1])

)

 M-Rec(1) T

1 Type1-

1.011-
Occurrences

EQ

(
Count(FldsInRec(Rec(1), Int(11))),

Int(1)

)

 M-Rec(1) T

1 Type1-
1.012-

Occurrences

EQ
(

Count(FldsInRec(Rec(1), Int(12))),

Int(1)
)

 M-Rec(1) T

1 Type1-

1.013-

Occurrences

MO

(

Count(FldsInRec(Rec(1), Int(13))),
Set-Int([0,1])

)

 M-Rec(1) T

43

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

1 Type1-

1.014-
Occurrences

MO

(
Count(FldsInRec(Rec(1), Int(14))),

Set-Int([0,1])

)

 M-Rec(1) T

1 Type1-

1.015-

Occurrences

MO

(

Count(FldsInRec(Rec(1), Int(15))),

Set-Int([0,1])
)

 M-Rec(1) T

1 Type1-

1.016-

Occurrences

MO

(

Count(FldsInRec(Rec(1), Int(16))),
Set-Int([0,1])

)

 M-Rec(1) T

1 Type1-

1.017-
Occurrences

MO

(
Count(FldsInRec(Rec(1), Int(17))),

Set-Int([0,1])

)

 M-Rec(1) T

1 Type1-
1.018-

Occurrences

MO
(

Count(FldsInRec(Rec(1), Int(18))),

Set-Int([0,1])

)

 M-Rec(1) T

2 NIEM-

Type1-
Cardinality

Complex(Check that all elements are in allowable

cardinality ranges according to Annex G of the
base standard. This may be achieved using

Schema validation.)

t10 M-Rec(1) X

RT1.5 - Fiel

d: 1.001-

FieldStructu

re

Table 22,

Annex B,
Annex G

Table 22 specifies which fields contain

subfields and information items as well as
the number of occurrences permitted.

A field contains a minimum of one

subfield which contains a minimum of one

information item.

1 1.001-

SubfieldCou
nt

EQ

(
Count(SubFldsIn(Fld(1.001))),

Int(1)

)

 M-Fld(1.001) T

1 1.001-
InfoItemCou

nt

EQ
(

Count(InfoItemsIn(SubFld(1.001.1))),

Int(1)
)

 M-Fld(1.001) T

8.1.1,

Table 22,

Field 1.001 Record header. In Traditional

encoding, this field contains the record

1 1.001-Value GTE

(

 M-Fld(1.001) T

44

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

RT1.6 - Fiel

d: 1.001-

Value

7.1,

C.10.1

length in bytes (including all information

separators). The value is unrestricted in
Traditional Encoding, but must be at least

2 to accommodate the size of required

fields.

The XML name for the Type-1 record is

<itl:PackageInformationRecord>, and its
<biom:RecordCategoryCode> element

shall have a value of “1”.

{Fld(1.001)},

Int(2)
)

2 1.001-

Value-

Dependent

EQ

(

{Fld(1.001)},

Count(Bytes(Rec(1)))

)

 M-Fld(1.001) T

1 NIEM-

1.001-Value

EQ

(
{XElm(1.001.biom:RecordCategoryCode)},

Str(1)

)

 M-Fld(1.001) X

RT1.7 - Fiel

d: 1.001-

CharType

8.1
Table 22,

8

Section 8.1 and Table 22 specify the
Character Type for each field.

Numeric values shall not contain leading
zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.001-
CharType

SubSet
(

Chars({Fld(1.001)}),

CharNum
)

 M-Fld(1.001) B

1 1.001-

NoLeadingZ

eros

NOT

(

RegEx
(

{Fld(1.001)},

LeadingZeroNum
)

)

 M-Fld(1.001) B

RT1.8 - Fiel

d: 1.001-

CharCount

Table 22,
7.1

Table 22 specifies the character count for
each field.

…a minimum of 2 characters for the

logical record length in Record Type-1…

1 1.001-
CharCount

GTE
(

Count(Chars({Fld(1.001)}),

Int(2)
)

 M-Fld(1.001) T

1 NIEM-

1.001-

CharCount

EQ

(

Count(Chars({Fld(1.001)}),
Int(1)

)

 M-Fld(1.001) X

RT1.9 - Fiel

d: 1.002-

VER-

FieldStructu

re

Table 22,

Annex B,
Annex G

Table 22 specifies which fields contain

subfields and information items as well as
the number of occurrences permitted.

1 1.002-VER-

SubfieldCou
nt

EQ

(
Count(SubFldsIn(Fld(1.002))),

Int(1)

)

 M-Fld(1.002) T

45

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

A field contains a minimum of one

subfield which contains a minimum of one
information item.

1 1.002-VER-

InfoItemCou
nt

EQ

(
Count(InfoItemsIn(SubFld(1.002.1))),

Int(1)

)

 M-Fld(1.002) T

RT1.10 - Fie

ld: 1.002-

VER-Value

8.1.2 This mandatory four-character ASCII

value shall be used to specify the current

version number of the standard

implemented by the software or system
creating the transaction.

The format of this field shall consist of

four numeric characters. The first two
characters shall specify the major version

number. The last two characters shall be

used to specify the minor revision number.
In XML,

biom:TransactionMajorVersionValue

is 5 and
biom:TransactionMinorVersionValue is 1

1 1.002-VER-

Value

EQ

(

{Fld(1.002)},

Str(0501)
)

 M-Fld(1.002) T

1 NIEM-

1.002-VER-

Value

AND

(

OR
(

EQ({XElm(1.002.biom:TransactionMajorVersio

nValue)}, Str(05)),
EQ({XElm(1.002.biom:TransactionMajorVersio

nValue)}, Str(5)),

)
EQ(XElm(1.002.biom:TransactionMinorVersion

Value), Str(01)),

)

 M-Fld(1.002) X

RT1.11 - Fie

ld: 1.002-

VER-

CharType

8.1
Table 22,

8

Section 8.1 and Table 22 specify the
Character Type for each field.

Numeric values shall not contain leading
zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may
also contain leading zeros.

1 1.002-VER-
CharType

SubSet
(

Chars({Fld(1.002)}),

CharNum
)

 M-Fld(1.002) B

RT1.12 - Fie

ld: 1.002-

VER-

CharCount

Table 22

Table 22 specifies the character count for

each field.

