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    Quality is Just a Scalar! 

Black Box 
Quality 

Apparatus 

80 

19 
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  Three Kinds of Quality 

Character 

Fidelity 

Utility 

Properties  of  the  source 
(scarred  fingers,  droopy  eyelid  covers  iris) 

Faithfulness  to  the  source 
sensor  quality,  acquisition  related  “noise”) (

Predicted  contribution  to  performance 
(is  there  matchable  material) 
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Fingerprint Quality 
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      NIST Fingerprint Image QualityNIST Fingerprint Image Quality 

Quality 
number 

{1,2,3,4,5} 

feature extraction: computes image content and 
fidelity characteristics and results in an eleven 
dimensional feature vector. 
neural network: classifies feature vectors into five 
classes of quality based on various quantiles of the 
normalized match score distribution. 

patrick.grother@nist.gov AAAS, St Louis, February 20, 2006 

extraction network 

mailto:patrick.grother@nist.gov


     

  

  

  

  

       
   

Uses of Quality Numbers 

□ Conditional reacquisition 
– Acceptance for enrollment 

• For credential issuance (visa, passport, access card, PIV) 
– Acceptance for verification 

• Of the samples just captured which one to send for matching? 
• Or acquire still more? 

– Acceptance for identification 
• Is the subject offering a poor sample deliberately? 

□ Initiate invocation of special processing or matching
algorithms 

□ Quality directed fusion 
□ Quality Monitoring 

– Are some biometric field locations giving low quality? 
– Only in the evening? 
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Quality Values vs. Defect Bits 
□ Quality is a summary of bad (or good) traits 
□ But defect detection is more specific 

– Is the fingerprint image smudged? 
– Is the face image non-frontal? 
– Is the eyelid three-quarter closed? 

□ Knowledge of defect allows 
– Instruction to user 
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Matching Involves Two Samples 

When Q1 and Q2 are 
both high the matching 
score is high. 

Furthermore function is 
monotonic … BUT 

when the enrollment sample is of good quality and better than that of the 
verification sample, the search sample’s quality is sufficient to predict 
performance. 
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Why Quality as a Performance Predictor 
is Difficult 

Authentication Score, S = F(Sample1, Sample2) 

Quality value, Q1 = Q(Sample1) 

Quality value, Q2 = Q(Sample2) 

Score Estimate, E = P(Q1, Q2) 

patrick.grother@nist.gov AAAS, St Louis, February 20, 2006 

mailto:patrick.grother@nist.gov


     

  

=1

Quality and Performance 

BLACK  BOX 
QUALITY 

APPARATUS 

quality 
number =5 

pexocoer  lqleunatl iqty uality
ssaammpplleess   rreessuulltt   iinn 
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DET Curves 
□ Testing Case A 

– Enrol samples of quality X 
– Attempt authentication with samples of quality X 

□ Testing Case B 
– Enrol samples with quality ≥ X 
– Attempt authentication with samples of any quality 
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False Match rate
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Case  A  vs  B 

Q1 = Q2 = XQ1 >= X 
Q2 unconstrained 

False Match rate 
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Quality vs. False Non-match Rate 

Quality Value 
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□ Increasing quality gives 

lower false rejection 
rates 

□ Statistically distinct 
levels of performance 
– Five levels, not twenty 
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Error vs. Reject Metric 
□ Match two samples, get score S 
□ Compute quality of enrollment sample, Q1 
□ Compute quality of authentication sample, Q2 
□ Compute Q = min(Q1, Q2) 
□ Compute FNMR at some reasonable threshold t 
□ Sort (Q, S) on Q in decreasing order of quality 
□ Discard fraction x of lowest quality pairs 
□ Recompute FNMR 
□ Plot FNMR(x) 
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Evaluation of a Quality Measure 
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Fraction Rejected 

5% 

5% 

Existing quality measures are NOT perfect predictors 
of the worst case matching scores. 
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What  Evaluation  Data? 



     

     

   
 

      
   

      
       

       
    
   

Conclusions 
□ Biometric quality assessment is an operationally 

important 
□ Quality assessment is difficult 
□ Relatively under-researched 
□ Quality measures can be evaluated if they’re 

supposed to predict performance 
– In large scale matching trials 

□ Primary target should be false non-match rate 
□ Quality can usefully be represented as an integer 

– More statistically separable levels are better 
□ Quality measures likely to perform better if they 

reflect sensitivities of the matcher 
□ Matcher dependence is OK 
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Thank  you 
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Quality Development cf. Pharmacology! 
Patient Biometric System 

Drug (given to patient) Sample (given to system) 

Efficacy (will it work) Performance (will it match) 

Clinical trial Biometric test 

Low quality samples produce false 
acceptances and duplicate enrollments 
(poisons the matcher) 

Toxicity
(poisons the patient)

 
 

Drug discovery
(molecular targets)

 
 

Discover failure modes and 
sensitivities of the matcher 

Goal is to tailor drugs and 
to narrow clinical trials 

Goal is to only collect samples suited
to matcher 

Combination therapy ≥ 2 samples involved in matching 

Discovery methods follow 
decades of therapeutic use 

Image quality and failure analysis follow
years using images in biometric systems 

s
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NIST Biometric Quality Workshop 

March 8-9 
NIST 
Gaithersburg 
Maryland 

http://www.itl.nist.gov/iad/894.03/quality/workshop/ 
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NIST Biometric Quality Workshop 
Applications 

What are the use-cases, business-cases and economics? 
Are there applications beyond sample re-acquisition, 
quality assurance and survey, detection of evasion, and fusion? 

Capabilities 
Can quality measurements adequately select the best sample from a stream? 
Can real-time measurements of quality be used to reduce FTE and FTA? 
What can be achieved by sensor design alone? 

Standardization 
Does conformance to existing data format standards guarantee quality? 
Would standard quality corpora be useful? Or standard reference algorithms? 

Modalities 
What methods exist for assessment of face, finger, iris and speech quality? 
To what extent does good design guarantee quality? 
Does multimodal, multi-sample, or multi-sensor acquisition solve quality problems? 

Evaluation 
Should quality be predictive of recognition performance, and evaluated as such? 

Research and Development 
What research is being done? 
Is the amount of research commensurate with its operational importance? 
Should research funding go into quality-by-design? Quality measurement? Or both? 
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Quality is not about Human 
Perception 

Quality depends how close you look 
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   The Core Biometric Function 

Genuinematched with = 0.87 Comparison 

Impostormatched with = 0.03 comparison 
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