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Why perform covariate analysis? 
• It is important to understand the influence of various 

factors (covariates), such as image quality metrics, 
population demographic factors and environmental 
conditions on the performance of biometric recognition 
systems 

• This knowledge can profoundly influence how biometric 
systems are designed and implemented in real-world 
operational scenarios 

• To demonstrate our Area-Under-Curve method for 
performing covariate analyses, we explore matching 
performance for three iris datasets from Authenti-Corp’s 
IRIS06 study using the Daugman 2007 algorithm 
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Covariate Analysis Challenges 
• Biometric systems are used for many different types of applications, which 

necessarily operate at different points on an ROC curve. 
– For example, for admission to Disney World, the higher false match rates associated with 

lower false non-match rates (higher true match rates) would be tolerable 
• Convenience to the customer is more important than some level of monetary loss 

– At a high-security facility, the lower true match rates associated with lower false match rates 
would be required 

• Security is more important than convenience. 

Score Distribution ROC Curve• The influence of covariates is 
typically analyzed at one or 
multiple operating points 

– For example, FMR=10-3, 10-4, 
10-5 or Threshold Score=0.32, 
0.34, 0.36 (Hamming 
distance) 

– Analysis at multiple points can 
be difficult, time consuming 
and cumbersome 

– Results can be difficult to convey and understand 

• It is desirable to perform a generalized covariate analysis that is independent of 
threshold • Area Under ROC Curve (AUC) 
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Why use Area Under Curve (AUC)? 
Score Distribution ROC Curve AUC 

• Easy to understand 
– Represents the probability of a correct decision given a genuine image and an impostor image 
– Overall probability of a correct answer 
– The larger the AUC value, the better the overall performance of the system 

• AUC=1 is perfect performance 

• Serves as a single figure of merit that characterizes the performance of the system 
– Threshold independent 
– Accounts for all thresholds 

• The statistical properties of AUC are well characterized 
– Determining statistical significance of AUC differences straightforward using Wilcoxon estimate 

• The analysis space is reduced from a multi-point ROC curve to a single metric 
– The influence of various covariates on system performance can be systematically studied as a 

function of the AUC figure of merit 
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Limitations of AUC 
• Single metric from an inherently multi-objective problem 

– While problem is simplified, nuances may be overlooked 
• AUC is heavily weighted by portions of the ROC curve where 

systems most certainly will not operate, that is at false match rates 
above a certain value, for example, FMR>0.1% 
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Partial AUC (p-AUC) 
• To address limitations of AUC, we propose to look at partial AUC (p-AUC), 

which is restricted to a range of false match rates that are operationally feasible 
• Selecting the range of the ROC curve that is operationally relevant depends 

upon the modality and scenario 
– For facial recognition, we have seen implementations that operate successfully at 

false match rates as high as 10% 
– For single-fingerprint systems, acceptable false match rates might be at or below 10-3 

– For iris recognition, operational false match rates below 10-4 are typical 

Area Under Curve 
(probability of correct decision) 

FMR ≤ 1.0, AUC=0.972292 

FMR ≤ 0.1, p-AUC=0.093847 

FMR≤0.01, p-AUC= 0.009219 
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AUC Statistical Analysis 
• Need error bars to draw conclusions 
• Borrow image assessment approach from radiology 

– Probabilistic Multiple Reader, Multiple Case (MRMC) model 
• Normal cells • Genuine scores 
• Abnormal cells • Impostor scores 

– References 
• E. Clarkson, M. A. Kupinski, and H. H. Barrett, “A probabilistic 

model for the MRMC method. Part 1: Theoretical development”, 
Acad. Radiol., 13:1410-1421, 2006. 

• M. A. Kupinski, E. Clarkson, and H. H. Barrett, “A probabilistic 
model for the MRMC method. Part 2: Validation and 
applications”, Acad. Radiol., 13:1422-1430, 2006. 
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Statistical Properties of AUC & p-AUC 
• Variance (AUC) = 

– Can directly compute each alpha term and predict variance 
from genuine and impostor scores 

– Third term accounts for correlations between impostors and
genuines 

– OneShot freeware application computes α terms without 
resampling techniques and is unbiased
http://www.radiology.arizona.edu/CGRI/IQ/page2/page7/page7.html 

– Methods and software extended to account for p-AUC 

http://www.radiology.arizona.edu/CGRI/IQ/page2/page7/page7.html


  

 

 
 
 

 
 

 

 

 
 
 

Statistical Significance “p-value” 
• Use Wilcoxon signed-rank statistical hypothesis test to determine 

statistical significance between two AUC values 
• Non-parametric equivalent to t-test 
• Assume null hypothesis • two AUCs equal 
• p-value is the probability that the null hypothesis explains the result 

– Computed from the variances of the two AUCs 
– Small p-value (e.g., p<0.05) indicates a significant difference between 

the AUC values and thus a statistically significant performance
difference between the two cases under investigation 