1 1.002-VER-

CharCount

EQ

(

Count(Chars({Fld(1.002)}),
Int(4)

)

 M-Fld(1.002) T

1 NIEM-

1.002-VER-
CharCount

AND

(
MO

(

Count(Chars({XElm(1.002.biom:TransactionMaj
orVersionValue)})),

Set-Int([1,2])

),

 M-Fld(1.002) X

46

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

EQ

(
Count(Chars({XElm(1.002.biom:TransactionMin

orVersionValue)})),

Int(2)
)

)

RT1.13 - Fie

ld: 1.003-

CNT-

FieldStructu

re

Table 22,

Annex B,
Annex G

Table 22 specifies which fields contain

subfields and information items as well as
the number of occurrences permitted.

A field contains a minimum of one
subfield which contains a minimum of one

information item.

1 1.003-NT-

SubfieldCou
nt

GTE

(
Count(SubFldsIn(Fld(1.003))),

Int(2)

)

 M-Fld(1.003) T

1 1.003-CNT-
InfoItemCou

nt

EQ
(

Count(InfoItemsIn(Fld(1.003))),

Mult
(

Int(2),

Count(SubFldsIn(Fld(1.003)))
)

)

 M-Fld(1.003) T

1 1.003-CNT-

InfoItemStru
cture

InfoItemsHaveData

(
SubFld(1.003),

Set-Int([1,2])

)

 M-Fld(1.003) T

RT1.14 - Fie

ld: 1.003-

FRC-Value

8.1.3 The first information item (first record
category code / FRC) within this subfield

shall be “1”. This indicates that the first

record in the transaction is a Type-1 record
consisting of header information

1 1.003-FRC-
Value

EQ
(

{InfoI(1.003.FRC)},

Int(1)
)

 M-
InfoI(1.003.F

RC)

 B

RT1.15 - Fie

ld: 1.003-

FRC-

CharType

8.1,

Table 22,

8

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.
Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.003-FRC-

CharType

SubSet

(

Chars({InfoI(1.003.FRC)}),

CharNum

)

 M-

InfoI(1.003.F

RC)

 B

1 1.003-FRC-
NoLeadingZ

eros

NOT
(

RegEx

(
{InfoI(1.003.FRC)}

LeadingZeroNum

 M-
InfoI(1.003.F

RC)

 B

47

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

)

)

RT1.16 - Fie

ld: 1.003-

FRC-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.003-FRC-

CharCount

EQ

(

Count(Chars({InfoI(1.003.FRC)}),

Int(1)

)

 M-

InfoI(1.003.F

RC)

 B

RT1.17 - Fie

ld: 1.003-

CRC-Value

8.1.3,

Table 22

The second information item of this

subfield (content record count / CRC) shall
be the sum of the Type-2 through Type-99

records contained in this transaction. This

number is also equal to the count of the
remaining subfields of Field 1.003

Transaction content / CNT. The maximum

value for CRC is 999.

1 1.003-CRC-

Value

MO

(
{InfoI(1.003.CRC)},

Set-Int([1 to 999])

)

 M-

InfoI(1.003.C
RC)

 B

2 1.003-CRC-

Value-

Dependent-
RecordCoun

t

EQ

(

{InfoI(1.003.CRC)},
Count(Recs(Set-Int([2 to 99])))

)

 M-

InfoI(1.003.C

RC)

 B

2 1.003-CRC-
Value-

Dependent-

SubfieldCou
nt

EQ
(

{InfoI(1.003.CRC)},

Minus(Count(SubFldsIn(Fld(1.003))), Int(1))
)

 M-
InfoI(1.003.C

RC)

 T

2 NIEM-

1.003-CRC-
Value-

Dependent

EQ

(
{XElm(1.003.biom:ContentRecordQuantity)},

Minus

(
Count(ElmsIn(

XElm(1.003.biom:TransactionContentSummary),

XElm(1.003.biom:ContentRecordSummary))),

Int(1)

)

)

 M-

InfoI(1.003.C
RC)

 X

RT1.18 - Fie

ld: 1.003-

CRC-

CharType

8.1

Table 22,

8

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.

1 1.003-CRC-

CharType

SubSet

(

Chars({InfoI(1.003.CRC)}),
CharNum

)

 M-

InfoI(1.003.C

RC)

 B

48

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may
also contain leading zeros.

1 1.003-CRC-

NoLeadingZ
eros

NOT

(
RegEx

(

{InfoI(1.003.CRC)},
LeadingZeroNum

)

)

 M-

InfoI(1.003.C
RC)

 B

RT1.19 - Fie

ld: 1.003-

CRC-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.003-CRC-

CharCount

MO

(

Count(Chars({InfoI(1.003.CRC)}),
Set-Int([1 to 2])

)

 M-

InfoI(1.003.C

RC)

 B

RT1.20 - Fie

ld: 1.003-

REC-Value

8.1.3,

Table 22,
Table 3

The first information item (record category

code / REC), shall contain a number
chosen from the “record identifier” column

of Table 3.

1 1.003-REC-

Value

MO

(
{InfoI(1.003.REC)},

Set-Int([2,4,7 to 22, 98,99])

)

 M-

InfoI(1.003.R
EC)

 B

RT1.21 - Fie

ld: 1.003-

REC-

CharType

8.1

Table 22,

8

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading
zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may
also contain leading zeros.

1 1.003-REC-

CharType

SubSet

(

Chars({InfoI(1.003.REC)}),

CharNum
)

 M-

InfoI(1.003.R

EC)

 B

1 1.003-REC-

NoLeadingZ

eros

NOT

(

RegEx
(

{InfoI(1.003.REC)},

LeadingZeroNum
)

)

 M-

InfoI(1.003.R

EC)

 B

RT1.22 - Fie

ld: 1.003-

REC-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.003-REC-

CharCount

MO

(

Count(Chars({InfoI(1.003.REC)}),

Set-Int([1, 2])
)

 M-

InfoI(1.003.R

EC)

 B

RT1.23 - Fie

ld: 1.003-

IDC-Value

8.1.3,

Table 22

The second information item (information

designation character / IDC) shall be an

integer equal to or greater than zero and
less than or equal to 99. See

Section 7.3.1.

1 1.003-IDC-

Value

MO

(

{InfoI(1.003.IDC)},
Set-Int([0 to 99])

)

 M-

InfoI(1.003.I

DC)

 B

49

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

RT1.24 - Fie

ld: 1.003-

IDC-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.
Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.003-IDC-

CharType

SubSet

(
Chars({InfoI(1.003.IDC)}),

CharNum

)

 M-

InfoI(1.003.I
DC)

 B

1 1.003-IDC-

NoLeadingZ

eros

NOT

(

RegEx

(
{InfoI(1.003.IDC)},

LeadingZeroNum

)
)

 M-

InfoI(1.003.I

DC)

 B

RT1.25 - Fie

ld: 1.003-

IDC-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.003-IDC-

CharCount

MO

(
Count(Chars({InfoI(1.003.IDC)}),

Set-Int([1, 2])

)

 M-

InfoI(1.003.I
DC)

 B

RT1.26 - Fie

ld: 1.004-

TOT-

FieldStructu

re

Table 22,

Annex B,

Annex G

Table 22 specifies which fields contain

subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one

subfield which contains a minimum of one
information item.

