

Evaluation of Real-Time Face Recognition Technologies for Video Surveillance Applications

Dmitry Gorodnichy and Eric Granger

Science and Engineering Directorate Video Surveillance and Biometrics Section

Canada Border Agence des services frontaliers du Canada NIST International Biometric Performance Conference (IBPC 2012) Gaithersburg MD, March 5-9, 2012

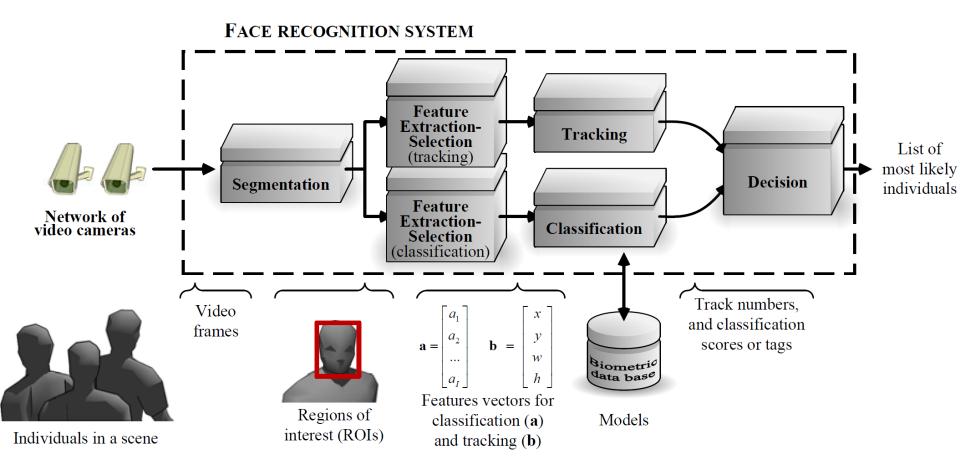
- PROVIT evaluate state-of-the-art commercial technologies and academic systems for FRiVS:
 - public data sets for medium- to large-scale evaluation
 - experimental protocols for different still-to-video and video-to-video surveillance applications, e.g.,
 - screening of faces according to their resemblance to a wanted list
 - matching a face across several video feeds
 - fusion of face recognition from different cameras while tracking a person
 - performance measures: transaction-based (P-R curve) and subject-based (biometric menagerie) analysis

Outline

1. Background – Face Recognition in Video Surveillance

- objectives and challenges
- where biometrics meets video surveillance
- academic and commercial solutions

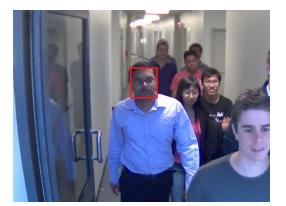
2. Evaluation of Systems for FRiVS

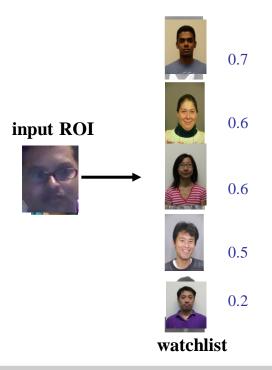

- publicly-available data sets and lab mock-up
- specialized performance metrics and protocols
- CBET: multi-order score analysis, threshold-validated analysis

3. TRL-based evaluation

- Issues with conventional performance evaluations
- Integrating FR into operational CCTV environment
- PROVE-IT (FRiV) methodology & results
- Preliminary TRL assessment

1) Face Recognition in Video Surveillance CBSA ASFC


A Generic System for FR in Video


1) Face Recognition in Video Surveillance

Enhanced screening and situation analysis across a network of surveillance cameras

- automatically recognize and track individuals within dense and moving crowds, as found at major events and airports
- determine if faces captured in video streams correspond to individuals of interest populating a restrained list of individuals

CBSA

1) Face Recognition in Video Surveillance

Problem statement

- ROIs extracted from video frames (probes) are matched against facial model of individual of interest
- Still-to-video recognition: facial model of each individual consists of 1+ templates extracted from a gallery of stills
 Typical CBSA application: watchlist-based surveillance
- Video-to-video: facial model of each individual are extracted from videos

Typical CBSA application: operator captures an individual of interest in a video stream and the system tracks him over a network of cameras

1) Challenges of FR in Video Surveillance

Environments are complex and change over time due to:

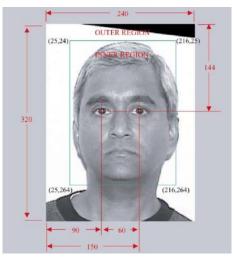
CBSA

- low quality and resolution of video frames
- limited control of acquisition conditions variation in poses, expressions, illumination, cooperation of individuals, occlusion...
- inter- and intra-class variability and noise in the feature space
- ageing and variation of interaction between sensor and individual
- facial models are often poor representatives of real faces
- highly skewed data distributions: very few positives (from individuals of interest) w.r.t. negative samples (from open world)

Computational resources – video surveillance networks are comprised of a growing number of IP-based cameras

- transmit or archive massive quantities of data
- memory requirements: storage and retrieval of facial models
- processing time: matching ROIs against facial models

1) Face Recognition in Video Surveillance


Biometric Setup

- Faces captured in *controlled environment* (as in e-Gates with e-Passport) are much easier to recognize
- Still images captures from these environments may provide:
 - canonical face model adopted by ICAO'02 for passport-type documents
 - high resolution (60 pixels between eyes)
 - well positioned face (front-faced, eye-level)
 without occlusion (eye-glasses, scarf)
 - neutral facial expression
 - high quality:
 - no motion, blur, compression artifacts, etc
 - in focus
 - best possible illumination

CBSA

1) Challenges of FR in Video Surveillance

Taxonomy of Surveillance Setups

- **Type 0**: Cooperative Biometric setup (access control, eGate)
- **Type 1**: semi-constrained setup – primary inspection lane (PIL)
- Type 2: unconstrained free-flow, one-at-time
 - port of entry / chokepoint entry
- **Type 3**: unconstrained free-flow, many-at-time airport

Type 4: Outdoor (no lighting or structural constraints)

PROTECTION . SERVICE . INTEGRITY

1) Face Recognition in Video Surveillance CBSA ASFC

Survey of Academic Solutions

Author	Description	Recognition	Set	Tracking	Applications
Beveridge	CSU Ellastic Graph Bunch Matching	Still-to-video, local	Both	No	watch list screening
Zhou 2003	Simultaneous Face Tracking and Recognition	Still-to-video, video- to-video, hollistic	Closed	Yes	access control
Ekenel 2007	Local Appearence-Based Face Models	Video-to-video, hollistic	Open	No	access controll
Stallenkamp 2008	Local Appearence-Based Face Models	Video-to-video, hollistic	Open	No	watch list screening
Kamgar-Parsi 2011	Face Morphing to Boost Training Data	Still-to-video, local	Open	No	watch list screening
Li 2005	TCM-kNN	Still-to-still, hollistic	Open	No	watch list screening
Connolly 2010	Evolving ensembles using Dynamic PSO	Video-to-video, holistic	Closed	Νο	access control
Pagano 2011	Adaptive Ensemble of Detectors	Video-to-video, hollistic	Open	Yes	watch list screening

1) Face Recognition in Video Surveillance CBSA ASFC

Survey of Commercial Technologies

Technology	Vendor	Тур е	Track	Approach	Applications
Verilook Surveillance SDK	Neurotechnology	SDK	Multiple	Still-to-video, video-to-video	Face anotation, watch list screening, enrollment from video, multi-modal biometrics
FaceR	Animetrics	SDK	No	Still-to-still	Watch list screening, enrollment from video
FaceIT SDK	L1	SDK	No	Still-to-still	Watch list screening, multi-modal biometrics
PittPatt SDK	Google*	SDK	Multiple	Still-to-video, video-to-video	Face anotation, watch list screening, enrollment from video
FaceVACS	Cognitec	SDK	Multiple	Still-to-video, video-to-video	Face anotation, watch list screening, enrollment from video
Acsys FRS SDK	Acsys	SDK	Multiple	Video-to- video	Face anotation, watch list screening, enrollment from video
SureMatch 3D	Genex	Арр	No	Still-to-still	Watch list screening
Notiface II	FACE-TEK	Арр	No	Still-to-still	Watch list screening
Face First	Face First	Арр	No	Still-to-video	Watch list screening