• To perform the significance test for partial AUC, we assume that
partial AUC is normally distributed 
– Normal assumption has been shown to be valid for as few as 10 

subjects (i.e., 10 x 10 matrix of scores) 
• Caution 

– p-value indicates statistical significance 
– p-value does not indicate that the hypothesis is correct 

© 2010 Authenti-Corp  International Biometric Performance Conference 4 March 2010 



  

 
    

 

 

 

 

 

 

p-value Illustration 
Score Distributions ROC Curves AUC ± σ 

• • 0.9905 ± 0.0012  

0.9730 ± 0.0018  

0.9763 ± 0.0016  

• •

• •
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Calcula&ng p‐value  
Distribution of Measured AUC Difference  = (assuming true difference is 0) 

Δ = |AUC1 – AUC2| 

ΔCamera A-Camera B =0.01751, p = 0.0000 
ΔCamera B-Camera C=0.003245 , p = 0.1897 Not statistically significant 

Is the measured AUC 
difference unlikely? 

Statistically significant 

Integral form: 

Numerical form: 

probability of measuring 
observed difference if Δ=0 



  

 
   

 
 

 

 

 
 

 

 

GLMM Covariate Analysis Approach 
• Generalized Linear Mixed Effect model is used to relate probability of verification to

subject and image covariates 
– Ross Beveridge’s group at Colorado State University 

• Pros: 
– Uses empirical performance and covariate data associated with people and imagery to fit

a model relating covariate values to probability that a person will be correctly verified 
– 

correctly verified 
• Cons: 

– GLMM modeling
complex 

– Requires
parameter tuning 

– Performed at a 
selected operating
point on the ROC,
i.e., FMR=0.001 

Model quantifies how changes in covariates alter the probability that a person will be 

Figure from Beveridge, et. al., “Focus on Quality, Predicting FRVT 2006 Performance,” 
2008 8th IEEE International Conference on Automatic Face and Gesture Recognition 
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AUC Covariate Analysis Approach 

• To demonstrate utility of AUC & p-AUC figures of merit 
and Wilcoxon signed-rank statistical hypothesis test, we 
evaluate the influence of three covariates on iris 
recognition performance: 
– Camera 

• A, B & C 

– Gender 
• Male & Female 

– Eye 
• Left & Right 

© 2010 Authenti-Corp  International Biometric Performance Conference 4 March 2010 



  

 

 
 
 

AUC & p-value Nomenclature 

Camera probability of correct decision 
– Camera A: 99% 
– Camera B: 97% 
– Camera C: 98% 

© 2010 Authenti-Corp  International Biometric Performance Conference 4 March 2010 



  

 

 

 

 

  

Cameras A, B & C 
FMR ≤ 1.0 FMR ≤ 0.1 

• Camera A performs 
significantly better than 
Cameras B & C 

• Camera C performs 
better than Camera B 
for AUC (FMR≤1.0) but 
Camera B performs 
better than Camera C 
for p-AUC (FMR≤0.1) 

– ROC curves cross 

© 2010 Authenti-Corp  International Biometric Performance Conference 4 March 2010 



  

 
  

Gender – Cameras A, B & C Combined 
FMR ≤ 1.0 FMR ≤ 0.1 

For Cameras A, B & C 
combined, there is no 
significant 
performance 
difference between 
men and women 

© 2010 Authenti-Corp  International Biometric Performance Conference 4 March 2010 



  

 
  

Gender – Camera A 
FMR ≤ 1.0 FMR ≤ 0.1 

For Camera A, 
performance for men 
is significantly better 
than for women 
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Gender – Camera B 
FMR ≤ 1.0 FMR ≤ 0.1 

For Camera B, there 
is no significant 
performance 
difference between 
men and women 
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Gender – Camera C 
FMR ≤ 1.0 FMR ≤ 0.1 

For Camera C, 
performance for women 
is 
significantly better than 
for men 

AUC and p-AUC 
figures of merit reveal 
performance variations 
between covariates 

In this example: 
• If population is 

predominantly male, 
use Camera A 

• If population is 
predominantly female, 
use Camera C 

• Can investigate origin 
of performance 
differences 

© 2010 Authenti-Corp  International Biometric Performance Conference 4 March 2010 



  

 
  

Eye – Cameras A, B & C Combined 

For Cameras A, B & C 
combined, 
performance for right 
eyes is significantly 
better than for left 
eyes 

FMR ≤ 1.0 FMR ≤ 0.1 

© 2010 Authenti-Corp  International Biometric Performance Conference 4 March 2010 



  

 
  

Eye – Camera A 
FMR ≤ 1.0 FMR ≤ 0.1 

For Camera A, 
performance for right 
eyes is significantly 
better than for left 
eyes 
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Eye – Camera B 

For Camera B, 
performance for right 
eyes is significantly 
better than for left 
eyes 