1 1.004-TOT-

SubfieldCou

nt

EQ

(

Count(SubFldsIn(Fld(1.004))),

Int(1)
)

 M-Fld(1.004) T

1 1.004-TOT-

InfoItemCou

nt

EQ

(

Count(InfoItemsIn(SubFld(1.004.1))),
Int(1)

)

 M-Fld(1.004) T

RT1.27 - Fie

ld: 1.004-

TOT-Value

8.1.4,

Table 22

This mandatory field shall contain an

identifier, which designates the type of
transaction and subsequent processing that

this transaction should be given. This shall

be a maximum of 16 alphabetic characters.

The TOT shall be in accordance with

definitions provided by the receiving

agency.) Earlier versions of this standard
specifically restricted the character length

of TOT to 4 characters.

1 1.004-TOT-

Value

ReturnResult

(
Result(Pass)

)

 M-Fld(1.004) B

RT1.28 - Fie

ld: 1.004-

TOT-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

1 1.004-TOT-

CharType

SubSet

(
Chars({Fld(1.004)}),

CharAlpha

 M-Fld(1.004) B

50

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

)

RT1.29 - Fie

ld: 1.004-

TOT-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.004-TOT-

CharCount

MO

(
Count(Chars({Fld(1.004)}),

Set-Int([1 to 16])

)

 M-Fld(1.004) B

RT1.30 - Fie

ld: 1.005-

DAT-

FieldStructu

re

Table 22,
Annex B,

Annex G

Table 22 specifies which fields contain
subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one

subfield which contains a minimum of one

information item.

1 1.005-DAT-
SubfieldCou

nt

EQ
(

Count(SubFldsIn(Fld(1.005))),

Int(1)
)

 M-Fld(1.005) T

1 1.005-DAT-

InfoItemCou

nt

EQ

(

Count(InfoItemsIn(SubFld(1.005.1))),
Int(1)

)

 M-Fld(1.005) T

RT1.31 - Fie

ld: 1.005-

DAT-Value

8.1.5,

Table 22,
7.7.2.3

This mandatory field shall contain the local

date that the transaction was submitted.
The local date is recorded as

YYYYMMDD. Note that this may be a

different date than the corresponding
GMT, due to time zone differences.

1 1.005-DAT-

Value

Complex

(
EQ

(

{Fld(1.005)},
ValidLocalDate

))

t3 M-Fld(1.005) T

1 NIEM-

1.005-DAT-
Value

Complex

(
IfThenElse

(

Present(XElm(1.005.nc:Date)),
EQ({XElm(1.005.nc:Date)}, NIEM-

ValidLocalDate),

IfThenElse
(

Present(XElm(1.005.nc:YearMonth)),

EQ({XElm(1.005.nc:YearMonth)}, NIEM-

ValidLocalYearMonth),

IfThenElse

(
Present(XElm(1.005.nc:Year)),

EQ({XElm(1.005.nc:Year)}, NIEM-

ValidLocalYear),
ReturnResult

(

t3 M-Fld(1.005) X

51

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

Result(Fail(No valid local date element is

present.))
))))

)

RT1.32 - Fie

ld: 1.005-

DAT-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.
Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.005-DAT-

CharType

SubSet

(

Chars({Fld(1.005)}),

CharNum

)

 M-Fld(1.005) T

1 NIEM-
1.005-DAT-

CharType

IfThenElse
(

Present(XElm(1.005.nc:Date)),

SubSet
(

Chars({XElm(1.005.nc:Date)})

Union(CharNum, Set-Str([-]))
),

IfThenElse

(
Present(XElm(1.005.nc:YearMonth)),

SubSet

(
Chars({XElm(1.005.nc:YearMonth)})

Union(CharNum, Set-Str([-]))

),
IfThenElse

(

Present(XElm(1.005.nc:Year)),
SubSet

(

Chars({XElm(1.005.nc:Year)})
CharNum

),

ReturnResult

(

Result(Fail(No valid local date element is

present.))
))))

 M-Fld(1.005) X

RT1.33 - Fie

ld: 1.005-

DAT-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.005-DAT-

CharCount

EQ

(

Count(Chars({Fld(1.005)}),
Int(8)

)

 M-Fld(1.005) T

52

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

1 NIEM-

1.005-DAT-
CharCount

IfThenElse

(
Present(XElm(1.005.nc:Date)),

EQ

(
Count(Chars({XElm(1.005.nc:Date)}))

Int(10)

),
IfThenElse

(

Present(XElm(1.005.nc:YearMonth)),
EQ

(

Count(Chars({XElm(1.005.nc:YearMonth)}))
Int(7)

),

IfThenElse
(

Present(XElm(1.005.nc:Year)),

EQ

(

Count(Chars({XElm(1.005.nc:Year)}))

Int(4)
),

ReturnResult

(
Result(Fail(No valid local date element is

present.))

))))

 M-Fld(1.005) X

RT1.34 - Fie

ld: 1.006-

PRY-

FieldStructu

re

Table 22,
Annex B,

Annex G

Table 22 specifies which fields contain
subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one

subfield which contains a minimum of one
information item.

1 1.006-PRY-
SubfieldCou

nt

EQ
(

Count(SubFldsIn(Fld(1.006))),

Int(1)
)

 O-Fld(1.006) T

1 1.006-PRY-

InfoItemCou

nt

EQ

(

Count(InfoItemsIn(SubFld(1.006.1))),
Int(1)

)

 O-Fld(1.006) T

RT1.35 - Fie

ld: 1.006-

PRY-Value

8.1.6,

Table 22

This optional field shall contain a single

information character to designate the
urgency with which a response is desired.

The values shall range from 1 to 9, with 1

1 1.006-PRY-

Value

{1.006} MO [1 to 9] AND MO [Integers] O-Fld(1.006) B

53

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

denoting the highest priority. The default

value shall be defined by the agency
receiving the transaction.

