On Iris Quality, Quality Based Segmentation and Quality of Large Biometric Databases

by

Natalia Schmid, WVU

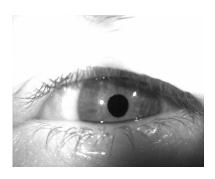
Sponsors: Center for Identification Technology Research, Lockheed Martin

Outline

- ☐ On Iris Quality
 - Evaluation Methodology
 - Performance of quality evaluation algorithm
- ☐ Quality based restitution
 - Quality based segmentation
 - Other developments
- ☐ Biometric-Based Capacity as a global Quality measure

On Iris Quality

Motivation



Images from an OKI camera collected at WVU

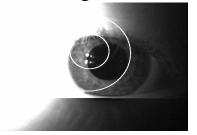
Sources of noise:

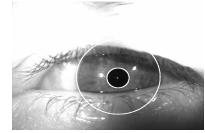
- Irregular Lighting
- Smear due to movement of camera or user
- Bad camera focus
- Physiology of the eye (Convexity of iris surface; Natural position and geometry of the eye)
- CCD shot noise

November 8, 2007 4

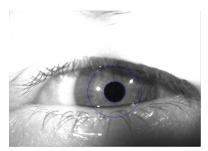
Motivation: Segmentation

Our implementation of Daugman's Method

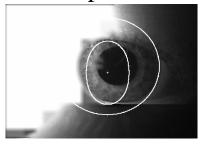




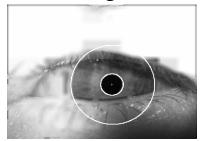
Morphological Operators

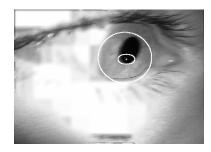


Our implementation of Wildes' segmentation algorithm.









Objective

Design quality assessment tool

- that allows adaptive recognition system
- that provides online feedback regarding image quality (fast feedback).

Factors:

- Defocus Blur
- Motion Blur
- Off-Angle
- Lighting
- Occlusion
- Specular Reflection
- Pixel Counts

Previous Works

- (**Zhu et al. 2004**) evaluate quality by analyzing the coefficients of particular areas of iris texture by employing discrete wavelet decomposition.
- (Chen et al. 2006) Classify iris quality by measuring the energy of concentric iris bands obtained using 2-D wavelets.
- (**Zhang and Salganicaff 1999**) examine the sharpness of the region between the pupil and the iris.
- (Ma et al. 2003) analyze the Fourier spectra of local iris regions to characterize defocus, motion and occlusion.
- (Daugman 2004) and (Kang and Park 2005) characterize quality by quantifying the energy of high spatial frequencies over the entire image region.

Features of Previous Works:

Estimation of a single or pair of factors such as defocus, motion blur, and occlusion

Combination Rule: Dempster-Shafer

Based on evidential reasoning (belief functions).

Applications: artificial intelligence, software engineering, and pattern classification.

Consider 3 beliefs (Estimated factors) A1, A2, A3 such that A1 \leq A2 \leq A3 then min confidence can be calculated by the following expression:

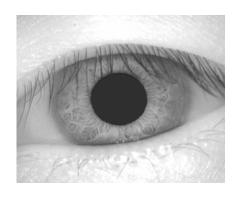
$$M(A1, A2) = \frac{(A1 * A2)^n}{(A1 * A2)^n + (1 - A1)^n (1 - A2)^n}$$
 n ~ correlation

$$M(M(A1, A2), A3) = \frac{(M(A1, A2) * A3)^n}{(M(A1, A2) * A3)^n + (1 - M(A1, A2))^n (1 - A3)^n}$$

Similarly, max confidence can be found by sorting the factors in increasing order and evaluating the same expressions.

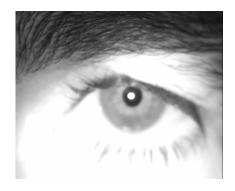
R. Murphy, "Dempster-Shafer Theory for Sensor Fusion in Autonomous Mobile Robots," IEEE Trans. Robotics and Automation, vol. 14, no. 2, Apr. 1998.

