

A New Approach for Measuring Facial Image Quality

Robert Yen, Ph.D. U.S. Army Biometrics Task Force Biometric Standards Team 8 November 2007

BIN ETRICS

- S Background
- **§ FaceQM Purpose**
- **§ FaceQM Approach**
- § FaceQM Test Results
- **§ FaceQM Current Status**

- S Measuring the quality of biometric samples is a crucial step in the enrollment processes.
- S Use of good-quality biometric samples increases the performance of automatic recognition systems during the matching process.
- S Varying operational environments (*e.g.*, lighting, deteriorating equipment, operator training) in which samples are collected result in collection of biometric samples of varying levels of quality.
- S Without consistent biometric sample quality validation, poor-quality samples contaminate databases and negatively impact the performance of automatic recognition systems.

- S Assess quality of facial images
 - Use requirements of INCITS 385-2004 (Face Recognition Format for Data Interchange) standard and other criteria as quality parameters
 - Use FaceQM quality scores as predictor of matching performance
- S Evaluate matching algorithms and systems
 - Determine "sensitivity" of individual matchers to specific quality parameters
- Support customized quality scores ("mapping")
 - For example: Acceptance-Rejection

FaceQM – Quality Measurement Flow

- 1. Image Header Information Validation Module
 - Check consistency and validate image header information

2. Skin Area Segmentation Module

- Segment skin area by using Skin Color Decision
 Tree
- Generate skin area mask

3. Face Features Detection Module

- Locate face features eyes, mouth, and ears
- Measure and/or calculate face features

4. Quality Determination Module

- Verify values of face features against constraints
- Determine and output quality scores

FaceQM

1. Header Information Validation

DIDNETRICS TASK FORCE

- S The module verifies the following header information
 - Scanned resolution
 - Width and height values
 - Color bytes: Red-Green-Blue (RGB) bytes for each pixel
 - File size: consistency checking

2. Skin Area Segmentation

- S Considerations: Accuracy and Efficiency
 - Our approach: Non-Uniform Binary Splitting Algorithm
- § Uses trained skin color features as reference
- Based on the training process; establishes Decision Tree (DT)
- S Uses the DT to segment face area

Skin Color Training Dataset

BIONETRICS

- **S** All pixels belong to human skin color
- § 2,048 x 2,048 = 4,194,304 pixels in total
- **S** Collected from FERET Database

- § Total combination of RGB bytes: $2^8 \times 2^8 \times 2^8 = 16,777,216$
- S Skin color spectrum is narrow
- S Skin color is a combination of red, yellow, and brown colors
- S Several color spaces related to skin are available:

Color Space	Advantage	Disadvantage
RGB	Easy to form from current capture	Not a good color space to
(Red-Green-Blue)	devices	present skin-tone value
YUV (Luminance-Hue- Saturation)	Good for broadcast television and compression/decompression	Has no chrominance components
YCrCb (Luminance- Chrominance)	Good for handling video information	Has no hue component
HIS (Hue-Intensity- Saturation)	Good for providing Intensity and Saturation information of color	Has no chrominance components

Our approach: Combinations of Y, Cr, Cb, Hue, and Saturation

Skin Color Space - Statistic

BINETRICS TASK FORCE

Skin Color Segmentation Analysis

PIONETRICS TASK FORCE

Non-Uniform Binary Splitting

BIONETRICS

Each node has (1) mean vector, (2) node variance, and (3) number of pixels.

Node Splitting Rule:

- (1) node's variance > pre-defined value
- (2) number of pixels > pre-defined value
- (3) each parent node only splits to two child nodes

NUBS Tree:

For each parent node, need to record the child node's number and mean vector.

- Step 1: Set the ε (variance threshold)
- Step 2: Convert each pixel's RGB bytes to a skin feature vector, v
- Step 3: Calculate the mean vector and variance of whole training dataset
- Step 4: Split current node all pixels into two sub-classes by using NUBS algorithm
- Step 5: Calculate the mean vectors and variances for both sub-classes
- Step 6: Register the nodes, mean vectors, and variance into the Decision Tree (DT)
- Step 7: Repeat Step 4 to Step 6 for all nodes that need to split

- Step 1: Convert each pixel's RGB bytes to a skin feature vector, v
- Step 2: Calculate the mean vector and variance of whole image
- Step 3: Split current node all pixels into two sub-classes by using NUBS algorithm
- Step 4: Calculate the mean vectors and variances for both sub-classes
- Step 5: Label the nodes, mean vectors, and variance into the Tree
- Step 6: Repeat Step 3 to Step 5 for all nodes that need to split
- Step 7: Use Trained Decision Tree (DT) to verify each region

