Distribution-Free Statistical Methods for Biometric Performance Evaluation

Michael E. Schuckers

St. Lawrence University

Center for Identification Technology Research (CITeR)^a

schuckers@stlawu.edu

^aThis work is supported by NSF grants CNS-0325640 and CNS-0520990 which is cooperatively funded by the National Science Foundation and the United States Department of Homeland Security

Overview

Goal: Develop inferential statistical methods for FTA, FTE, FMR, FNMR without worrying about *sampling* distribution of those statistics.

Note: We *can* use a central limit theorem for all of these but that is another talk (SPIE 2010).

Failure to Enrol (FTE)

Notation

(1)
$$E_i = \begin{cases} 1 & \text{if individual } i \text{ is unable to enroll} \\ 0 & \text{otherwise.} \end{cases}$$

Failure to enroll (FTE) rate is

(2)
$$\widehat{FTE} = \frac{\sum_{i \in \mathcal{E}} E_i}{N_E}.$$

where N_E is the total number of individuals who attempted to enrol in the system and \mathcal{E} is the collection of individuals that tried to enrol.

Failure to Acquire (FTA)

Notation

(3)
$$A_{ij} = \begin{cases} 1 & \text{if the } j^{th} \text{ acquisition attempt by} \\ & \text{individual } i \text{ is not acquired} \\ 0 & \text{otherwise.} \end{cases}$$

where

- \bullet a_i is the total number of attempts for the i^{th} individual
- A represents all individuals who attempt to have their biometric image collected.

Failure to acquire (FTA) rate is

$$\widehat{FTA} = \frac{\sum_{i \in \mathcal{A}} \sum_{j=1}^{a_i} A_{ij}}{\sum_{i \in \mathcal{A}} a_i}$$

False Non-Match Rate (FNMR)

Let $Y_{iw,kw'}$ be the match score for comparing the w^{th} presentation from the i^{th} individual to the w'^{th} presentation from the k^{th} individual. Notation

(5)
$$D_{ik\ell} = \begin{cases} 1 & \text{if } i = k, Y_{iw,i'w'} > \tau \\ 0 & \text{if } i = k, Y_{iw,i'w'} \le \tau \end{cases}$$

False non-match rate (FNMR) is then

(6)
$$\widehat{FNMR} = \frac{\sum_{i} \sum_{\ell} D_{ii\ell}}{\sum_{i} n_{ii}},$$

where n_{ii} is the number of decisions on individual *i*. We assume some ordering of decisions $\ell = 1, \ldots, n_{ii}$.

False Match Rate (FMR)

Let $Y_{iw,kw'}$ be the match score for comparing the w^{th} presentation from the i^{th} individual to the w'^{th} presentation from the k^{th} individual. Notation

(7)
$$D_{ik\ell} = \begin{cases} 0 & \text{if } i \neq k, Y_{iw,kw'} > \tau \\ 1 & \text{if } i \neq k, Y_{iw,kw'} \leq \tau \end{cases}$$

False match rate (FMR) is then

(8)
$$\widehat{FMR} = \frac{\sum_{i} \sum_{k \neq i} \sum_{\ell} D_{ik\ell}}{\sum_{i} \sum_{k \neq i} n_{ik}}$$

where n_{ik} is the number of decisions on the ordered pair of individuals *i* and *k*. We assume some ordering of decisions $\ell = 1, \ldots, n_{ik}$.

Distribution-Free Statistical Methods for Biometric Performance Evaluation - p. 6/

IID Bootstrap Review

Suppose we have n decisions X_1, X_2, \ldots, X_n

- Calculate statistic, say $\hat{\Phi} = \hat{\Phi}(X_1, X_2, \dots, X_n)$.
- Sample *n* values from $\{1, 2, ..., n\}$ with replacement and call those values $b_1, b_2, ..., b_n$.
- Calculate and store $\hat{\Phi}^* = \hat{\Phi}(X_{b_1}, X_{b_2}, \dots, X_{b_n})$
- Repeat the previous two steps some large number of times
- Use distribution of the $\hat{\Phi}^*$ to approximate the sampling distribution of $\hat{\Phi}$.

