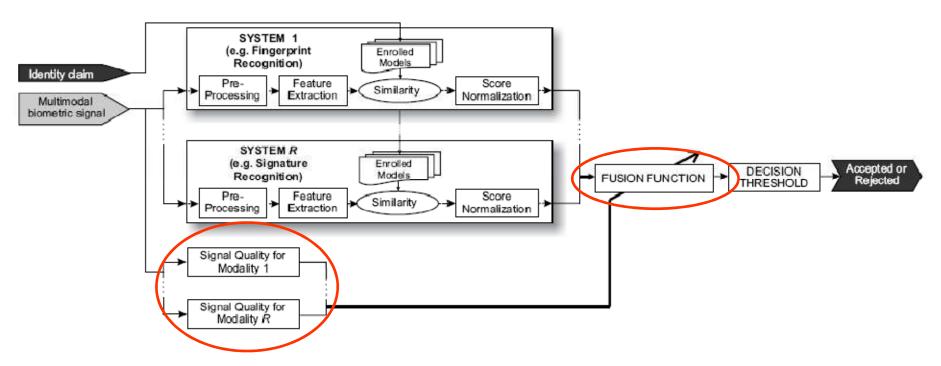
Dealing with Sensor Interoperability using Quality Estimates:

The UAM experience at BMEC 2007

Dr. Julian Fierrez

Universidad Autonoma de Madrid, SPAIN (Visiting researcher at Michigan State University, USA)

(with contributions from Fernando Alonso-Fernandez, Daniel Ramos, Javier Galbally, and Javier Ortega-Garcia)



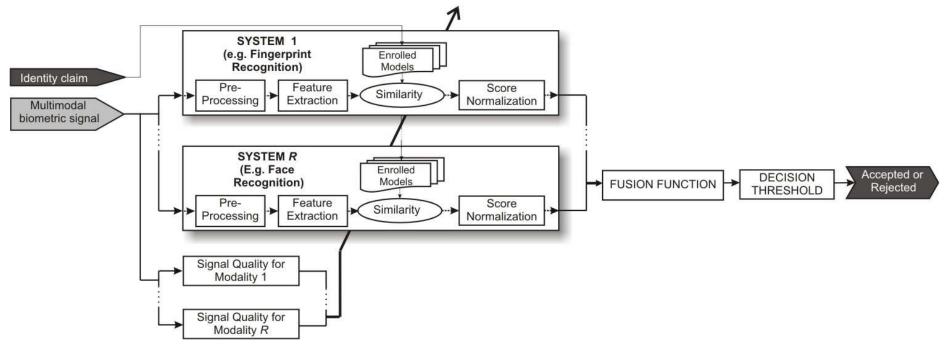
What we will not see...

QUALITY-BASED FUSION

- NIST BQW I (Fierrez et al.), NIST BQW II (Kryszczuk)
- NIST Biometric Quality Homepage Reading Materials

QUALITY MEASURES

• Fingerprint Survey to appear in *IEEE Trans. IFS*, 2007 or 2008

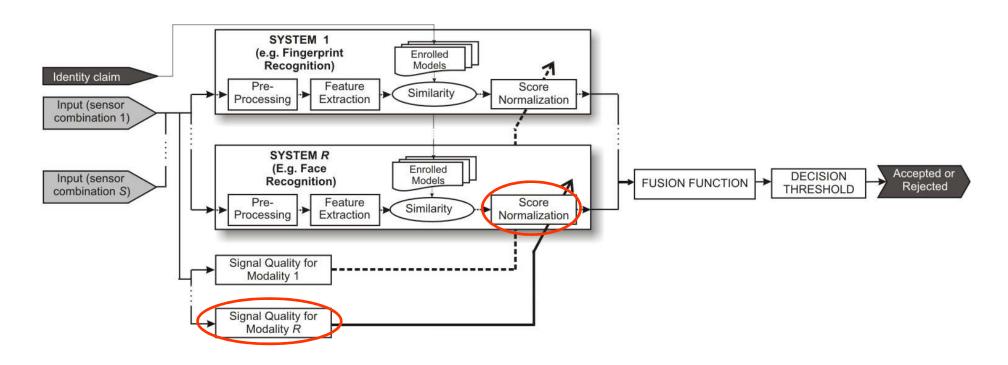


What we will see...