Public Data Sets for for medium- to large-scale evaluation

DATASET	TARGET APPLICATIONS
CMU MOBO: [GRO01]	subjects performing different walking
Carnegie Mellon University Motion of Bodies	patterns on a treadmill
CMU FIA: [GOH05]	subjects mimicking passport checkpoint
Carnegie Mellon University Faces in Action	at airport
Chokepoint [WON11]	video-surveillance
	subjects walking though portals
MOBIO: [MCC10]	m-modal unconstrained authentication
EC FP7 Mobile Biometry	on mobile device
ND-Q0-Flip: [BAR11]	detection of questionable observers
Notre-Dame Crowd Data	that appear often in crowd videos
NIST-MBGC: [PHI09]	m-modal verification of subjects walking through portal or
National Institute of Standards and Technology - Multiple Biometric Grand Challenge	access control checkpoint (still- and video-to-video)
NRC-IIT: [GOR05]	user identification for
National Research Council – Institute for Information Technology	secured computer login
XM2VTS: [MAT03]	multi-modal verification
Multi-Modal Verification for Teleservices and Security Applications	for tele-service and security

Data sets for FRiV - summary

datasets have been characterized according to:

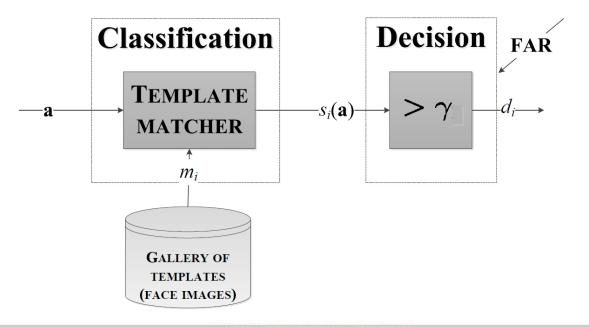
- demographics: distribution of individuals per session and in the entire dataset;
- complexity in scene: the systematic variations of illumination, motion, occlusion, expression and/or pose for some target application;
- capture properties: the number and type of cameras, duration of video sequences, frame rate and resolution.

<u>CMU – FIA (mono-modal, 1 face)</u>

• **PIL**: subjects mimicking passport checkpoint at airport

Chokepoint (mono-modal, 1 to 24 faces)

 CATSA checkpoint: subjects walking though portals



Performance metrics

Fundamental task under evaluation:

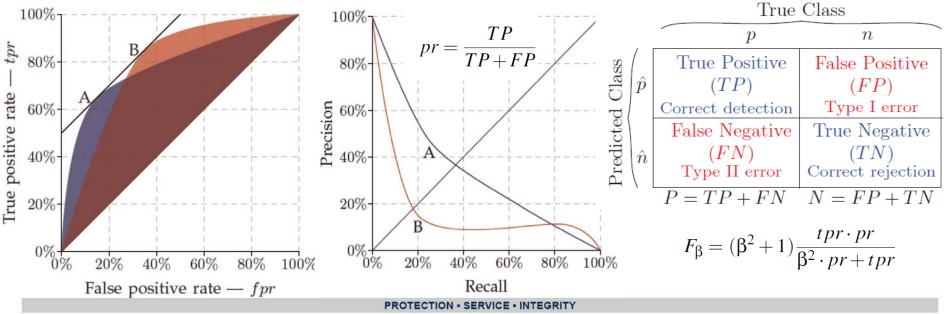
- independent, user-specific detection of an individual of interest among a restrained cohort of individuals
- data from a restrained cohort \neq universal world model

Performance Metrics

- Open-set FR problem with imbalanced class distributions (few positive samples from a restrained cohort)
 - precision-recall space, and F-scores for transaction-based analysis

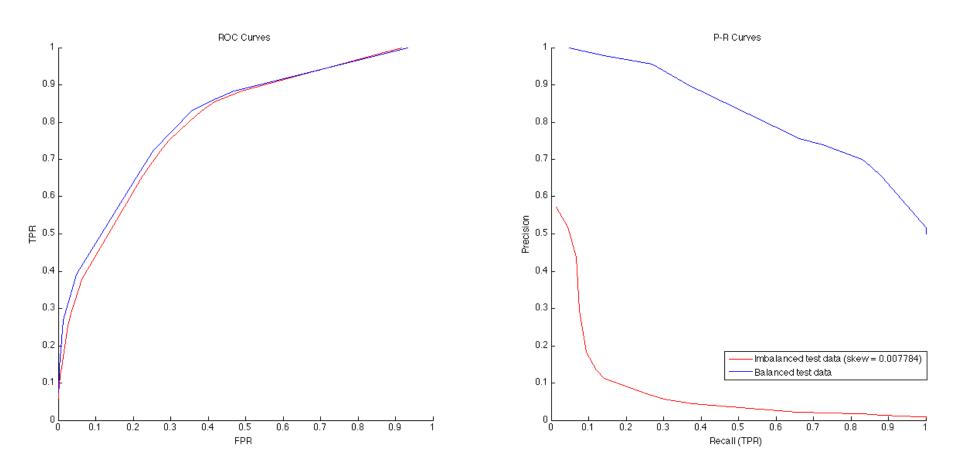
Complex environment and uncertainty of facial models