RT1.36 - Fie

ld: 1.006-

PRY-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,
1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.006-PRY-

CharType

SubSet

(

Chars({Fld(1.006)}),

CharNum

)

 O-Fld(1.006) B

1 1.006-PRY-

NoLeadingZ
eros

NOT

(
RegEx

(

{Fld(1.006)},
LeadingZeroNum

)

)

 O-Fld(1.006) B

RT1.37 - Fie

ld: 1.006-

PRY-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.006-PRY-

CharCount

EQ

(

Count(Chars({Fld(1.006)}),

Int(1)

)

 O-Fld(1.006) B

RT1.38 - Fie

ld: 1.007-

DAI-

FieldStructu

re

Table 22,

Annex B,
Annex G

Table 22 specifies which fields contain

subfields and information items as well as
the number of occurrences permitted.

A field contains a minimum of one

subfield which contains a minimum of one

information item.

1 1.007-DAI-

SubfieldCou
nt

EQ

(
Count(SubFldsIn(Fld(1.007))),

Int(1)

)

 M-Fld(1.007) T

1 1.007-DAI-
InfoItemCou

nt

EQ
(

Count(InfoItemsIn(SubFld(1.007.1))),

Int(1)
)

 M-Fld(1.007) T

RT1.39 - Fie

ld: 1.007-

DAI-Value

8.1.7,

Table 22

This mandatory field shall contain the

identifier of the administration or

organization designated to receive the
transmission. The size and data content of

this field shall be user-defined and in

accordance with the application profile.

1 1.007-DAI-

Value

ReturnResult

(

Result(Pass)
)

 M-Fld(1.007) B

RT1.40 - Fie

ld: 1.007-

DAI-

CharType

8.1
Table 22,

Section 8.1 and Table 22 specify the
Character Type for each field.

1 1.007-DAI-
CharType

SubSet
(

Chars({Fld(1.007)}),

CharsAsciiPrintable
)

 M-Fld(1.007) B

54

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

RT1.41 - Fie

ld: 1.007-

DAI-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.007-DAI-

CharCount

GTE

(
Count(Chars({Fld(1.007)}),

Int(1)

)

 M-Fld(1.007) B

RT1.42 - Fie

ld: 1.008-

ORI-

FieldStructu

re

Table 22,

Annex B,

Annex G

Table 22 specifies which fields contain

subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one

subfield which contains a minimum of one

information item.

1 1.008-ORI-

SubfieldCou

nt

EQ

(

Count(SubFldsIn(Fld(1.008))),

Int(1)
)

 M-Fld(1.008) T

1 1.008-ORI-

InfoItemCou

nt

EQ

(

Count(InfoItemsIn(SubFld(1.008.1))),
Int(1)

)

 M-Fld(1.008) T

RT1.43 - Fie

ld: 1.008-

ORI-Value

8.1.8,

Table 22,
5.3.1

This mandatory field shall contain the

identifier of the administration or
organization originating the transaction.

The size and data content of this field shall

be user-defined and in accordance with the

application profile.

The Type-1 record shall provide
information describing …the originator or

source of the physical record

1 1.008-ORI-

Value

ReturnResult

(
Result(Pass)

)

 M-Fld(1.008) B

RT1.44 - Fie

ld: 1.008-

ORI-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

1 1.008-ORI-

CharType

SubSet

(
Chars({Fld(1.008)}),

CharsAsciiPrintable

)

 M-Fld(1.008) B

RT1.45 - Fie

ld: 1.008-

ORI-

CharCount

Table 22 Table 22 specifies the character count for
each field.

1 1.008-ORI-
CharCount

GTE
(

Count(Chars({Fld(1.008)}),

Int(1)

)

 M-Fld(1.008) B

RT1.46 - Fie

ld: 1.009-

TCN-

FieldStructu

re

Table 22,

Annex B,

Annex G

Table 22 specifies which fields contain

subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one
subfield which contains a minimum of one

information item.

1 1.009-TCN-

SubfieldCou

nt

EQ

(

Count(SubFldsIn(Fld(1.009))),
Int(1)

)

 M-Fld(1.009) T

1 1.009-TCN-

InfoItemCou
nt

EQ

(
Count(InfoItemsIn(SubFld(1.009.1))),

 M-Fld(1.009) T

55

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

 Int(1)

)

RT1.47 - Fie

ld: 1.009-

TCN-Value

8.1.9,
Table 22

This mandatory field shall contain the
transaction control number as assigned by

the originating agency. A unique (for the

originating agency) alphanumeric control

number shall be assigned to each

transaction. For any transaction that

requires a response, the respondent shall
refer to this number in communicating with

the originating agency.

1 1.009-TCN-
Value

ReturnResult
(

Result(Pass)

)

 M-Fld(1.009) B

RT1.48 - Fie

ld: 1.009-

TCN-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

1 1.009-TCN-

CharType

SubSet

(
Chars({Fld(1.009)}),

CharsAsciiPrintable

)

 M-Fld(1.009) B

RT1.49 - Fie

ld: 1.009-

TCN-

CharCount

Table 22 Table 22 specifies the character count for
each field.

1 1.009-TCN-
CharCount

GTE
(

Count(Chars({Fld(1.009)}),

Int(1)

)

 M-Fld(1.009) B

RT1.50 - Fie

ld: 1.010-

TCR-

FieldStructu

re

Table 22,

Annex B,

Annex G

Table 22 specifies which fields contain

subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one
subfield which contains a minimum of one

information item.

1 1.010-TCR-

SubfieldCou

nt

EQ

(

Count(SubFldsIn(Fld(1.010))),
Int(1)

)

 O-Fld(1.010) T

1 1.010-TCR-

InfoItemCou
nt

EQ

(
Count(InfoItemsIn(SubFld(1.010.1))),

Int(1)

)

 O-Fld(1.010) T

RT1.51 - Fie

ld: 1.010-

TCR-Value

8.1.10,
Table 22

This optional field shall be used for
responses that refer to the TCN of a

previous transaction involving an inquiry

or other action that required a response.

1 1.010-TCR-
Value

ReturnResult
(

Result(Pass)

)

 O-Fld(1.010) B

RT1.52 - Fie

ld: 1.010-

TCR-

CharType

8.1
Table 22,

Section 8.1 and Table 22 specify the
Character Type for each field.

1 1.010-TCR-
CharType

SubSet
(

Chars({Fld(1.010)}),

CharsAsciiPrintable
)

 O-Fld(1.010) B

RT1.53 - Fie

ld: 1.010-

Table 22 Table 22 specifies the character count for

each field.

1 1.010-TCR-

CharCount

GTE

(

 O-Fld(1.010) B

56

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

TCR-

CharCount

Count(Chars({Fld(1.010)}),

Int(1)
)

RT1.54 - Fie

ld: 1.011-

NSR-

FieldStructu

re

Table 22,

Annex B,

Annex G

Table 22 specifies which fields contain

subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one

subfield which contains a minimum of one
information item.