Only good if data are uncorrelated (FTE) but extensions and improvements exist.... as we shall see.

Correlation Structure: FTE

Uncorrelated Between Individuals Structure

(9)
$$Corr(E_i, E_{i'}) = \begin{cases} 1 & \text{if } i = i' \\ 0 & \text{otherwise.} \end{cases}$$

Then estimated variance is

(10)
$$V[\widehat{FTE}] = \frac{\widehat{FTE}(1 - \widehat{FTE})}{N_E}$$

where N_E is the total number of enrolment attempts.

Correlation Structure: FTA

Intra-individual Correlation

(11)
$$Corr(A_{ij}, A_{i'j'}) = \begin{cases} 1 & \text{if } i = i', j = j' \\ \psi & \text{if } i = i', j \neq j' \\ 0 & \text{otherwise.} \end{cases}$$

Then estimated variance is

(12)
$$V[\widehat{FTA}] = \frac{\widehat{FTA}(1 - \widehat{FTA})}{N_A^2} \left[N_A + \psi \sum_{i=1}^n a_i(a_i - 1) \right]$$

where $N_A = \sum a_i$ and a_i is the number of decisions from the i^{th} individual.

Correlation Structure: FNMR

Intra-individual Correlation

(13)
$$Corr(D_{ii\ell}, D_{i'i'\ell'}) = \begin{cases} 1 & \text{if } i = i', \ell = \ell' \\ \rho & \text{if } i = i', \ell \neq \ell' \\ 0 & otherwise \end{cases}$$

$$V[\widehat{FNMR}] = \frac{\widehat{FNMR}(1 - \widehat{FNMR})}{N_G^2} \left[N_G + \rho \sum_{i=1}^n n_{ii}(n_{ii} - 1) \right]$$

(14)

where $N_G = \sum n_{ii}$ and $n_i i$ is the number of decisions from the i^{th} individual.

Subsets Bootstrap: FNMR and FTA

- Calculate statistic, say $\widehat{FTA} = \frac{\sum_{i \in \mathcal{A}} \sum_{j=1}^{a_i} A_{ij}}{\sum_{i \in \mathcal{A}} a_i}$ where $n = |\mathcal{A}|$ is the number of individuals and a_i is the number of decisions on i^{th} individual.
- Sample *n* values from $\{1, 2, ..., n\}$ with replacement and call those values $b_1, b_2, ..., b_n$.
- Calculate and store $\widehat{FTA}^* = \frac{\sum_{i \in \mathcal{A}} \sum_{j=1}^{a_{b_i}} A_{b_i j}}{\sum_{i \in \mathcal{A}} a_{b_i}}$
- Repeat the previous two steps some large number of times
- Use distribution of the \widehat{FTA}^* to approximate the sampling distribution of \widehat{FTA} .

Correlation Structure: FMR

Two-instance Correlation OR ALL HELL BREAKS LOOSE

(15)
$$Corr(D_{ik\ell}, D_{i'k'\ell'}) =$$

Correlation Structure: FMR (Variance)