- quality of acquired ROIs and tracks
- test for confidence or significance on quality estimates
- Performance varies across a population of individuals, and some individuals are harder to recognize
 - menageries statistical tests to characterize individual


Growing complexity of surveillance networks

analysis of time and memory complexity

Transaction-Based Analysis


- Evaluation of detectors count correct and incorrect decisions over a test set, and express performance trade-offs using a curve or scalar metric
 - **Traditional:** ROC or DET curves (accuracy, AUC, pAUC)
 - Dependent on class distributions and miss-classification costs: precision-recall (F-score), ROC isometrics, cost curves and others

Transaction-Based Analysis

Results on FIA data

Subject-Based Analysis

- Doddington's zoo performance is assessed with different types of individuals in mind
 - performance of face recognition systems may vary drastically from one individual to the next
 - an analysis of these individuals and their common properties can:
 - expose fundamental weaknesses in a biometric system
 - schemes for user-specific thresholds, score normalization, and fusion

Transaction-Based Analysis

► Results on FIA data: pAUC(10%) and F₁-measure (Pagano at al. IEEE WCCI 2012)

Anabitaatuma	Individuals									
Architecture	2	23	58	106	147	151	176	188	190	209
Global	$0.37\pm$	$0.58\pm$	$0.68\pm$	$0.94\pm$	$0.42\pm$	$0.71\pm$	$0.73\pm$	$0.81\pm$	$0.53\pm$	$0.9~\pm$
	0.038	0.095	0.12	0.036	0.13	0.11	0.05	0.076	0.065	0.068
Modular	$0.35\pm$	$0.64\pm$	$0.85\pm$	$0.84\pm$	$0.69\pm$	$0.85\pm$	$0.61\pm$	$0.84\pm$	$0.66\pm$	$0.92\pm$
	0.04	0.15	0.04	0.075	0.13	0.035	0.054	0.06	0.096	0.054
Modular	$0.45\pm$	$0.72\pm$	$0.89\pm$	$0.9~\pm$	$0.82\pm$	$0.91\pm$	$0.75\pm$	$0.88\pm$	$0.7~\pm$	$0.97\pm$
w. EoDs	0.036	0.094	0.035	0.069	0.11	0.043	0.054	0.049	0.062	0.024

TABLE I

AVERAGE PAUC ACCURACY FOR 10 INDIVIDUAL IN INTEREST.

Comprehensive Biometrics Evaluation Toolkit (CDET)

Developed by CBSA-S&E for evaluation of biometric systems for border control for:

- 1. 1-to-*N* entry control applications, e.g., to investigate the risks of having non-confident matches in iris systems
- 2. 1-to-*M* screening applications, e.g., to evaluate stand-off and iFR technologies

Integrates best practices and recommendations, such as:

- all ISO-SC 37 / NIST metrics
- Multi-order score analysis
- subject-based analysis
- "Non-confident" match analysis for fully-automated systems
- Threshold-validated ranking analysis
- Case studies (iris, face, voice)