FMR ≤ 1.0 FMR ≤ 0.1 
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Eye – Camera C 
FMR ≤ 1.0 FMR ≤ 0.1 

For Camera C, 
statistical significance 
is different for full AUC 
(FMR=1.0) and p-AUC 
(FMR=0.1) 
• For full AUC there is 

no significant 
performance 
difference between 
left and right eyes 

• For p-AUC, 
performance for left 
eyes is significantly 
better than for right 
eyes 

p-AUC figure of merit 
reveals statistical 
significance for 
operational region of 
interest 
In general, better to 
use p-AUC than AUC 
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Conclusions (1 of 2) 

• Covariate analysis is an important tool for understanding the influence of 
various factors (covariates) and for enhancing the performance of 
biometric recognition systems 
– Identify which covariates matter and quantify how they affect performance for 

situations of interest 
– Useful to algorithm and hardware system developers 

• Facilitate system designs that are less sensitive or insensitive to significant covariates 
– Useful to system integrators 

• Implement systems to minimize influence of significant covariates 

• Area Under Curve (AUC)-based covariate analysis approach is simple 
and fast to perform and easy to understand 
– AUC represents overall probability of a correct answer 
– Currently used in medical imaging field 
– System performance characterized with a single, threshold-independent metric 
– Re-sampling techniques not used 
– Produces unbiased estimates of components of variance 
– No modeling required, no parameters to tune 

© 2010 Authenti-Corp  International Biometric Performance Conference 4 March 2010 



  

 

 

 

 
 
 

 

 
 
    

Conclusions (2 of 2) 

• We propose a new metric, partial AUC (p-AUC), which is limited to an 
operationally-feasible portion of the ROC curve 

• AUC and p-AUC are measures that give the probability of a correct 
decision when presented with both an impostor and a genuine image 

• Statistical significance easy to determine using Wilcoxon p-values 
– Distribution of AUCs determines statistical significance of results 
– Small p-value indicates a significant difference between the metrics 

• We have demonstrated the utility of AUC & p-AUC metrics and the 
Wilcoxon signed-rank statistical hypothesis test for performing covariate 
analyses using iris recognition data 

– The approach is effective, informative, straightforward and easy 
• Open-source code available for AUC 
– http://www.radiology.arizona.edu/CGRI/IQ/page2/page7/page7.html 
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	Eye – Camera C 
	FMR ≤ 1.0 FMR ≤ 0.1 
	For Camera C, statistical significance is different for full AUC (FMR=1.0) and p-AUC (FMR=0.1) 
	• 
	• 
	• 
	For full AUC there is no significant performance difference between left and right eyes 

	• 
	• 
	For p-AUC, performance for left eyes is significantly better than for right eyes 


	p-AUC figure of merit reveals statistical significance for operational region of interest 
	In general, better to use p-AUC than AUC 
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	Conclusions 

	• Covariate analysis is an important tool for understanding the influence of various factors (covariates) and for enhancing the performance of biometric recognition systems 
	– 
	– 
	– 
	Identify which covariates matter and quantify how they affect performance for situations of interest 

	– 
	– 
	– 
	Useful to algorithm and hardware system developers 

	• Facilitate system designs that are less sensitive or insensitive to significant covariates 

	– 
	– 
	Useful to system integrators 


	• Implement systems to minimize influence of significant covariates 
	• Area Under Curve (AUC)-based covariate analysis approach is simple and fast to perform and easy to understand 
	– 
	– 
	– 
	AUC represents overall probability of a correct answer 

	– 
	– 
	Currently used in medical imaging field 

	– 
	– 
	System performance characterized with a single, threshold-independent metric 

	– 
	– 
	Re-sampling techniques not used 

	– 
	– 
	Produces unbiased estimates of components of variance 

	– 
	– 
	No modeling required, no parameters to tune 
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	(2 of 2) 
	Conclusions 

	• 
	• 
	• 
	We propose a new metric, partial AUC (p-AUC), which is limited to an operationally-feasible portion of the ROC curve 

	• 
	• 
	AUC and p-AUC are measures that give the probability of a correct decision when presented with both an impostor and a genuine image 

	• 
	• 
	• 
	Statistical significance easy to determine using Wilcoxon p-values 

	– 
	– 
	– 
	Distribution of AUCs determines statistical significance of results 

	– 
	– 
	Small p-value indicates a significant difference between the metrics 



	• 
	• 
	We have demonstrated the utility of AUC & p-AUC metrics and the Wilcoxon signed-rank statistical hypothesis test for performing covariate analyses using iris recognition data 


	– The approach is effective, informative, straightforward and easy 
	• Open-source code available for AUC – 
	http://www.radiology.arizona.edu/CGRI/IQ/page2/page7/page7.html 
	http://www.radiology.arizona.edu/CGRI/IQ/page2/page7/page7.html 
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