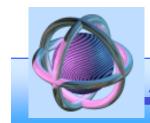

The Quality of Fingerprint Scanners and its Impact on the Accuracy of Fingerprint Recognition Algorithms

Raffaele Cappelli, Matteo Ferrara, Davide Maltoni

BIOLAB (Biometric System Laboratory) Università degli Studi di Bologna

March 8, 2006

http://biolab.csr.unibo.it ferrara@csr.unibo.it

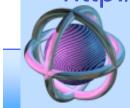

Outline

⊕ The current state-of-the-art:

- FBI scanner certification
- Proving Appendix F-G compliance
- From AFIS to 1-1 personal authentication applications

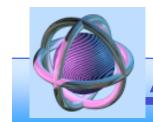
Objectives and motivation of this research

- What is the right scanner for a given application?Which are the important quality criteria?
- The on-going work at BioLab (in cooperation with CNIPA)
 Measuring the relationship between quality criteria and accuracy
 Defining a subset of easily-measurable quality criteria
 Developing a toolkit for scanner quality assessment


FBI scanner certification (1)

The "master" document:

- The FBI Electronic Fingerprint Transmission Specification (EFTS), which is the required standard for transmission of fingerprints to the FBI and many other agencies. Appendix F-G of this document is the Image Quality Standard for fingerprint scanners.
- More recent ISO documents (e.g. ISO/IEC 19794-4:2005 Biometric data interchange formats Part 4: Finger image data) refer to EFTS Appendix F for defining relevant image acquisition parameters.

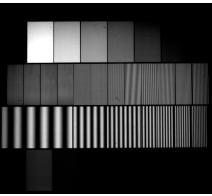

FBI scanner certification (2)

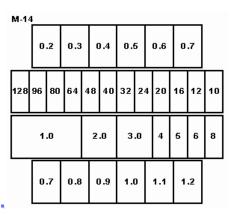
\oplus What the certification covers

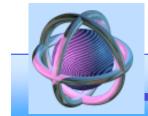
- ■The fidelity in sensing a finger pattern
 - independently of the intrinsic quality of the finger (NIST Fingerprint Image Quality)

Quality criteria considered: those traditionally used for vision systems, acquisition and printing devices:

- Acquisition Area
- Resolution accuracy
- Geometric accuracy
- Dynamic range and gray-scale linearity
- SNR (Signal to Noise Ratio)
- MTF (Modulation Transfer Function)

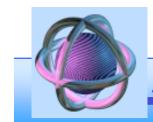





Proving Appendix F-G compliance

HITRE's testing procedure and support software

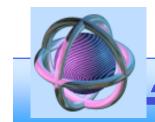
- N. Nill, "Test Procedures For Verifying IAFIS Image Quality Requirements For Fingerprint Scanners And Printers", MTR050000016, MITRE, April 2005. (http://www.mitre.org/tech/mtf/tp.pdf)
- Specific "targets" are used to measure quality criteria
 - Easy for paper scanners and printers
 - Difficult and critical for most of the live-scanners, which cannot directly sense the target without technology-specific "tricks"
 - Targets are also quite expensive
- The testing procedure is appropriated for "expensive" large area AFIS devices, but not for single-finger live-scanners used nowadays in most civil applications.



From AFIS to 1-1 personal authentication applications (1)

The big gap

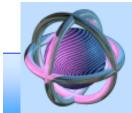
- No certification available for non-AFIS single-finger fingerprint scanners
- Incomplete and ambiguous specifications are often given for large procurements
- Sometimes Appendix F-G compliance is required because it is the only alternative



From AFIS to 1-1 personal authentication applications (2)

+ The big confusion in the biometric arena

- Some vendors self-claims FBI-compliance for single-finger scanner (not possible!)
- A number of non-compliant scanners have been currently deployed for civil applications (border control, ID cards, etc.), where FBI compliance was actually required
- No guidelines for comparing the quality of two non-compliant fingerprint scanners
- Difficult to give reasonable specifications for civil applications


The right scanner for a given application

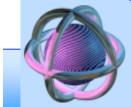
- Too stringent for several non-AFIS applications
- Forcing producers to strictly comply to this specification significantly increases the cost of single-finger devices

\oplus To fill the big gap we may:

- Start from FBI Appendix F-G quality criteria
- Understand which and to what extent criteria/constraints may be relaxed:
 - •to achieve reasonable performance and interoperability for some given classes of applications
 - to allow customers to choose devices according their accuracy/cost tradeoff

The important quality criteria

Some of the specifications are already in the standard and/or de facto standard for the market


■For example, image resolution: 500 DPI

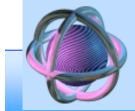
Questioning such specifications is nowadays useless

+ Other parameters appear to be too stringent:

- ■SNR >= 125
- ■Gray-scale linearity ...
- MTF

Description of the systems
Observation of the systems

Measuring relationship between quality criteria and accuracy


A tool has been developed for generating "degraded" versions of an input database

- A set of databases is generated by varying, within a given range, each of the FBI quality criteria
- The accuracy (EER, ZeroFar, etc.) of some fingerprint verification algorithms is measured over the degraded databases in an allagainst-all fashion
- For each quality criteria, the relationship between the parameter values and the average algorithm performance is studied

⊕ For such tests we have to:

use a representative dataset

use a large collection of algorithms (non only minutiae-based)

Degradation quality criteria software (1)

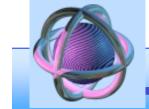
Transformations	
Restrict Area Resolution Accuracy Resize Change Dimensions Dynamic Range Geometric Distortion Signal to Noise Ratio Gray Range Linearity Modulation Transfer Factor	Transformation Parameters
Select the desired transformation	Database C:\Documents and Settings\Matteo Ferrara\Desktop\TestDB\IndexDB - fingerprint.idx Selected Transformation Apply Stop Previous Step Next Step All Transformations Apply Stop Previous Step Next Step Previous Step Next Step
Previous Next	OK Cancel Biometric System Laboratory

Degradation quality criteria software (2)

Degradation quality criteria software (3)

	🎆 App Lab CNIF	
	Select DataBase	
	Original DB:	Settings\Matteo Ferrara\Desktop\TestDB\IndexDB - fingerprint.idx Browse
Select the transforma	tions	C:\Documents and Settings\Matteo Ferrara\Ltop\app Browse
and adjust the parame		Input Format 🔽
	. ← Transformations ·	Select original and result
	Set Transform	DB paths
	Generate DB	
	Start	
		100%
Apply all the selecte	Time elapsed:	1 min, 8 sec
transformations to t		
original DB	Current step ini	o: 1) MTF step n° 10/10: W: 2.25 500dpi;
		Biometric System Labora

Degradation quality criteria software (4)


Transformation: MTF

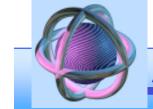
ORIGINAL IMAGE
All and
The state of the s

Low Pass Value		
Max: 25%		
·		
Min: 15%	Dpi: 500	
I step: 10 =		

SOME EXAMPLES

Degradation quality criteria software (5)

Transformation: SNR



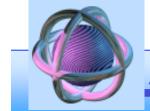
PARAMETERS

Transformation Para Signal Range	meters				
O Fixed range:	From	0	to	255	
⊙ Variable range				·	
Signal to Noise Ration	o: From	120	to	80	
N step: 3	ł				

SOME EXAMPLES

Degradation quality criteria software (6)

Transformation: Gray Range Linearity


ORIGINAL IMAGE

 Increase 	
Decrease	
Max Difference: From 20 to 65	
l step: 2 =	

PARAMETERS

SOME EXAMPLES

Degradation quality criteria software (7)

Transformation: Geometric Distortion

PARAMETERS

💿 Barrel	🔘 Trapezoidal TV	🔘 Parallelogram TH	
Pincushion	🔘 Trapezoidal BV	🔿 Parallelogram BH	
	🔘 Trapezoidal LH	🔵 Parallelogram LV	
	🔿 Trapezoidal RH	O Parallelogram RV	
rom 10 %	to 35 %		

SOME EXAMPLES

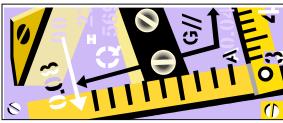
Degradation quality criteria software (8)

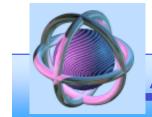
Transformation: Restrict Area

PARAMETERS

Transformation Parameter	5
Horizontal Crop: From	30 % to 80 %
Vertical Crop: From	30 % to 80 %
N step: 5	
🔲 Maintain Original Size	

SOME EXAMPLES

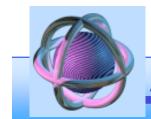

Defining a subset of easily-measurable quality criteria


⊕ From the test results it should be possible to define:

- How each single quality criteria actually affects the performance
- What is the subset of FBI criteria which is really useful for non-AFIS single-finger live-scanner to be used in civil applications
- Possibly defining classes of scanners (e.g. Class A: top, Class B: average, Class C: low-level) and characterizing such classes with the accuracy that they could guarantee

Defining simple ways to measure the chosen criteria

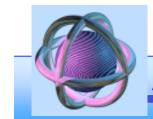
- By using simple and non-expensive targets
- By introducing alternative measures in case using a target is not practical



Self-measuring scanner quality

Making scanner quality-measurement simple will enable:

- Vendors to internally measure the quality of their products and provide a sort of self-certification
- Customers to verify the claimed quality
- Application designers to understand what is the right class of products for a given application



Thank you for your attention

http://biolab.csr.unibo.it

ferrara@csr.unibo.it