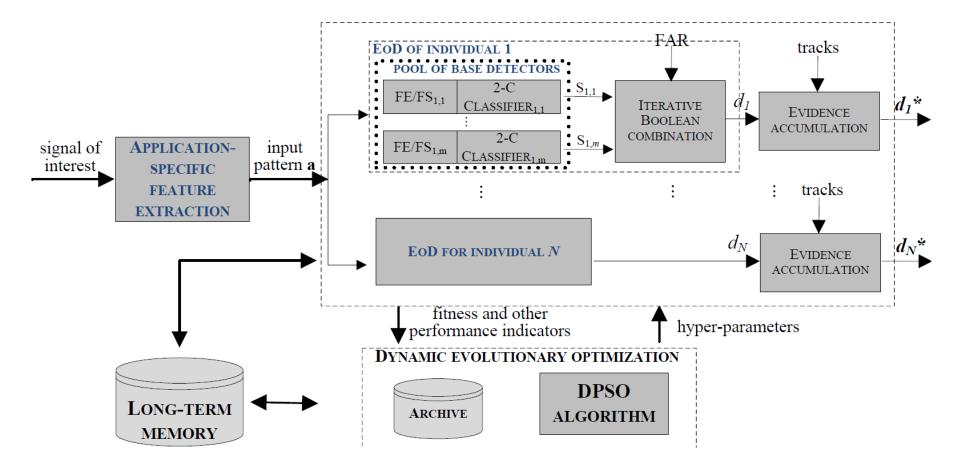
3. TRL-Based Evaluation

Technology Readiness: Preliminary assessment

FRiV applications	Type 0 (eGate)	Type 1	Type 2	Туре 3
Face Tracking (in consecutive frames)	\checkmark	?	?	-
Face Detection	\checkmark	\checkmark	1	?
Face Grouping / Tagging (across multiple feeds)	?	?	?	-
Instant "Watch List" Screening	?	?	-	-
Forensic examination from video (off-line)	\checkmark	?	?	-
Expression analysis	\checkmark	?	?	-
Face + Voice + Iris	\checkmark	?	-	_
Video-to-video face matching	\checkmark	?	?	_
Soft biometrics (e.g., height)	?	?	?	_

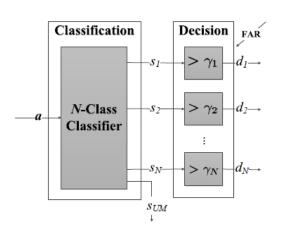
Conclusions

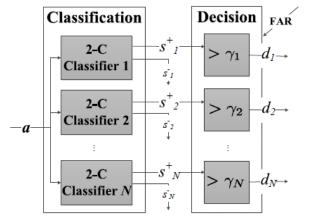
- Current COTS and academic systems can be found useful for some FRiSV applications
- Post-processing and pre-processing (including Video Analytics) are critical for their success
- Potential for new video-based (eg spatio-temporal recognition) techniques, as opposed to status-quo still-image-based.
- There is no all-inclusive evaluation methodology for FRiVS
 - conventional metric can be misleading
 - for operational agency, TRL-based evaluation should prevail
- Ultimate metric satisfaction of the end-user (border officer)!

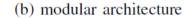


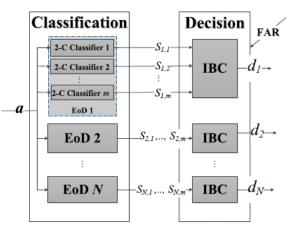
Backup Slides

PROTECTION · SERVICE · INTEGRITY


Adaptive Multi-Classifier Systems (Pagano et al., IEEE WCCI 2012)




Adaptive Multi-Classifier Systems (Pagano *et al.*, IEEE WCCI 2012)


Classification and decision architectures for open-set FR

(a) monolithic architecture with UM

(c) modular architecture with EoDs

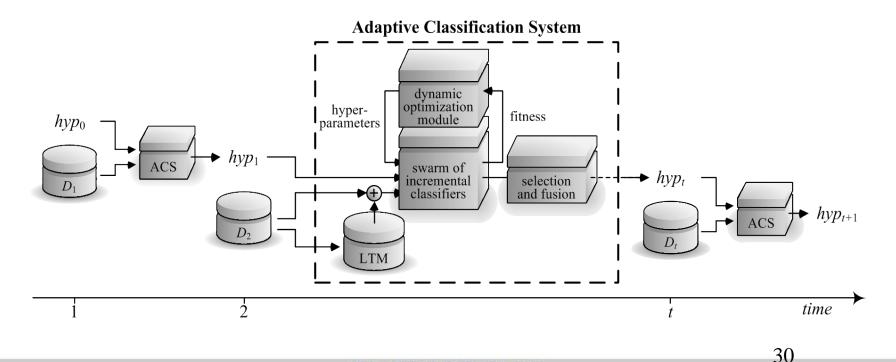
Adaptive Multi-Classifier Systems (Pagano *et al.*, submitted to IEEE WCCI 2012)