Belief Function: Example



Defocus	Motion Blur	Occlusion	Max Conf.	Min Conf.
0.11524	0.0125	0.45122	.94	.85

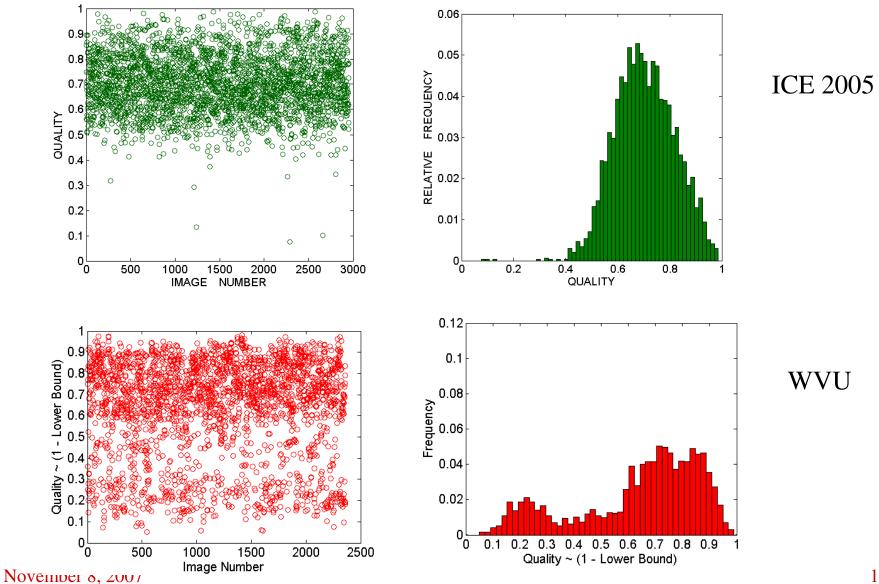
- A sample CASIA image, and confidence bounds for image quality.
- Scores are between [0,1] with 0 corresponding to the lowest error and 1 corresponding to highest error.



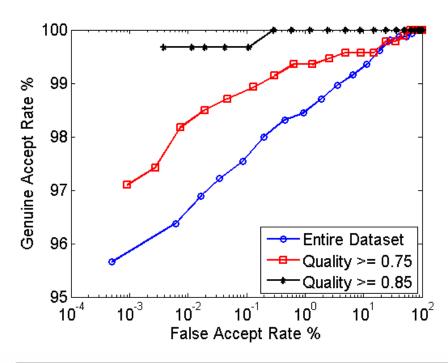
Defocus	Motion Blur	Occlusion	Max Conf.	Min Conf.
0.68843	0.0125	0.38889	.89	.69

With a bad quality image, the bounds are not tight. The image is characterized by high Occlusion and Defocus blur.

Quality per Image



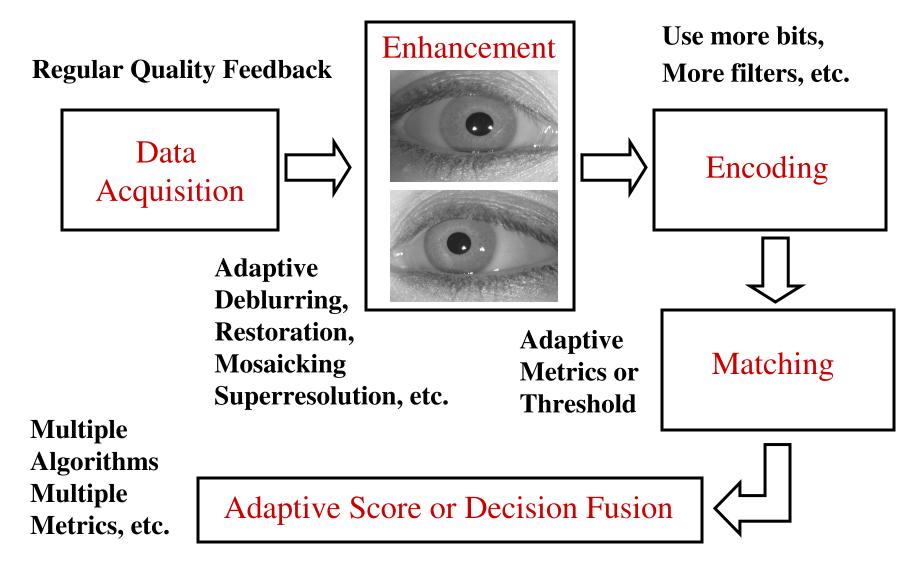
Performance: Gabor based



Interval	EER	Dprime	Quality	Images
All	1.30	2.63	0.79	738
Quality ≥ 0.75	0.63	2.79	0.85	556
Quality ≥ 0.85	0.11	3.13	0.89	273