$$V[\widehat{FMR}] = \widehat{FMR}(1 - \widehat{FMR}) \left[N_{I} + \eta \sum_{i=1}^{k} \sum_{\substack{k=1\\k \neq i}}^{k} n_{ik}(n_{ik} - 1) + \omega_{1} \sum_{i=1}^{k} \sum_{\substack{k=1\\k \neq i}}^{k} n_{ik} \left(\sum_{\substack{k'=1\\k' \neq i, k' \neq k}}^{k'=1} n_{ik'} \right) + \omega_{2} \sum_{i=1}^{k} \sum_{\substack{k=1\\k \neq i}}^{k} n_{ik} \left(\sum_{\substack{i'=1\\i' \neq i, i' \neq k}}^{k'=1} n_{ik} \left(\sum_{\substack{i'=1\\i' \neq i, i' \neq k}}^{k'=1} n_{ik'} + \sum_{\substack{k'=1\\k' \neq i, k' \neq k}}^{k'=1} n_{kk'} \right) + \omega_{3} \sum_{i=1}^{k} \sum_{\substack{k=1\\k \neq i}}^{k} n_{ik} \left(\sum_{\substack{i'=1\\i' \neq i, i' \neq k}}^{k'=1} n_{ik'} + \sum_{\substack{k'=1\\k' \neq i, k' \neq k}}^{k'=1} n_{kk'} \right) + \omega_{3} \sum_{i=1}^{k} \sum_{\substack{k=1\\k \neq i}}^{k} n_{ik} \left(\sum_{\substack{i'=1\\i' \neq i, i' \neq k}}^{k'=1} n_{ik'} + \sum_{\substack{k'=1\\k' \neq i, k' \neq k}}^{k'=1} n_{kk'} \right) + \omega_{3} \sum_{i=1}^{k} \sum_{\substack{k=1\\k \neq i}}^{k} n_{ik} \left(\sum_{\substack{i'=1\\i' \neq i, i' \neq k}}^{k'=1} n_{ik'} + \sum_{\substack{k'=1\\k' \neq i}}^{k'=1} n_{kk'} \right) + \omega_{3} \sum_{i=1}^{k} \sum_{\substack{k=1\\k \neq i}}^{k'=1} n_{ik} \left(\sum_{\substack{i'=1\\i' \neq i, i' \neq k}}^{k'=1} n_{ik'} + \sum_{\substack{k'=1\\k \neq i}}^{k'=1} n_{kk'} \right) + \omega_{3} \sum_{i=1}^{k} \sum_{\substack{k=1\\k \neq i}}^{k'=1} n_{ik'} + \xi_{2} \sum_{i=1}^{k} \sum_{\substack{k=1\\k \neq i}}^{k'=1} n_{ki} \left(n_{ki} - 1 \right) \right]$$

where $N_I = \sum_i \sum_{k \neq i} n_{ik}$.

• Resample $n_{\mathcal{P}}$ individuals from the list of all $n_{\mathcal{P}}$ individuals in the probe and call those individuals $b_1, b_2, \ldots, b_{n_{\mathcal{P}}}$.

- Solution Resample $n_{\mathcal{P}}$ individuals from the list of all $n_{\mathcal{P}}$ individuals in the probe and call those individuals $b_1, b_2, \ldots, b_{n_{\mathcal{P}}}$.
- For the b_i^{th} individual selected in the previous step we then resample from the $n_{\mathcal{G}}$ individuals in the gallery and call those individuals $h_{b_i,k}$'s for $k = 1, \ldots, n_{\mathcal{G}}$.

- Solution Resample $n_{\mathcal{P}}$ individuals from the list of all $n_{\mathcal{P}}$ individuals in the probe and call those individuals $b_1, b_2, \ldots, b_{n_{\mathcal{P}}}$.
- For the b_i^{th} individual selected in the previous step we then resample from the $n_{\mathcal{G}}$ individuals in the gallery and call those individuals $h_{b_i,k}$'s for $k = 1, \ldots, n_{\mathcal{G}}$.
- Take all of the decisions $D_{b_i h_{b_i,k} 1}, \ldots, D_{b_i h_{b_i,k} m_{b_i h_{b_i,k}}}$ from the resampled pairs of individuals, $(b_i, h_{b_i,k})$ found in the two previous steps.

- Solution Resample $n_{\mathcal{P}}$ individuals from the list of all $n_{\mathcal{P}}$ individuals in the probe and call those individuals $b_1, b_2, \ldots, b_{n_{\mathcal{P}}}$.
- For the b_i^{th} individual selected in the previous step we then resample from the n_G individuals in the gallery and call those individuals $h_{b_i,k}$'s for $k = 1, \ldots, n_G$.
- Take all of the decisions $D_{b_i h_{b_i,k} 1}, \ldots, D_{b_i h_{b_i,k} m_{b_i h_{b_i,k}}}$ from the resampled pairs of individuals, $(b_i, h_{b_i,k})$ found in the two previous steps.
- The replicated value for \widehat{FMR} is then given by