1 1.011-NSR-

SubfieldCou

nt

EQ

(

Count(SubFldsIn(Fld(1.011))),

Int(1)

)

 M-Fld(1.011) T

1 1.011-NSR-

InfoItemCou
nt

EQ

(
Count(InfoItemsIn(SubFld(1.011.1))),

Int(1)

)

 M-Fld(1.011) T

RT1.55 - Fie

ld: 1.011-

NSR-Value

8.1.11,
Table 22,

7.7.6,

7.7.6.1,
7.7.6.2.1,

Table 14

This mandatory field shall be set to
“00.00” if there are no Type-4 records in

the transaction.

When there are Type-4 records present,
this field is used to specify the native

scanning resolution of the friction ridge

image capture device. This field shall

specify the resolution in pixels per

millimeter. The resolution shall be

expressed as two numeric characters
followed by a decimal point and two more

numeric characters.

Images with scanning resolution greater

than or equal to the 1000 ppi class should

not be transmitted using Record Type-4
unless being transmitted at 500 ppi class to

a system incapable of receiving Type-14

records at 1000 ppi class or greater.

NSR contains five characters specifying

the native scanning resolution in pixels per
millimeter. It is expressed as two numeric

characters followed by a decimal point and

two more numeric characters (e.g. 19.69).

Exemplar images shall have a minimum

scanning resolution of the 500 ppi class.

1 1.011-NSR-
Value

RegEx
(

{Fld(1.011)},

Str(^[0-9]{2}\.[0-9]{2}$)
)

 M-Fld(1.011) T

1 NIEM-

1.011-NSR-

Value

RegEx

(

{Fld(1.011)},
Str(^[0-9]{1,2}\.[0-9]{2}$)

)

 M-Fld(1.011) X

2 1.011-NSR-

Value-
Dependent

IfThenElseResult

(
Not(Present(Rec(4))),

EQ({Fld(1.011)}, Num(00.00)),

IfThenElseResult
(
GTE(NV({Fld(1.011)}), Num(38.58)),

ReturnResult
(

Result(Warning(Images with scanning resolution

equal to or greater than the 1000ppi class should

not be transmitted using Record Type-4 unless

they are scaled-down to produce a transmitting

resolution of class 500ppi.))
),

GTE(NV({Fld(1.011)}), Num(19.29)),

)
)

t11 M-Fld(1.011) REMOVE

NIEM
ASSERTIO

N BELOW

 B

57

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

In this version, NSR and NTR only apply

to Record Type-4: Grayscale fingerprint
image…

Table 14 defines resolution tolerance for
fingerprint types. 2% is used as the default;

see test note t-11 for details.

Note: the minimum value with tolerance

was 19.30 in 2011. This is changed to

19.29 in 2013 due to the rounding method
mentioned in 7.7.8.4.

RT1.56 - Fie

ld: 1.011-

NSR-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.011-NSR-

CharType

SubSet

(

Chars({Fld(1.011)}),
Union(CharNum, Set-Str([.]))

)

 M-Fld(1.011) B

RT1.57 - Fie

ld: 1.011-

NSR-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.011-NSR-

CharCount

EQ

(
Count(Chars({Fld(1.011)})),

 Int(5)

)

 M-Fld(1.011) T

1 NIEM-
1.011-NSR-

CharCount

MO
(

Count(Chars({Fld(1.011)})),

 Set-Int([4,5])
)

 M-Fld(1.011) X

RT1.58 - Fie

ld: 1.012-

NTR-

FieldStructu

re

Table 22,

Annex B,

Annex G

Table 22 specifies which fields contain

subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one
subfield which contains a minimum of one

information item.

1 1.012-NTR-

SubfieldCou

nt

EQ

(

Count(SubFldsIn(Fld(1.012))),
Int(1)

)

 M-Fld(1.012) T

1 1.012-NTR-

InfoItemCou
nt

EQ

(
Count(InfoItemsIn(SubFld(1.012.1))),

Int(1)

)

 M-Fld(1.012) T

58

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

RT1.59 - Fie

ld: 1.012-

NTR-Value

8.1.12,

Table 22,
7.7.6,

7.7.6.3.1

This mandatory field shall be set to

“00.00” if there are no Type-4 records in
the transaction.

When there are Type-4 records present,

this field specifies the nominal resolution
for the image(s) being exchanged. This

field shall specify the resolution in pixels

per millimeter.
The resolution shall be within the range

19.30 ppmm (490 ppi) to 20.08 ppmm (510

ppi).

All record types containing images are

variable resolution except for Type-4,
which has a fixed resolution. Record Type-

4 shall not be used for anything but the 500

ppi class.

In this version, NSR and NTR only apply

to Record Type-4: Grayscale fingerprint

image…

…the transmitting resolution shall not be
greater than the scanning resolution

1 1.012-NTR-

Value

RegEx

(
{Fld(1.012)},

Str(^[0-9]{2}\.[0-9]{2}$)

)

 M-Fld(1.012) T

1 NIEM-

1.012-NTR-

Value

RegEx

(

{Fld(1.012)},

Str(^[0-9]{1,2}\.[0-9]{2}$)
)

 M-Fld(1.012) X

2 1.012-

Value-

Dependent

IfThenElse

(

Present(Rec(4)),
InRange
(
NV({Fld(1.012)}), Num(19.29), Num(20.08)
),
EQ({Fld(1.012)}, Num(00.00))

)

t11 M-Fld(1.012) REMOVE

NIEM

ASSERT
BELOW

 B

2 1.012-NTR-

Value-

Dependent-

LTE-1.011

LTE

(

{Fld(1.012)},

{Fld(1.011)}
)

 M-Fld(1.012) B

RT1.60 - Fie

ld: 1.012-

NTR-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,
1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.012-NTR-

CharType

SubSet

(

Chars({Fld(1.012)}),
Union(CharNum, Set-Str([.]))

)

 M-Fld(1.012) B

RT1.61 - Fie

ld: 1.012-

NTR-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.012-NTR-

CharCount

EQ

(

Count(Chars({Fld(1.012)})),

 Int(5)

)

 M-Fld(1.012) T

1 NIEM-
1.012-NTR-

CharCount

MO
(

Count(Chars({Fld(1.012)})),

 Set-Int([4,5])
)

 M-Fld(1.012) X

59

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

RT1.62 - Fie

ld: 1.013-

DOM-

FieldStructu

re

Table 22,

Annex B,
Annex G

Table 22 specifies which fields contain

subfields and information items as well as
the number of occurrences permitted.