Anabitaatuma	Individuals									
Architecture	2	23	58	106	147	151	176	188	190	209
Global	$0.37\pm$	$0.58\pm$	$0.68\pm$	$0.94\pm$	$0.42\pm$	$0.71\pm$	$0.73\pm$	$0.81\pm$	$0.53\pm$	$0.9~\pm$
	0.038	0.095	0.12	0.036	0.13	0.11	0.05	0.076	0.065	0.068
Modular	$0.35\pm$	$0.64\pm$	$0.85\pm$	$0.84\pm$	$0.69\pm$	$0.85\pm$	$0.61\pm$	$0.84\pm$	$0.66\pm$	$0.92\pm$
	0.04	0.15	0.04	0.075	0.13	0.035	0.054	0.06	0.096	0.054
Modular	$0.45\pm$	$0.72\pm$	$0.89\pm$	$0.9~\pm$	$0.82\pm$	$0.91\pm$	$0.75\pm$	$0.88\pm$	$0.7~\pm$	$0.97\pm$
w. EoDs	0.036	0.094	0.035	0.069	0.11	0.043	0.054	0.049	0.062	0.024

TABLE I

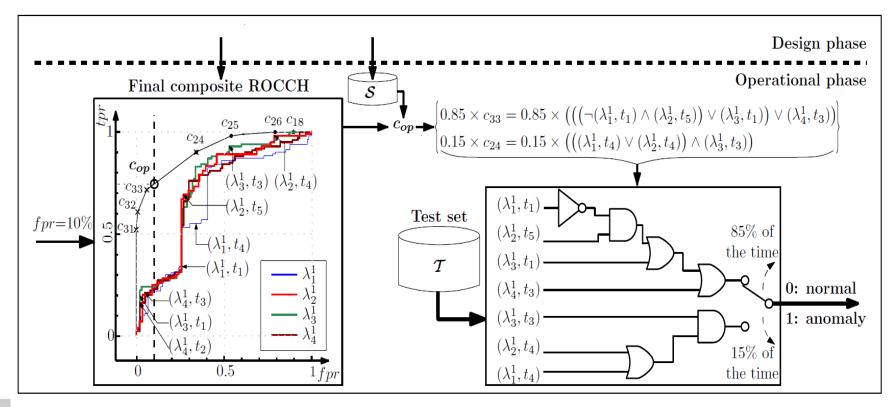
AVERAGE PAUC ACCURACY FOR 10 INDIVIDUAL IN INTEREST.

Adaptive Multi-Classifier Systems (de la Torre *et al.*, IEEE WCCI 2012)


Incremental learning of new data using L&C

Classifier	Compression	AUC	pAUC-10						
D_1									
k-NN	1.00 ± 0.00	0.9127 ± 0.020	0.4798 ± 0.069						
$PFAM_{batch}$	8.63 ± 1.13	0.9499 ± 0.022	0.7223 ± 0.068						
$PFAM_{inc}$	8.63 ± 1.13	0.9499 ± 0.022	0.7223 ± 0.068						
Learn++	$10.43 {\pm} 1.25$	0.8352 ± 0.079	0.5477 ± 0.098						
L&C	9.00 ± 1.19	0.9523 ± 0.024	$0.7496{\pm}0.067$						
		D_3							
k-NN	1.00 ± 0.00	0.9398±0.016	0.5933 ± 0.068						
PFAM_{batch}	10.52 ± 1.52	0.9512 ± 0.018	0.7125 ± 0.074						
$PFAM_{inc}$	11.82±1.83	0.9382 ± 0.022	0.6502 ± 0.074						
Learn++	$9.46 {\pm} 0.91$	0.8422 ± 0.068	0.5080 ± 0.097						
L&C	8.22 ± 1.10	0.9649±0.018	0.7957±0.062						
	D_5								
k-NN	1.00 ± 0.00	0.9496±0.013	0.6442 ± 0.060						
PFAM_{batch}	11.76 ± 2.24	0.9589 ± 0.014	0.7403 ± 0.065						
$PFAM_{inc}$	16.07 ± 3.00	0.9164 ± 0.032	0.5965 ± 0.085						
Learn++	$9.34 {\pm} 0.89$	0.8174 ± 0.069	0.4280 ± 0.089						
L&C	7.32 ± 0.79	0.9732±0.013	$0.8240{\pm}0.058$						

Adaptive Multi-Classifier Systems (Connolly et al. PR2011)


 Framework – a 'swarm' of incremental classifiers, a dynamic optimization module and a LTM:

Adaptive Multi-Classifier Systems

Adaptive Fusion: Incremental Boolean Combination