Quality Based Restitution

Options for Adaptive Restitution



Robust Segmentation

Introduction

Previous Segmentation Methods

- J. Daugman @ University of Cambridge (efficient integro-differential operators)
- R. P. Wildes @ The Sarnoff Corporation (circular Hough transform)
- X. Liu etc. @ University of Notre Dame
- Q. Tian, Q. Pan, Y. Cheng, and Q. Gao
- J. De Mira Jr. and J. Mayer (morphological operators)
- E. Sung, X. Chen, J. Zhu, and J. Yang from Nanyang Technological University and Carnegie Mellon University (ellipse fitting)
- H. Proença and L.A. Alexandre @ Universidade da Beira Interior (texture segmentation)
- C. Fancourt etc. @ The Sarnoff Corporation (distance, off-angle and eyewear)
- V. Dorairaj, N. A. Schmid, and G. Fahmy @ WVU (off-angle)
- A. Abhyankar, L. A. Hornak, and S. Schuckers from Clarkson University and WVU (off-angle)

Introduction

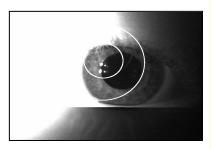
occlusion specular reflections specular reflections lighting problem

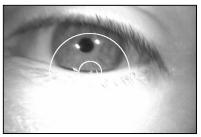
occlusion motion blur

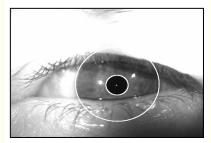
occlusion specular reflections

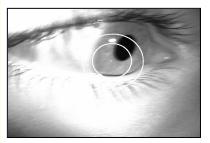
occlusion specular reflections motion blur off-angle

Our implementation of Daugman's segmentation algorithm

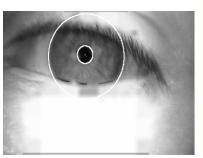


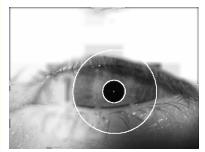


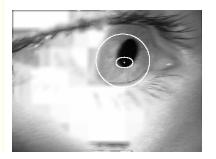




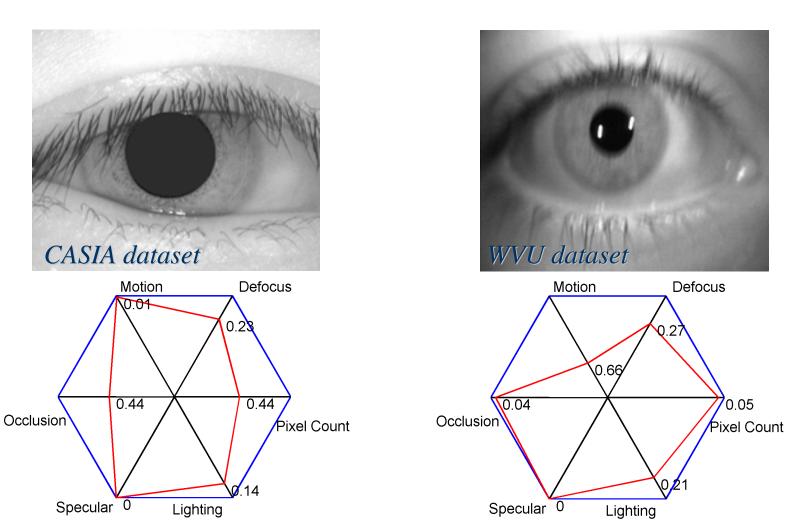
Our implementation of Wildes's segmentation algorithm







Quality Factors

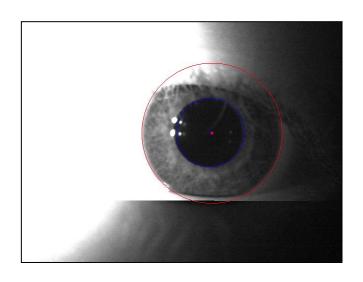


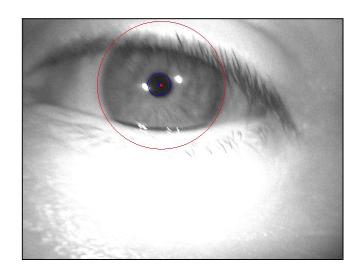
N. D. Kalka, J. Zuo, N. A. Schmid, and B. Cukic, "Image quality assessment for iris biometric," Proc. of 2006 SPIE Conf. on Biometric Technology for Human Identification III, vol. 6202, pp. 62020D–1 – 62020D–11, Apr 2006.