A field contains a minimum of one
subfield which contains a minimum of one

information item.

1 1.013-DOM-

SubfieldCou
nt

EQ

(
Count(SubFldsIn(Fld(1.013))),

Int(1)

)

 O-Fld(1.013) T

1 1.013-DOM-

InfoItemCou

nt

EQ

(

Count(InfoItemsIn(SubFld(1.013.1))),

Int(2)
)

 O-Fld(1.013) T

1 1.013-DOM-

InfoItemStru

cture

InfoItemsHaveData

(

SubFld(1.013.1),
Set-Int([1])

)

 O-Fld(1.013) T

RT1.63 - Fie

ld: 1.013-

DNM-Value

8.1.13,
Table 22

The mandatory first information item
(domain name / DNM) will uniquely

identify the agency, entity, or

implementation used for formatting the

fields in the Type-2 record. The default

value for the field shall be the North

American Domain implementation
(NORAM).

1 1.013-DNM-
Value

ReturnResult
(

Result(Pass)

)

 M↑-
InfoI(1.013.D

NM)

 B

RT1.64 - Fie

ld: 1.013-

DNM-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

1 1.013-DNM-

CharType

SubSet

(
Chars({InfoI(1.013.DNM)}),

CharsAsciiPrintable

)

 M↑-

InfoI(1.013.D
NM)

 B

RT1.65 - Fie

ld: 1.013-

DNM-

CharCount

Table 22 Table 22 specifies the character count for
each field.

1 1.013-DNM-
CharCount

GTE
(

Count(Chars({InfoI(1.013.DNM)}),

Int(1)

)

 M↑-
InfoI(1.013.D

NM)

 B

RT1.66 - Fie

ld: 1.013-

DVN-Value

8.1.13,

Table 22

An optional second information item

(domain version number / DVN) shall

contain the unique version of the particular
implementation, such as 7.02.

1 1.013-DVN-

Value

ReturnResult

(

Result(Pass)
)

 O↑-

InfoI(1.013.D

VN)

 B

RT1.67 - Fie

ld: 1.013-

DVN-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

1 1.013-DVN-

CharType

SubSet

(

Chars({InfoI(1.013.DVN)}),
CharsAsciiPrintable

 O↑-

InfoI(1.013.D

VN)

 B

60

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

)

RT1.68 - Fie

ld: 1.013-

DVN-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.013-DVN-

CharCount

GTE

(
Count(Chars({InfoI(1.013.DVN)}),

Int(1)

)

 O↑-

InfoI(1.013.D
VN)

 B

RT1.69 - Fie

ld: 1.014-

GMT-

FieldStructu

re

Table 22,
Annex B,

Annex G

Table 22 specifies which fields contain
subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one

subfield which contains a minimum of one

information item.

1 1.014-GMT-
SubfieldCou

nt

EQ
(

Count(SubFldsIn(Fld(1.014))),

Int(1)
)

 O-Fld(1.014) T

1 1.014-GMT-

InfoItemCou

nt

EQ

(

Count(InfoItemsIn(SubFld(1.014.1))),
Int(1)

)

 O-Fld(1.014) T

RT1.70 - Fie

ld: 1.014-

GMT-Value

8.1.14,

Table 22

This optional field provides a mechanism

for expressing the date and time in terms of
universal Greenwich Mean Time (GMT)

units.

1 1.014-GMT-

Value

Complex

(
EQ

 (

{Fld(1.014)},
ValidUTC/GMT

))

t3 O-Fld(1.014) T

1 NIEM-

1.014-GMT-
Value

Complex

(
EQ

{XElm(1.014.nc:DateTime)},

NIEM-ValidUTC/GMT
))

t3 O-Fld(1.014) X

RT1.71 - Fie

ld: 1.014-

GMT-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,
1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.014-GMT-

CharType

SubSet

(

Chars({Fld(1.014)}),
Union(CharNum, Set-Str([Z]))

)

 O-Fld(1.014) B

1 NIEM-

1.014-GMT-
CharType

SubSet

(
Chars({Fld(1.014)}),

Union(CharNum, Set-Str([-,:,T,Z]))

)

 O-Fld(1.014) B

RT1.72 - Fie

ld: 1.014-

Table 22 Table 22 specifies the character count for
each field.

1 1.014-GMT-
CharCount

EQ
(

Count(Chars({Fld(1.014)}),

 O-Fld(1.014) T

61

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

GMT-

CharCount

Int(15)

)

1 NIEM-
1.014-GMT-

CharCount

EQ
(

Count(Chars({Fld(1.014)}),

Int(20)

)

 O-Fld(1.014) X

RT1.73 - Fie

ld: 1.015-

DCS-

FieldStructu

re

Table 22,

Annex B,

Annex G

Table 22 specifies which fields contain

subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one

subfield which contains a minimum of one
information item.

1 1.015-DCS-

SubfieldCou

nt

EQ

(

Count(SubFldsIn(Fld(1.015))),
Int(1)

)

 O-Fld(1.015) T

1 1.015-DCS-

InfoItemCou
nt

EQ

(
Count(InfoItemsIn(SubFld(1.015.1))),

Int(2,3)

)

 O-Fld(1.015) T

1 1.015-DCS-
InfoItemStru

cture

InfoItemsHaveData
(

SubFld(1.015.1),

Set-Int([1,2])
)

 O-Fld(1.015) T

RT1.74 - Fie

ld: 1.015-

CSI-Value

8.1.15,

Table 22,
Table 4,

5.4, 5.6

The first information item (character

encoding index / CSI) is the index number
that references an associated character

encoding. See the “Character encoding

index” column of Table 4 for the valid
values for this information item.

'Legacy' indicates that if there is existing
data using this record type, field,

information item or value it may still be

transmitted in a transaction conformant to

this version of the standard. In this version

‘legacy’ applies to Fields 9.005 through

9.012, Field 10.022 and to the value '1' in
Table 4 Character encoding.

Note that the value “1” does not appear in

the table. It is a legacy value.

1 1.015-CSI-

Value

IfThenElseResult

(
MO(NV{InfoI(1.015.CSI)}, Set-Int([0, 2 to 4,

128 to 999]),

Result(Pass),
IfThenElseResult

(

EQ({InfoI(1.015.CSI)}, Str(1)),
Result(Warning(‘1’ is a Legacy value.)),

Result(Fail)

)

)

 M↑-

InfoI(1.015.C
SI)

 B

62

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

RT1.75 - Fie

ld: 1.015-

CSI-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.
Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.015-CSI-

CharType

SubSet

(
Chars({InfoI(1.015.CSI)}),

CharNum

)

 M↑-

InfoI(1.015.C
SI)

 B

1 1.015-CSI-

NoLeadingZ

eros

NOT

(

RegEx

(
{InfoI(1.015.CSI)},

LeadingZeroNum

)
)

 M↑-

InfoI(1.015.C

SI)

 B

RT1.76 - Fie

ld: 1.015-

CSI-

CharType

Table 22 Table 22 specifies the character count for

each field.

