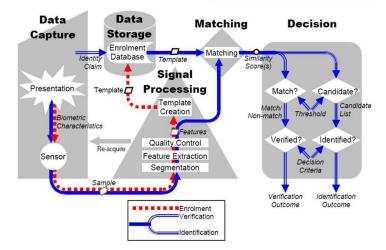


Biometric Sensor and Match-On-Card Evaluation platform

Benoît VIBERT, John LEBOUTEILLER, Felix KEITA and Christophe ROSENBERGER

GREYC Research Lab, ENSICAEN - CNRS - University of Caen, FRANCE

NIST International Biometric Performance Testing Conference 2014



4 Conclusion & perspectives

ISO /IEC JTC1 SC37 SD11

Introduction (1/2)

Open questions

How to choose a sensor or a MOC algorithm?

Many criteria need to be considered :

Performance;

Security ;

Usability ;

Cost.

Evaluation Platform

NIST Platform (**NBIS** ...);

FVC-OnGoing (FVC-OnGoing);

BEAT European Project(www.beat-eu.org);

Standards

. . .

ISO/IEC 24745 (Security techniques, Biometric information protection); ISO/IEC 19794-1 (Conformance testing methodology);

ISO/IEC TR 29794-4 (Biometric sample quality : Finger image data);

Objectives

Define an evalution platform for different purposes.

Industrial

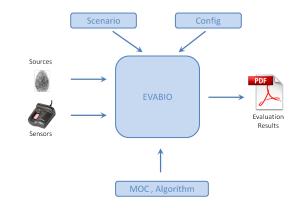
Help them to choose a MOC or a Sensor;

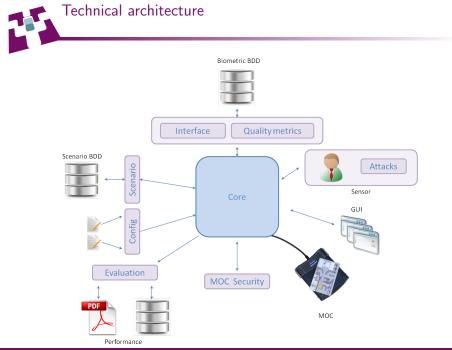
Acquire specific biometric databases.

Research

Propose new attacks on MOC (Fuzzing; HillClimbing);

Impact on quality metrics to the enrolment;


Qualifying own MOC algorithm;



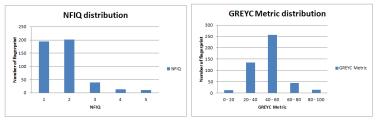
Goals

Evaluating Sensors and MOC;

Reproducible research results.

(Epayment & Biometrics Lab, GREYC)

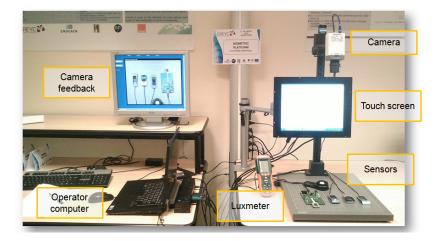
Evaluation module


Automated generated report;

Generation of Metrics graphics (ISO 19795) :

- FTA : Failure To Acquire;
- FTE : Failure To Enrol;
- FNMR : False Non Match Rate;
- FMR : False Match Rate;
- Time;
- ROC Curve;

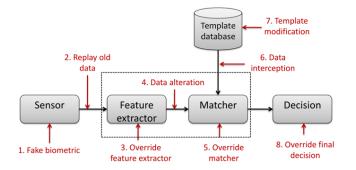
NFIQ (Most Used by Industrial); Q by GREYC (Yao & al. 2014);



(a) NFIQ distribution

(b) Q distribution

 $F_{\rm IGURE}$ 1: metrics distribution



Attacks on Biometric system (Ratha)

```
Fake biometric (Point 1)
Replay old data (Point 2)
```


Create fake fingerprint database with real fingers and fingerprints Used Wax & Gelatin (materials not thick)

Results

Sensor 1,3 and 4 : FTAR = 0%

- 96 tests have been performed :
 - 65% led to a negative verification
 - 35% to a positive

Sensor 2 : FTAR = 100%

Illustration

Create dead fingerprint database with dead fingers on 4 people

- 3 sensors
- 4 fingers (except thumb)
- 2 hands (left & right)
- 6 captures / individual / finger/ sensor (144 images and ISO Compact Card II template)

576 samples in total

FTAR = 36.11% (1-(368/576))

Metric Q results				
	Sensor 1	Sensor 2	Sensor 3	Sensor 4
Mortuary	38.3	81.9	72.3	68.3
Senior database	32.1	84	78.6	73.7

(b) Average Q metric value for fingerprint coming from a senior database and the dead fingers one

(a) Acquisition

FIGURE 2: Acquisition and Results

Conclusion

Proposed a platform for the evaluation of biometric sensors and Match-On-Card algorithm.

Illustrate two attacks on sensors with the platform

- Fake Fingerprint : spoofing, FTAR
- Dead Fingerprint : Lower quality for the data

Perspectives

Improve the Q metric for fingerprint quality assessment

Make a new database, more dead and alive fingers

(Epayment & Biometrics Lab, GREYC)

IBPC 2014