Skin Color Segmentation Example

BINETRICS

Original Facial Image

Segmented Image

FaceQM 3. Face Features Detection

Feature	Constraints	
24-bit color	To be examined	
Red-eye	To be examined	
Blur	To be identified	
Near/Far*	Image width : head width = 7:4	
Centered image*	Δ (mid of detected eyes or detected face width – mid of image width) < 5% of half image width	
Position of eyes*	50% - 70% of the vertical distance up from the bottom edge of the captured image	
Pose angle – roll*	$\pm 5^{0}$	
Pose angle – yaw*	$\pm 5^{0}$	
Color contrast	0.45 < average contrast value < 0.95	
Color saturation*	Top half : bottom half area and Left half : right half area should have close to 1 in both saturation distributions	
Luminance density*	The dynamic range of the image should have at least 7 bits of intensity variation in the facial region of the image	
Eyes' locations	To be detected	
Mouth location	To be detected	
Ears' locations	To be detected	

* INCITS 385 full frontal or token facial image's parameters tested by FaceQM

4. Quality Score Determination

- S Quality Score is measured by the Face Features Detection and Quality Determination modules
 - Quality score indicates the "GOOD IMAGE" or "NEED TO RE-SCAN" from the validation results of all face features
- S The value of the quality score can be presented in two forms:
 - D-Score: the total number of facial features that satisfy the constraints
 - C-Score: the minimum value from the quality levels of 12 facial features

Notes

- 1: New Quality measurement features can be increased if necessary.
- 2: Each feature's weighting coefficient is adjustable all 1s for equal weighting.
- 3: Each feature's quality level is converted from measured value with it's piecewise mapping function that is formed by the constraint.

FaceQM – Example Results

BIONETRICS

Sight Features		
24-Bit Color:	Yes Yes	
No Red-Eye:		
Non-Blurred Degree:	Yes	-0.94 (<= 0.0)
Near/Far:	Passed	1.33 (1.17 - 1.75)
Centered Image:	Passed	4% (< 10%)
High/Low:	Passed	59% (50 - 70%)
Orientation Features		
Roll Angle:	Passed	0 (< +- 5 Deg.)
Yaw Angle:	Passed	-1 (< +- 5 Deg.)
Lighting Features		
Contrast:	Passed	57% (>= 45%)
Vertical Saturation Ratio:	Passed	0.13 (< +- 0.25)
Horizontal Saturation Ratio:	Passed	-0.01 (< +- 0.25)
Luminance Dynamic Range:	Passed	146 (>= 128)
Face Area, Eyes, Mouth, and	Ears Detect	ion
Face Area:	Detected	
Eyes (Right - Left):	Y & Y Y	
Mouth:		
Ears (Right - Left):	Y&Y	
Quality Examined Result		
D-Score: GOOD IMAGE (D-	QS = 12/12	
C-Score: GOOD IMAGE (C-	QS = 84/100)
Header Information		
Image Type:	BMP	
Color Bits:	24	
Image Height:	768	
Image Width:	512	
Image Size:	1179702	
Consistency Check:	PASSED	

Preliminary Test Results

- S Training Data:
 - BTF skin color training dataset created from Color FERET Facial Image Database
- § Test Data:
 - 1,806 (903 pairs) facial images
 - S Color FERET Facial Image Database
 - S AR (Aleix Martinez & Robert Benavente) Facial Image Database
 - S No 24-bit color, Red-eyes, and Blurred detection
 - S Matching scores analysis
 - 500 plus individual facial images
 - S DoD ABIS Facial Image Database
 - S University of Notre Dame Biometrics Database
 - § Face Features testing
- § Matcher:
 - One of the leading Face Recognition products in the market

Experiment Results (1/4)

DINETRICS

The FaceQM tool has a very high confidence in predicting the higher matching score on the Gq \ge 8 and Pq \ge 8 paired combination on both gallery and probe datasets.

Experiment Results (2/4)

BIONETRICS

Gallery Quality Scores: 8 or 9

Probe Quality Scores: 5, 6, 7, 8, and 9

Where QB_p is Quality Scores bin of Probe Group

 $ms_e = -6.39 + 8.64 \times QBp$

rms = 2.22

Correlation Coeff. = 0.984

Experiment Results (3/4)

BIONETRICS

Gallery Quality Scores: 5, 6, or 7 Probe Quality Scores: 5, 6, 7, 8, and 9 $ms_e = 69.3 - 1.392 \times QBp$ rms = 4.19

Correlation Coeff. = -0.425

Experiment Results (4/4)

BIONETRICS

"Sensitivity" measurement of the tested matcher to specific quality parameters

Distance category: Near/Far Position category: Centered image and Position of eyes Pose Angles category: Rolled and Yaw Lighting category: Contrast, Horizontal Saturation, Vertical Saturation, Luminance density

- S Algorithm development completed, preparing for publication
- S Prototype development completed, tested with limited number of images
- S Production version development in final stages, testing and debugging is underway
- S Large-scale testing is underway and being conducted by NIST

Contact Information

BIONETRICS

Dr. Bob Yen Biometrics Task Force Booz Allen Hamilton 703-984-0434 yen_robert@bah.com

Mr. Gregory Zektser Biometrics Task Force Booz Allen Hamilton 703-984-0432 zektser_gregory@bah.com

www.biometrics.dod.mil