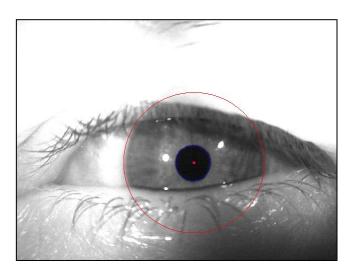
Inclusion of Quality Factors

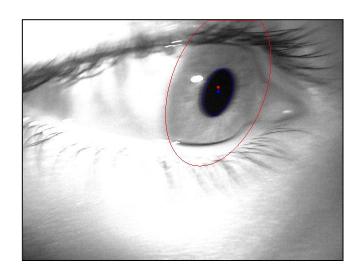
Quality factors	Our solutions	
Occlusion	A new occlusion estimation method	
Specular reflections	They are masked and inpainted	
lighting problem	Contrast weight compensation	
Out-of-focus blur and motion blur		
Pixel count	Intensity based pupil segmentation	
Off-angle	Ellipse fitting	

Results of Segmentation





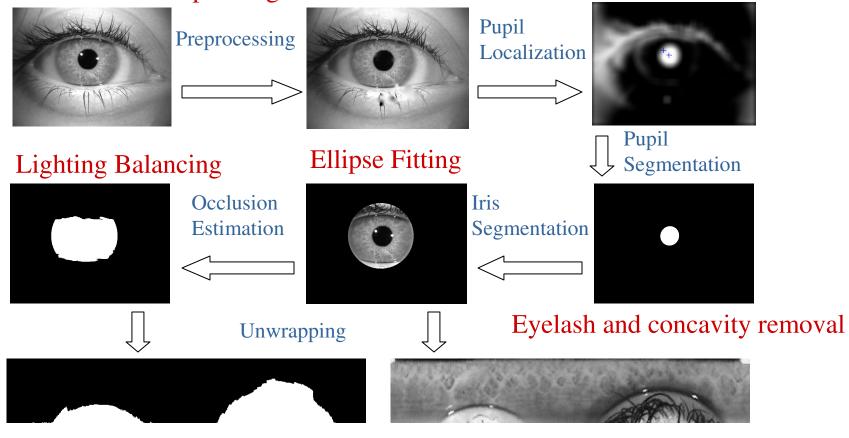




Main Block Diagram

Specularity Detection and inpainting

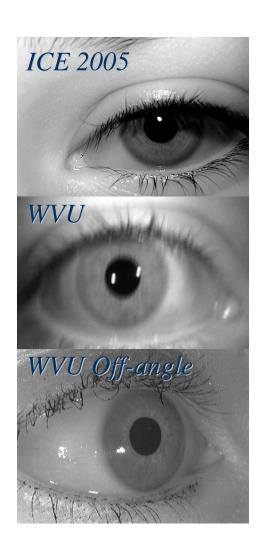
Location, Intensity, Shape



Occlusion Estimation

Segmentation Performance

Database name	Database size	# of Classes	# of images per class	Main quality factors
ICE 2005	2953	244	1 - 43	ALL
WVU	2453	359	2 - 17	ALL
WVU Off- Angle	560	140	4	Occlusion, out- of-focus blur, specular reflection, pixel count, off-angle

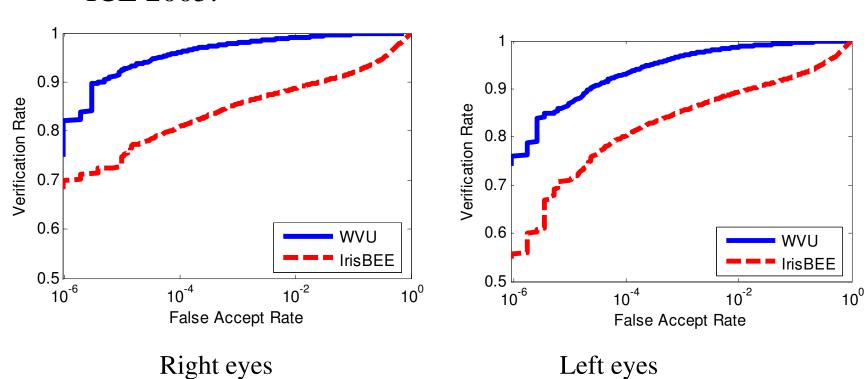


Segmentation Performance (continue)

Database name	Masek	Camus and Wildes	Proposed	
Database name	Widsek	(our implementation)	Troposed	
CASIA I	86.90 %	98.54 %	99.74 %	
ICE 2005	91.20 %	90.79 %	99.15 %	
WVU	64.77 %	85.24 %	95.84 %	
WVU Off-Angle	71.43 %	70.00 %	97.32 %	

Recognition Performance

ICE 2005:



Large Databases: Quality Measure

Model Based Approach

If **probabilistic model** is well fitted to describe experiment, fundamental limits (in design procedure) can be achieved.