1 1.015-CSI-

CharCount

MO

(
Count(Chars({InfoI(1.015.CSI)}),

Set-Int([1,2,3])

)

 M↑-

InfoI(1.015.C
SI)

 B

RT1.77 - Fie

ld: 1.015-

CSN-Value

8.1.15,

Table 22,

Table 4

The second information item (character

encoding name / CSN) shall be the

“Character encoding name” associated

with that index number, taken from
Table 4.

1 1.015-CSN-

Value

ReturnResult

(

Result(Pass)

)

 M↑-

InfoI(1.015.C

SN)

 B

2 1.015-CSN-
Value-

Dependent

IfThenElseResult
(

EQ({InfoI(1.015.CSI)}, Int(0)),

EQ({InfoI(1.015.CSN)}, Str(ASCII)),

IfThenElseResult

(
EQ({InfoI(1.015.CSI)}, Int(1)),

EQ({InfoI(1.015.CSN)}, Str(8-bit ASCII)),

IfThenElseResult

(

EQ({InfoI(1.015.CSI)}, Int(2)),
EQ({InfoI(1.015.CSN)}, Str(8 UTF-16)),

IfThenElseResult
(

EQ({InfoI(1.015.CSI)}, Int(3)),

EQ({InfoI(1.015.CSN)}, Str(8 UTF-8)),

 M↑-
InfoI(1.015.C

SN)

 X

63

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

IfThenElseResult

(
EQ({InfoI(1.015.CSI)}, Int(4)),

EQ({InfoI(1.015.CSN)}, Str(8 UTF-32)),

ReturnResult

(

Result(Pass)))))))

RT1.78 - Fie

ld: 1.015-

CSN-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,
1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.015-CSN-

CharType

SubSet

(

Chars({InfoI(1.015.CSN)}),
CharAsciiPrintable

)

 M↑-

InfoI(1.015.C

SN)

 B

RT1.79 - Fie

ld: 1.015-

CSN-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.015-CSN-

CharCount

MO

(
Count(Chars({InfoI(1.015.CSN)}),

Set-Int([1 to 16])

)

 M↑-

InfoI(1.015.C
SN)

 B

RT1.80 - Fie

ld: 1.015-

CSV-Value

8.1.15,
Table 22,

Table 4

The optional third information item
(character encoding version / CSV) is the

specific version of the character encoding

used. In the case of the use of UTF-8, the
third optional information item may be

used to hold the specific version used, so

that the display terminal can be switched to
the correct font family.

1 1.015-CSV-
Value

ReturnResult
(

Result(Pass)

)

 O↑-
InfoI(1.015.C

SV)

 B

RT1.81 - Fie

ld: 1.015-

CSV-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,
1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.015-CSV-

CharType

SubSet

(

Chars({InfoI(1.015.CSV)}),
CharAsciiPrintable

)

 O↑-

InfoI(1.015.C

SV)

 B

RT1.82 - Fie

ld: 1.015-

CSV-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.015-CSV-

CharCount

MO

(
Count(Chars({InfoI(1.015.CSV)}),

Set-Int([1 to 16])

)

 M↑-

InfoI(1.015.C
SV)

 B

64

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

RT1.83 - Fie

ld: 1.016-

APS-

FieldStructu

re

Table 22,

Annex B,
Annex G

Table 22 specifies which fields contain

subfields and information items as well as
the number of occurrences permitted.

A field contains a minimum of one
subfield which contains a minimum of one

information item.

1 1.016-APS-

SubfieldCou
nt

MO

(
Count(SubFldsIn(Fld(1.016))),

Set-Int(]1 to 99])

)

 O-Fld(1.016) T

1 1.016-APS-

InfoItemCou

nt

EQ

(

Count(InfoItemsIn(SubFld(1.016))),

Int(3)
)

 O-Fld(1.016) T

1 1.016-APS-

InfoItemStru
cture

InfoItemsHaveData

(
SubFld(1.016),

Set-Int([1,2,3])

)

 O-Fld(1.016) T

RT1.84 - Fie

ld: 1.016-

APO-Value

8.1.16,

Table 22

The first information item (application

profile organization / APO) will uniquely

identify the agency or entity responsible

for the specification.

1 1.016-APO-

Value

ReturnResult

(

Result(Pass)

)

 M↑-

InfoI(1.016.A

PO)

 B

RT1.85 - Fie

ld: 1.016-

APO-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.
Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.016-APO-

CharType

SubSet

(
Chars({InfoI(1.016.APO)}),

CharAsciiPrintable

)

 M↑-

InfoI(1.016.A
PO)

 B

RT1.86 - Fie

ld: 1.016-

APO-

CharCount

Table 22 Table 22 specifies the character count for
each field.

1 1.016-APO -
CharCount

GTE
(

Count(Chars({InfoI(1.016.APO}),

Int(1)

)

 M↑-
InfoI(1.016.A

PO)

 B

RT1.87 - Fie

ld: 1.016-

APN-Value

8.1.16,

Table 22

The second information item (application

profile name / APN) shall contain the name

of the specification.

1 1.016-APN-

Value

ReturnResult

(

Result(Pass)
)

 M↑-

InfoI(1.016.A

PN)

 B

RT1.88 - Fie

ld: 1.016-

APN-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

1 1.016-APN-

CharType

SubSet

(

Chars({InfoI(1.016.APN)}),
CharAsciiPrintable

 M↑-

InfoI(1.016.A

PN)

 B

65

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

Numeric values shall not contain leading

zeros unless indicated by the standard text.
Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

)

RT1.89 - Fie

ld: 1.016-

APN-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.016-APN -

CharCount

GTE

(

Count(Chars({InfoI(1.016.APN}),

Int(1)
)

 M↑-

InfoI(1.016.A

PN)

 B

RT1.90 - Fie

ld: 1.016-

APV-Value

8.1.16,

Table 22

The third information item (application

profile version number / APV) shall

contain the specific version of the
specification.