(20)
$$\widehat{FMR}^* = \frac{\sum_{i=1}^{n_{\mathcal{P}}} \sum_{k=1}^{n_{\mathcal{G}}} \sum_{\ell=1}^{m_{b_i h_{b_i,k}}} D_{b_i h_{b_i,k}\ell}}{\sum_{i=1}^{n_{\mathcal{P}}} \sum_{k=1}^{n_{\mathcal{G}}} m_{b_i h_{b_i,k}}}.$$

Structure and Methods

Metric	Distribution model	Distribution-Free model
FTE	Binomial	IID
FTA	Beta-binomial	Subset Bootstrap
FNMR	Beta-binomial	Subset Bootstrap
FMR	??	Two-instance Bootstrap

Subset Bootstrap due to Bolle et al (2003)

FMR model generalization of implicit structure by Bickel

Two-instance Bootstrap Schuckers(2010)

Central Limit Theorems apply to all cases.

Variance estimation: FMR

XM2VTS Database

Matcher	Threshold	$\hat{ u}$	$s_{\hat{ u}}$	$s_{\hat{ u},boot}$
(FH,MLP)	0.0	0.0038	0.0007	0.0009
(DCTs,GMM)	0.0	0.0582	0.0067	0.0066
(DCTb,GMM)	0.2	0.0041	0.0007	0.0008
(DCTs,MLP)	-0.8	0.1057	0.0086	0.0091
(DCTb,MLP)	-0.5	0.0580	0.0072	0.0074
(LFCC,GMM)	3.0	0.0142	0.0039	0.0038
(PAC,GMM)	2.0	0.0570	0.0090	0.0090
(SSC,GMM)	1.0	0.0692	0.0105	0.0099

 $s_{\hat{\nu}}$ is the standard error from Schuckers (2009) and $s_{\hat{\nu},boot}$ is the bootstrapped standard error.

There's that significance thing.

- There's that significance thing.
- And that sampling variability thing.

- There's that significance thing.
- And that sampling variability thing.
- Just cause one rate/curve is 'better' than another doesn't make it significantly better.

- There's that significance thing.
- And that sampling variability thing.
- Just cause one rate/curve is 'better' than another doesn't make it significantly better.
- Ask about significance, confidence intervals, p-values.

- There's that significance thing.
- And that sampling variability thing.
- Just cause one rate/curve is 'better' than another doesn't make it significantly better.
- Ask about significance, confidence intervals, p-values.
- Tools now in place.

Move to methods for:

Comparing two metrics

Move to methods for:

- Comparing two metrics
- Comparing three or more metrics

Move to methods for:

- Comparing two metrics
- Comparing three or more metrics
- Considering paired data collections

Move to methods for:

- Comparing two metrics
- Comparing three or more metrics
- Considering paired data collections
- Considering independent data collections

Example:FNMR

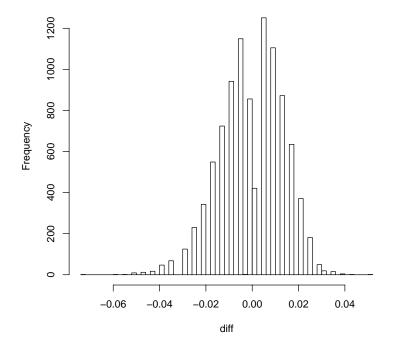
We are considering difference between two FNMR's for the same matcher but on different groups. Each group 312 decisions from 26 individuals.

 $\widehat{FNMR_1} = 0.0086$ and $\widehat{FNMR_2} = 0.0214$.

Make 95% confidence interval for the difference in the FNMR's

Example:FNMR

Bootstrap each FNMR and take difference at each bootstrap



The 95% Cl for $FNMR_1 - FNMR_2$ is (-0.0384, 0.0171) from 10000 bootstrap replicates.

Example:FMR

Comparing equality of FMR for 5 matchers from BANCA database based upon 312 decisions.