3D world

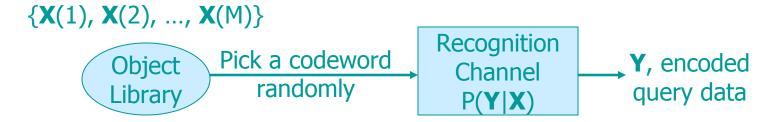
channel, transformation, acquisition device, etc.

measurement

November 8, 2007 25

Recognition Channel (Communication Theory Approach)

Given an encoding technique, the remaining factors can be attributed to a recognition channel [Schmid04,Westover05].



- templates $\{X(1), X(2), ..., X(M)\}$ are i.i.d. random vectors.
- Y is a distorted, noisy realization of one template in the library.
- N. A. Schmid and J. A. O'Sullivan, "Performance prediction methodology for biometric systems using a large deviations approach," *IEEE Trans. On Signal Processing*, Supplement on Secure Media, vol. 52, no. 10, pp. 3036-3045, Oct 2004.
- M. B. Westover and J. A. O'Sullivan, "Achievable rates for pattern recognition: Binary and Gaussian cases," in *International Symp. On Information Theory (ISIT)*, Adelaide, Australia, 2005, pp. 28-32

Recognition Capacity

- Process data such that templates of different individuals are weakly dependent or independent and have similar distributions.
- From Information Theory, the constrained capacity

$$\bar{I}(X,Y) = \lim_{n \to \infty} \frac{1}{n} E \left[\log \frac{p(X^n, Y^n)}{p(X^n)p(Y^n)} \right],$$

- X^n and Y^n are one of templates and a query template.
- The results are valid for ideal case: everything is known.

Practical Case

- The parameters of distributions or distributions are estimated using training labeled data.
- The limiting empirical capacity becomes

$$\lim_{n\to\infty, M\to\infty} \frac{1}{n} E \left[\log \frac{\hat{p}(X^n, Y^n)}{\hat{p}(X^n) \hat{p}(Y^n)} \right],$$

- "Hat" indicates estimated distribution functions
- Estimates depend on the size of the training set, M.
- The capacity can be found only if the sequence is ergodic.

PCA and ICA-based Capacity

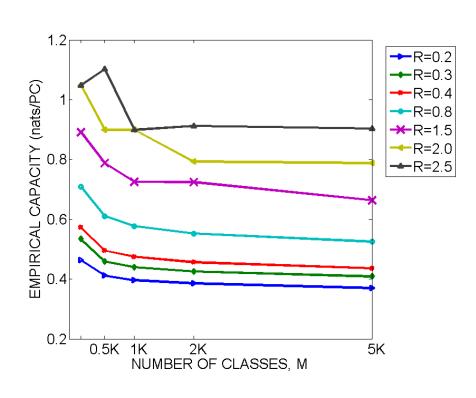
M<<resolution

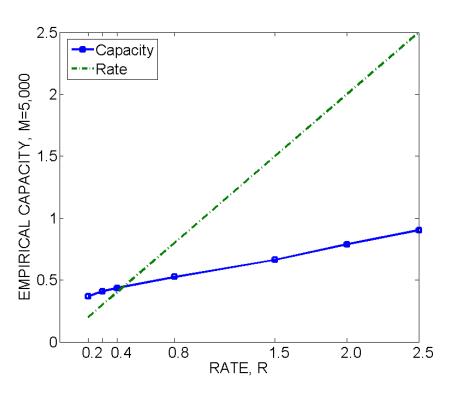
Iris Database	PCA Empirical Capacity (bits per component)	ICA Empirical Capacity (bits per component)
WVU	0.3198	0.5301
CASIA III	0.5030	0.8102
BATH	1.1284	2.9483

Interpretation: Let the length of templates be n=100. Let the capacity be C=0.5301. Then the number of users that can be recognized asymptotically with a small probability of error is $M = 9.0698 \times 10^{15}$.

PCA and ICA-based Capacity

Resolution << M





- Rate: R = log(M)/n
- PCA capacity is 0.4466.
- ICA capacity is 0.4325.

Ongoing Research

- Quality Based Restitution of Iris Features in High Zoom Images for Less Constrained Iris Recognition System
- Fusion at the Score Level using Dempster-Shafer Network
 - Adaptive fusion based on iris image quality
 - Capacity at the Match Score Level

Contact Information

Natalia.Schmid@mail.wvu.edu

Phone: (304) 293-0405 x 2557