BIOSECURE MULTIMODAL BIOMETRIC DATABASE

- Face, fingerprint, iris, voice, signature, hand; around 1000 subjects
- Enables research on individual modalities (Q measures), and fusion
- Biosecure Multimodal Evaluation Campaign (BMEC 2007)

QUALITY-BASED CONDITIONAL PROCESSING (Benini, NIST BQW II)



...more specifically

QUALITY-BASED CONDITIONAL PROCESSING (Benini, NIST BQW II)

 Dealing with sensor interoperability using quality vectors (Lazarick, NIST BQW II)

OVERVIEW

BIOSECURE MULTIMODAL BIOMETRIC DATABASE

- Internet Dataset: voice, face
- Desktop Dataset: voice, face, iris, fingerprint, signature, hand
- Mobile Dataset: voice, face fingerprint, signature

BIOSECURE MULTIMODAL EVALUATION CAMPAIGN

- Mobile: talking face, signature, fingerprint
- Access control: still face, fingerprint, iris

Cost-Based

Quality-Based Protocol, UAM Approach, Results

The Biosecure Multimodal Biometric Database

Biosecure Multimodal Database

DATASETS:

- DS1 (Internet): Voice, face
- DS2 (Desktop): Voice, face, signature, fingerprint, iris, hand
- DS3 (Mobile): Voice, face, signature, fingerprint

STATISTICS:

- 11 acquisition sites across Europe
- 2 acquisition sessions for each DS (2 months between them)
- Subjects (aprox.): 1000 DS1, 700 DS2, 700 DS3 (400 common)

AVAILABILITY:

- Through the Biosecure Association (more information to appear in 2008 at http://www.biosecure.info)

Internet Dataset (DS1)

DS1: Voice, face

- PC-based, on-line, unsupervised (Internet)
- Equipment: low-cost webcam and bluetooth microphone

Internet Dataset (DS1): Contents

• Acquisition protocol (per session, total duration per session around 20 minutes, *COMMON to the 3 DSs*):

Mode ID	Sample ID	Data Type	Contents		
I	1-2	Image	2 still frontal face images		
С	1-2	AV	2 repetitions of a 4-digit PIN code (the same between DSs) from a set of 100 different PINs in English		
С	3-4	AV	2 repetitions of a 4-digit PIN code (different to C1-2, the same between DSs) from a set of 10 different PINs in native language		
D	1	AV	Digits from 0 to 9 in English		
S	1-2	AV	2 different phonetically rich sentences in English (different between DSs)		
S	3-4	AV	2 different phonetically rich sentences in native language (different to S1-2, different between DSs)		

Desktop Dataset (DS2)

DS2: Voice, face, signature, fingerprint, iris, hand

PHILIPS SPC 900NC + PLANTRONICS Voyager 510		++
LG IrisAccess EOU3000		Contract of the second
BIOMETRIKA FX2000	Ø Q	
YUBEE (Atmel FingerChip)		
WACOM Intuos A6 + Inking Pen		SIB.
CANON EOS 30D + Ring Flash	Canon B	

Desktop Dataset (DS2): Contents

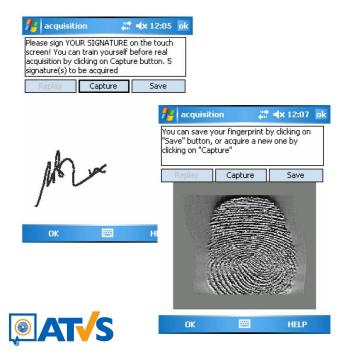
• Per session, total duration per session around 20 minutes:

Mode	Sample	Data Type	Sensor	Contents			
SI	1-5	Signatures	Tablet	5 genuine of donor <i>n</i>			
SI	6-10	Signatures	Tablet	5 dynamic imitations of donor $n - 1$ ($n-3$ session 2)			
SI	11-15	Signatures	Tablet	5 genuine of donor <i>n</i>			
SI	16-20	Signatures	Tablet	5 dynamic imitations of donor $n-2$ ($n-4$ session 2)			
SI	21-25	Signatures	Tablet	5 genuine of donor <i>n</i>			
CC	DMMON – AU	DIO / VIDEO (s	simultaneos	sly with the webcam and the bluetooth earbud)			
IR	1-4	Iris images	Iris cam	(Right eye Left eye) x 2 times			
FO	1-12	Fingerprints	Optical	(R_thumb R_index R_middle L_thumb L_index L_middle) x 2			
FT	1-12	Fingerprints	Thermal	(R_thumb R_index R_middle L_thumb L_index L_middle) x 2			
НА	1-8	Hand	Camera	(Right hand x 2 times Left hand x 2 times) without flash (THE SAME) with flash			
FA	1-4	Face	Camera	2 photos without flash 2 photos with flash (ISO-like conditions)			