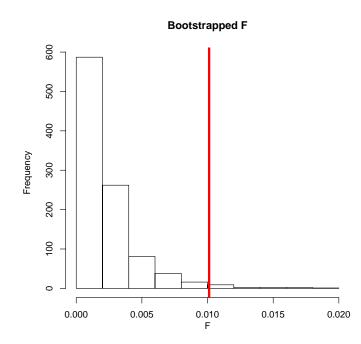
 \widehat{FMR} 's are 0.0769, 0.0449, 0.0513, 0.0737, 0.1699.

Are they significantly different?

Formally, $H_0: \nu_1 = \ldots - \nu_5$, $H_1:$ at least one different.

Example:FMR

Calculate F test statistic (red line) for raw data. Bootstrap assuming H_0 is true and recalculate F*.

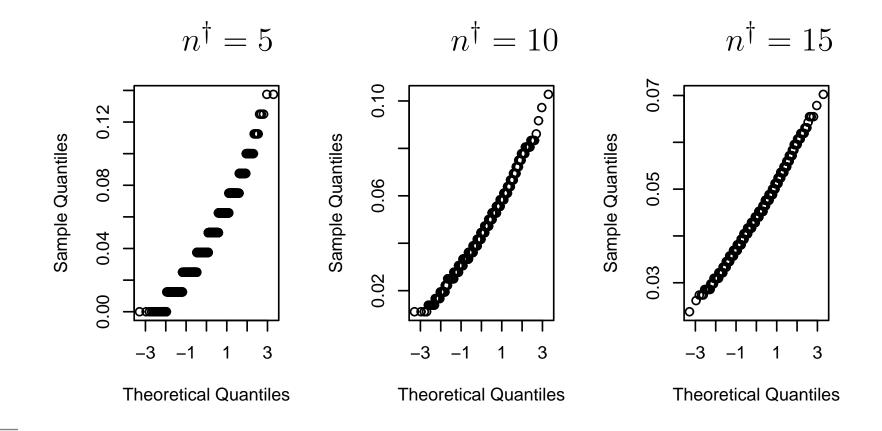


P-value for this test is 0.016.

CLT

Distribution of sampling distributions converge to Gaussian for large sample sizes

Example: Facial FMR (Data from Ross and Jain(2003))



 All correlations are threshold dependent but model is not

- All correlations are threshold dependent but model is not
- Basis for more complicated correlation structures

- All correlations are threshold dependent but model is not
- Basis for more complicated correlation structures
- Parametric approach used for sample size calc's, Schuckers (2009,2010)

- All correlations are threshold dependent but model is not
- Basis for more complicated correlation structures
- Parametric approach used for sample size calc's, Schuckers (2009,2010)
- Needed for GLM's, covariate approaches (Colo. State et al. for FNMR)

- All correlations are threshold dependent but model is not
- Basis for more complicated correlation structures
- Parametric approach used for sample size calc's, Schuckers (2009,2010)
- Needed for GLM's, covariate approaches (Colo. State et al. for FNMR)
- Computational Methods in Biometrics (June/July 2010) Springer

- All correlations are threshold dependent but model is not
- Basis for more complicated correlation structures
- Parametric approach used for sample size calc's, Schuckers (2009,2010)
- Needed for GLM's, covariate approaches (Colo. State et al. for FNMR)
- Computational Methods in Biometrics (June/July 2010) Springer
- CITeR funded software PRESS v2.0

- All correlations are threshold dependent but model is not
- Basis for more complicated correlation structures
- Parametric approach used for sample size calc's, Schuckers (2009,2010)
- Needed for GLM's, covariate approaches (Colo. State et al. for FNMR)
- Computational Methods in Biometrics (June/July 2010) Springer
- CITeR funded software PRESS v2.0

Schuckers (2010)

Computation Methods in Biometric Authentication : Statistical Methods for Performance Evaluation Text by *Springer* to appear Summer 2010

- Methods for FTE, FTA, FNMR, FMR, ROC, EER
- Methods for one sample, two sample, three or more samples
- Distribution-free and Large sample methods
- Independent and Paired data collections

Thank You

Questions?

schuckers@stlawu.edu