1 1.016-APV-

Value

ReturnResult

(

Result(Pass)
)

 M↑-

InfoI(1.016.A

PV)

 B

RT1.91 - Fie

ld: 1.016-

APV-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.016-APV-

CharType

SubSet

(

Chars({InfoI(1.016.APV)}),
CharAsciiPrintable

)

 M↑-

InfoI(1.016.A

PV)

 B

RT1.92 - Fie

ld: 1.016-

APV-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.016-APV -

CharCount

GTE

(
Count(Chars({InfoI(1.016.APV}),

Int(1)

)

 M↑-

InfoI(1.016.A
PV)

 B

RT1.93 - Fie

ld: 1.016-

APS-

Compliance

8.1.16 If multiple Application Profile
Specifications are included in this field, the

specifications must be compatible with

each other: this transaction must be in
compliance with all of the cited

specifications. See Section 6.

3 1.016-APS
Compliance

ReturnResult
(

Result

(Warning(Untested Level 3-Application Profiles
external references are outside of the scope of

conformance testing to the base standard.))

)

 O-Fld(1.016) B

RT1.94 - Fie

ld: 1.017-

ANM-

FieldStructu

re

Table 22,
Annex B,

Annex G

Table 22 specifies which fields contain
subfields and information items as well as

the number of occurrences permitted.

A field contains a minimum of one

subfield which contains a minimum of one
information item.

1 1.017-ANM-
SubfieldCou

nt

EQ
(

Count(SubFldsIn(Fld(1.017))),

Int(1)
)

 O-Fld(1.017) T

1 1.017-ANM-

InfoItemCou

nt

LTE

(

Count(InfoItemsIn(SubFld(1.017.1))),
Int(2)

 O-Fld(1.017) T

66

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

)

1 1.017-ANM-

InfoItemCou
nt

ReturnResult

(
Result(Pass(All Information Items are optional

for this field.))

)

 O-Fld(1.017) T

RT1.95 - Fie

ld:1.017-

DAN-Value

8.1.17 Both information items are alphanumeric
and can have any special characters in the

names.

1 1.017-DAN-
Value

ReturnResult
(

Result(Pass)

)

 O↑-
InfoI(1.017.D

AN)

 B

RT1.96 - Fie

ld:1.017-

DAN-

CharType

8.1
Table 22,

Section 8.1 and Table 22 specify the
Character Type for each field.

Numeric values shall not contain leading
zeros unless indicated by the standard text.

Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may
also contain leading zeros.

1 1.017-DAN-
CharType

SubSet
(

Chars({InfoI(1.017.DAN)}),

CharAsciiPrintable
)

 O↑-
InfoI(1.017.D

AN)

 B

RT1.97 - Fie

ld:1.017-

DAN-

CharCount

Table 22 Table 22 specifies the character count for

each field.

1 1.017-DAN

-CharCount

GTE

(

Count(Chars({InfoI(1.017.DAN}),
Int(1)

)

 O↑-

InfoI(1.017.D

AN)

 B

RT1.98 - Fie

ld:1.017-

OAN-Value

8.1.17 Both information items are alphanumeric

and can have any special characters in the
names.

1 1.017-

OAN-Value

ReturnResult

(
Result(Pass)

)

 O↑-

InfoI(1.017.O
AN)

 B

RT1.99 - Fie

ld:1.017-

OAN-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.
Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.017-OAN-

CharType

SubSet

(
Chars({InfoI(1.017.OAN)}),

CharAsciiPrintable

)

 O↑-

InfoI(1.017.O
AN)

 B

RT1.100 - Fi

eld:1.017-

OAN-

CharCount

Table 22 Table 22 specifies the character count for
each field.

1 1.017-OAN
-CharCount

GTE
(

Count(Chars({InfoI(1.017.OAN}),

Int(1)
)

 O↑-
InfoI(1.017.O

AN)

 B

67

Req. # - ID Ref. in

Base

Std.

Requirement

Summary

L

e

v

e

l

Assertion

ID

Test

Assertion

N

o

t

e

s

Imp.

Required

Imp.

Support

Supporte

d Range

Test

Result

E

n

c

.

Record Type-1: Transaction information record

RT1.101 - Fi

eld: 1.018-

GNS-

FieldStructu

re

Table 22,

Annex B,
Annex G

Table 22 specifies which fields contain

subfields and information items as well as
the number of occurrences permitted.

A field contains a minimum of one
subfield which contains a minimum of one

information item.

1 1.018-GNS-

SubfieldCou
nt

EQ

(
Count(SubFldsIn(Fld(1.018))),

Int(1)

)

 O-Fld(1.018) T

1 1.018-GNS-

InfoItemCou

nt

EQ

(

Count(InfoItemsIn(SubFld(1.018.1))),

Int(1)
)

 O-Fld(1.018) T

RT1.102 - Fi

eld: 1.018-

GNS-Value

8.1.18 This optional field is used if the transaction

uses GENC in lieu of ISO 3166-1

as a code set for country code
specifications. ISO 3166-1 is the default

country code set

used for the transaction when this field is
not contained in Record Type-1. The

values for this field are: ISO, GENC

1 1.018-GNS-

Value

MO

(

{Fld(1.018)},
Set-Str([ISO, GENC])

)

 O-Fld(1.018) B

RT1.103 - Fi

eld: 1.018-

GNS-

CharType

8.1

Table 22,

Section 8.1 and Table 22 specify the

Character Type for each field.

Numeric values shall not contain leading

zeros unless indicated by the standard text.
Leading zeros are allowed for 1.002, 1.011,

1.012, 99.100, and 99.101. Any dates may

also contain leading zeros.

1 1.018-GNS-

CharType

SubSet

(

Chars({Fld(1.018.GNS)}),

CharAlpha

)

 O-Fld(1.018) B

RT1.104 - Fi

eld: 1.018-

GNS-

CharCount

Table 22 Table 22 specifies the character count for
each field.

1 1.018-GNS-
CharType

MO
(

Count(Chars({Fld(1.018})),

Set-Int([3,4])
)

 O-Fld(1.018) B

Annex D: Test Notes and Test Exceptions

This Annex defines test notes and test exceptions that apply to requirements and assertions documented in Annex C as well as test notes and

exceptions for those requirements which may be released in separate publications. As these test notes and requirements may need to be

updated as additional requirements are documented, the test notes and test exceptions are included as an external reference. The test notes

and exceptions will be made available at: http://www.nist.gov/itl/csd/biometrics/biocta_download.cfm.

http://www.nist.gov/itl/csd/biometrics/biocta_download.cfm

68

Acknowledgements

This publication was the result of work was sponsored, in part, by the Department of Homeland Security/Office of Biometric Identity

Management (OBIM). Christofer J. McGinnis, from IDTP, a NIST/ITL grantee, developed most of the test assertions documented in this

publication.