Mobile Dataset (DS3)

DS3: Voice, face, signature, fingerprint

- Equipment: mobile devices (PDA and Ultra-Mobile PC)
- n Indoor and outdoor conditions

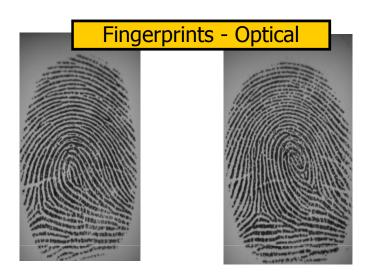

HP iPAQ hx2790

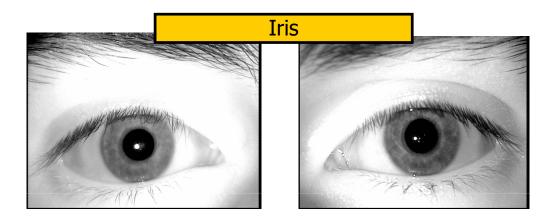
Fingerprint and Signature

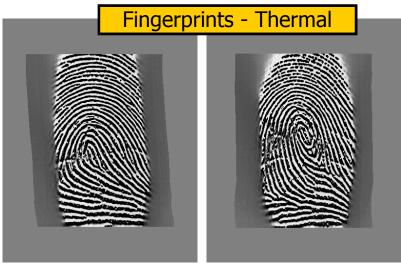
SAMSUNG Q1 + WebCam

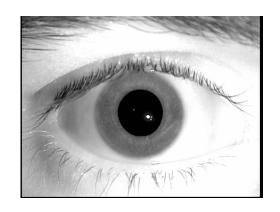
Face and Voice

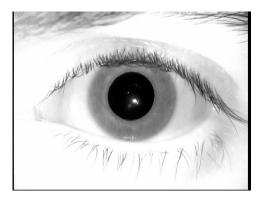
Mobile Dataset (DS3): Contents

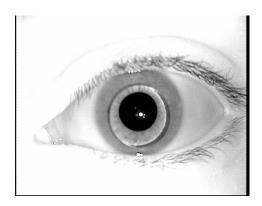

• Per session, total duration per session around 20 minutes:


Mode ID	Place	Sam ple ID	Data Type	Sensor	Contents		
SI	Indoor (standing)	1-5	Sign	iPAQ	5 signatures of donor <i>n</i>		
SI	Indoor (standing)	6-10	Sign	iPAQ	5 dynamic imitations of donor $n-1$ ($n-3$ session 2)		
SI	Indoor (standing)	11- 15	Sign	iPAQ	5 signatures of donor <i>n</i>		
SI	Indoor (standing)	16- 20	Sign	iPAQ	5 dynamic imitations of donor $n-2$ ($n-4$ session 2)		
SI	Indoor (standing)	21- 25	Sign	iPAQ	5 signatures of donor <i>n</i>		
FT	Indoor (standing)	1-12	Finger	iPAQ	(R_thumb R_index R_middle L_thumb L_index L_middle) x 2		
	(СОММО	N - AUD	O / VIDE	O (Q1 + WebCam) - INDOOR		
	C	OMMON	/ – AUDI	O / VIDE	O (Q1 + WebCam) - OUTDOOR		






Biosecure Multimodal Database: Examples


Biosecure Multimodal Database: Low Q Examples

The Biosecure Multimodal Evaluation Campaign (BMEC 2007)

Biosecure MEC 2007

"Mobile" scenario (DS3): talking faces, signature, fingerprint

Objective: to test the robustness of mono and multimodal systems The participants were provided with raw data (monomodal) and development scores (multimodal)

"Access control" scenario (DS2): face, fingerprint, iris

Score fusion, 2 different tasks:

- **Quality-based evaluation:** aimed at achieving the best verification performance using score fusion algorithms
- <u>Cost-based evaluation:</u> aimed at minimizing a criterion combining verification error rates with the cost of deployment (the use of each biometric trait is associated with a given cost)

The participants were provided with development **scores** and biometric data **quality** information for each trait

17 laboratories, 50 different systems submitted

Quality-based Evaluation (I)

Objectives:

- To achieve the best possible verification performance using fusion algorithms
- To test the capability of a fusion algorithm to cope with query biometric signals originated from different devices (sensor interoperability)
- To exploit the information on biometric quality during the fusion process (quality estimates are provided by the organizers)
- To cope with missing values of the component monomodal systems (if a system fails in score or quality computation, a special output is generated)

Quality-based Evaluation (II)

Traits and devices:

Mode	Data type	Sensor	Contents		
fnf1	Face still	Digital camera (high resolution)	Frontal face images		
fa1		Webcam (low resolution)			
fo1, fo2, fo3	Fingerprint	Optical	1 right thumb, 2 right index		
ft1, ft2, ft3		Thermal	3 right middle finger		

Possible mixtures for each access:

Mixture	Modalities	Face	Fingerprint	
1	(fnf1/fo1/fo2/fo3)	Good quality	Good quality	
2	(fnf1/xft1/xft2/xft3)	Good quality	Bad quality	
3	(xfa1/fo1/fo2/fo3)	Bad quality	Good quality	
4	(xfa1/xft1/xft2/xft3)	Bad quality	Bad quality	

- 1 face score, 3 fingerprint scores per access
- xft/xfa: template image is acquired using the good quality sensor and query image is acquired using the bad quality sensor
- All fingerprints are acquired with the same device for each access

Quality-based Evaluation (III)

Face quality measures (14 in total):

 Face detection reliability, Brightness, Contrast, Focus, Bits per pixel, Spatial resolution, Illumination, Uniform Background, Background Brightness, Reflection, Glasses, Rotation in plane, Rotation in Depth, and Frontalness

Fingerprint quality measure (only one):

Based on local gradient (minutiae extractability)

Reference systems for matching:

- Face: Omniperception's Affinity SDK, LDA-based matcher
- Fingerprint: NIST fingerprint system

Protocol:

- DEVELOPMENT: aprox. 50 subjects
- EVALUATION: aprox. 150 subjects

UAM Approach for the Quality-Based Evaluation*

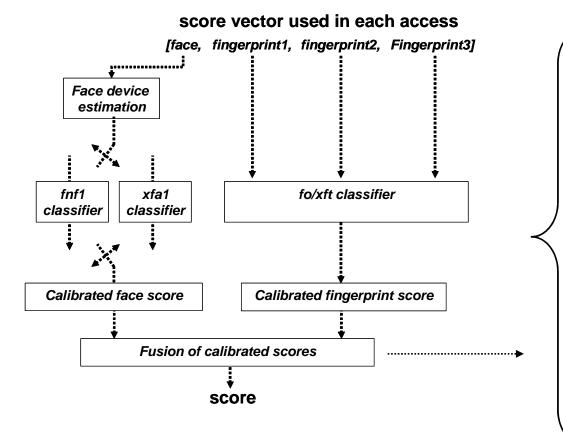
UAM Fusion Algorithm (I)

Method for device estimation using quality:

Use of a linear discriminant function with multivariate normal densities for each class (device1, device2) based on the available Q measures:

- FACE: all quality measures provided (14)
- **FINGERPRINT:** a set of 8 parameters computed combining Q_{query} and $Q_{template}$ from the three fingerprint scores (difference, maximum Q_{query} , minimum Q_{query} , average Q_{query} , etc.)

Results of device estimation using quality:


Good estimation of the face device (<1% error), poor estimation of the fingerprint device (~15% error)

UAM Fusion Algorithm (II)

Fusion architecture:

Log-likelihood ratios

>0 accept

<0 reject

We choose the score which **stronger** supports the acceptance or rejection decision:

$$\pm \max(|s_{face}|, |s_{finger}|)$$

If a modality is missing, we just consider the other one

UAM Fusion Algorithm (III)

Linear Logistic Regression fusion: $f = a_0 + a_1 s_1 + \cdots + a_N s_N$

 $\mathbf{s} = (s_1, \dots, s_N)$ scores of individual systems

 $\{a_0, a_1, \dots, a_N\}$ weights trained by linear logistic regression*, solving (conjugate gradient algorithm):

$$\arg\min_{a_0,...,a_N} = \frac{1}{N_u} \sum_{N_u} \log(1 + e^{-f_u}) + \frac{1}{N_i} \sum_{N_i} \log(1 + e^{-f_i})$$

 N_u , N_i : number of user and impostor training scores f_u , f_i : fused user and impostor training scores

Score normalization property: fused scores log-likelihood ratios (LLR):

$$f \approx \log \left(\frac{p(\mathbf{s} \mid genuine)}{p(\mathbf{s} \mid impostor)} \right)$$

