

Predicting Performance in Large-Scale Identification Systems by Score Resampling

Sergey Tulyakov, Venu Govindaraju
Center for Unified Biometrics and Sensors,
University at Buffalo

Problem Statement

Test system

Number of users:
$$G_T = 100$$

$$x(1)$$
 $y_1(1)$ $y_2(1)$... $y_{G_T}(1)$

$$x(2)$$
 $y_1(2)$ $y_2(2)$... $y_{G_T}(2)$

··· i-th test identification trial $(x(i) \quad y_1(i) \quad y_2(i) \quad \dots \quad y_{G_T}(i))$ **Genuine Scores Impostor Scores**

Predicted system

$$G = 3000$$

$$x(j)$$
 $y_1(j)$ $y_2(j)$... $y_G(j)$

Need to estimate <u>correct identification rate</u>:

$$CIR = P(x(j) > \max_{1 \le k \le G} y_k(j)) = ?$$

- Predicting performance in *closed set identification systems*
- NIST BSSR1 score set used in experiments

Analysis of previous approaches

• Score Mixing Effect

Action:
$$x(i) \quad y_1(i) \quad y_2(i) \quad \dots \quad y_{G_T}(i)$$

$$x(k) \quad y_1(k) \quad y_2(k) \quad \dots \quad y_{G_T}(k)$$

Mix scores from different test identification trials during prediction (e.g. to estimate impostor score density)

Effect:

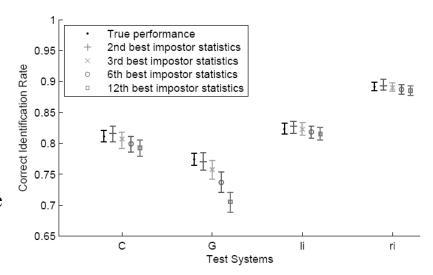
- assumption of iid genuine and impostor score from different trials (usually not true)
- underestimation of CIR
- Binomial Approximation Effect

Action: try to approximate

$$CIR = \int_{-\infty}^{+\infty} N^{G}(t) m(t) dt$$

cumulative distribution function of impostor scores

density of genuine scores


Effect:

- small errors in estimating N(t) lead to large errors in $N^G(t)$
- overestimation of CIR

Proposed approach

- Score Resampling
 - basic simulation of larger identification system workflow
 - genuine and impostor scores are chosen from available test scores
- No binomial approximation effect
- Able to control score mixing effect
 - significantly less score mixing is needed than for binomial approximations
 - mix scores only from similar test identification trials
 - determine similarity of identification trials by properly chosen statistics
 - -nth order statistics seems to be appropriate for most matchers

- Simple approach for predicting identification system performance
- Lesser requirements on test data than for binomial approximation based methods
- Theoretically justified (larger version of the paper)
- Precise (depending on properly chosen statistics for score mixing)
- Easily extended for predicting performance in open set identification systems