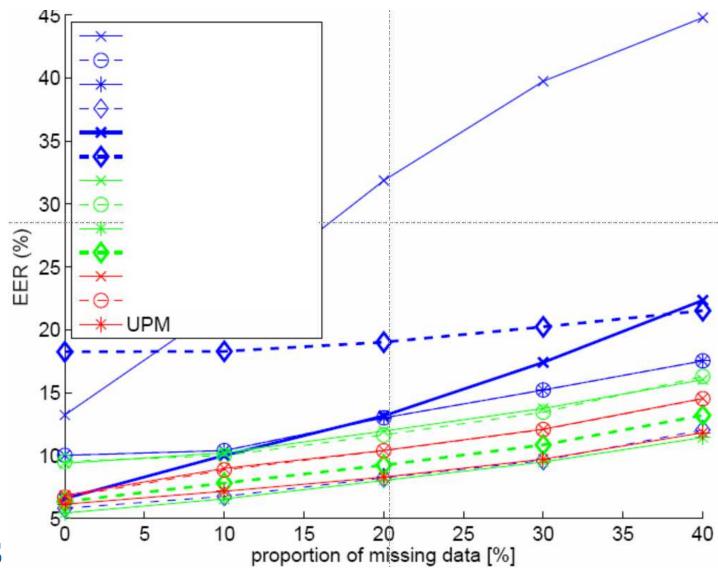
when N = 1 score normalization of a given system

Quality-based Evaluation Results

Training Results (pre-eval)

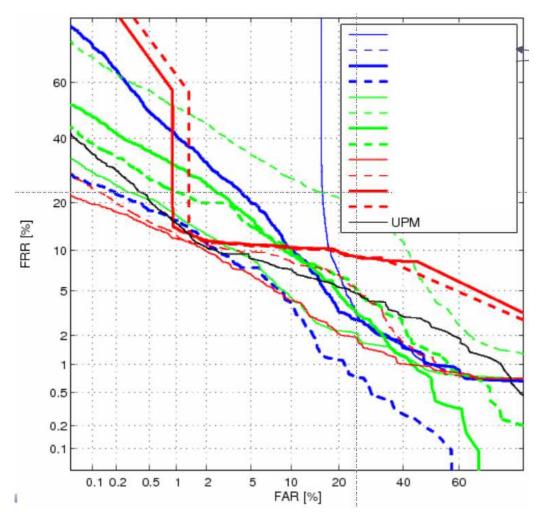
Comparison with simple fusion rules:

 Overall performance of the proposed LLR fusion is 59% better than the best simple fusion rule


Mixture	Modalities	LLR fusion	Arithmetic mean	MIN	MAX	Geometric mean
1	(fnf1/fo1/fo2/fo3)	3.92%	2.94%	8.56%	1.82%	3.92%
2	(fnf1/xft1/xft2/xft3)	4.90%	5.88%	10.00%	14.29%	5.88%
3	(xfa1/fo1/fo2/fo3)	0.98%	1.32%	6.75%	0.57%	2.93%
4	(xfa1/xft1/xft2/xft3)	4.90%	7.84%	13.72%	17.25%	7.84%
ALL		3.09%	5.19%	9.31%	9.14%	4.90%

Evaluation Results (I)

Fusion performance (EER)



Evaluation Results (II)

Fusion performance (DET curve)

SUMMARY

• The Biosecure Multimodal Biometric Database:

Voice + face + iris + fingerprint + hand + signature Internet (1000 subjects), Desktop (700), Mobile (700) 400 subjects common to the 3 Datasets

The Biosecure Multimodal Evaluation Campaign 2007:

Mobile scenario

Access Control scenario:

Cost-Based task

Quality-Based task: Protocol, UAM Approach, Results

- Integrated framework for score fusion and normalization based on Linear Logistic Regression
- Example of quality-based conditional processing: Q vectors used to predict the query sensor

Good estimation (face): sensor-dependent processing (score norm.)

Poor estimation (fingerprint): sensor-independent processing

Dealing with Sensor Interoperability using Quality Estimates:

The UAM experience at BMEC 2007

Dr. Julian Fierrez

Universidad Autonoma de Madrid, SPAIN (Visiting researcher at Michigan State University, USA)

(with contributions from Fernando Alonso-Fernandez, Daniel Ramos, Javier Galbally, and Javier Ortega-Garcia)

