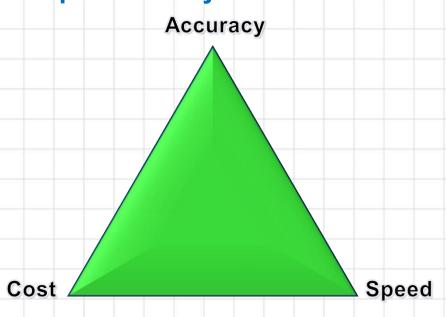


Biometric Identification: Metrics & Models

Brian Martin March 2010

Overview

- Back of envelope approach to biometric ID systems and in particular the Search Engine Backend:
 - What are (some of) the relevant metrics?
 - Can we use what we measure to model performance? How?
- If interested in a more precise examination of the topic (free dl):
 - "National Biometric Test Center Collected Works 1997-2000"
 Dated, but still many relevant points for 1:N search systems
 - Wayman, 2000
 - http://www.engr.sjsu.edu/biometrics/publications.html
 - "Matching Performance for the US-VISIT IDENT System Using Flat Fingerprints (NIST IR-7110)"
 One of few published results on large scale testing
 - Wilson, Garris, & Watson, 2004
 - ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7110.pdf

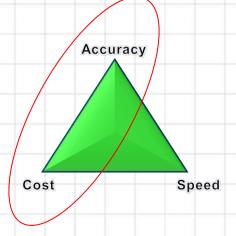


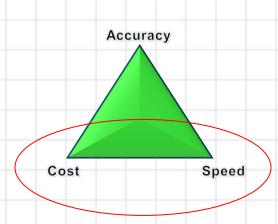
Metrics

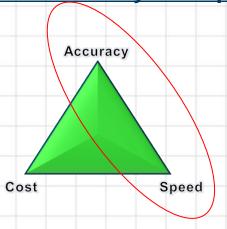
Biometric Search Engine Metrics

 There is an analogy between biometric ID search engine tradeoffs and the project management triangle:

"Good, Fast, Cheap... Pick any two"


- There are arguably several other dimensions... these seem to capture the general concepts of most
- All axes are interrelated...




Biometric Search Engine Metrics

Fixed cost and accuracy Fixed cost and speed

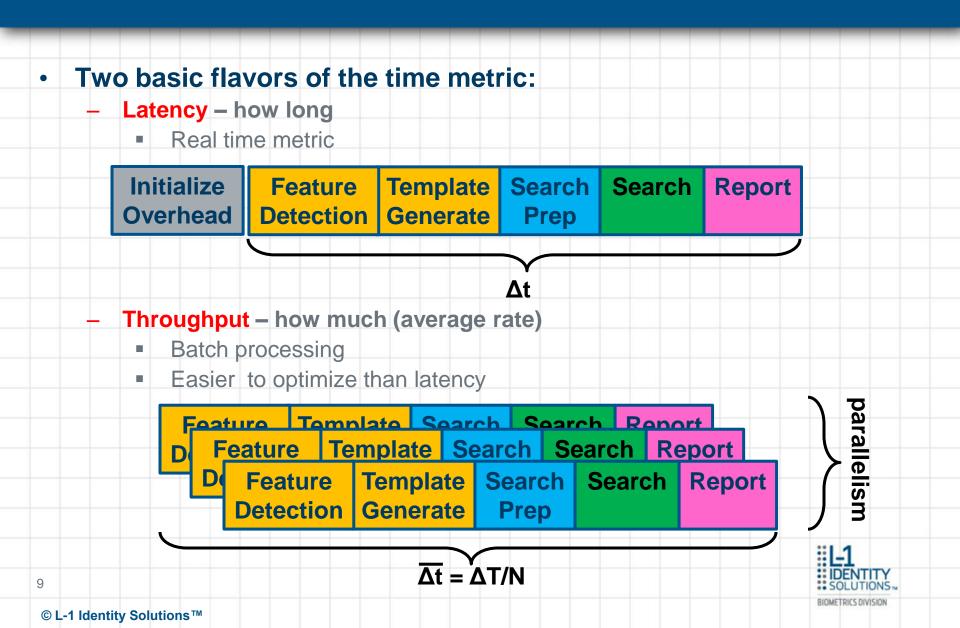
Fixed accuracy and speed

- -Hardware constrained solution such as access control.
- -Speed varies with users, database size, etc...
- -Accuracy is determined by investment cost and time
- Perhaps MBGC is an example. Cost and speed are determined by participant.
- RFP sets requirements for speed and accuracy
- Cost is the dependent variable

Biometric Search Engine Tests

- There are many types of biometric system performance tests. Some of the most common:
 - 1. Document and explore current state of the art
 - Only test accuracy ("MBGC", PFT, etc...)
 - Sometimes accuracy and speed (IREX, ELFT, FVC)
 - Helps answer, "Theoretically, can biometrics provide a solution to a particular problem?"
 - 2. Validate existing system performance
 - Accuracy, speed and cost are considered
 - 3. Collect data that suggests future system performance (procurements)
 - Will a system meet requirements at a smaller scale?
 - How much will the final, larger, system cost?
 - Accuracy, speed, cost, and a model for scaling

Metrics: Time


7

Metric: Time

- Processing time (enroll and match) depends on
 - Data quality characteristics
 - Imposter / Genuine (strength of match)
 - Database size
 - HW dependencies
 - CPU bound
 - Memory bound
 - Instruction set support (SSE, NUMA, etc...)
 - Scaling approach (multi-core, system architecture, etc...)

Metric: Time

Metric: Time

- Measure
 - Latency and throughput
- Should document
 - Database size
 - Data quality aspects
 - Imposter / Genuine distribution
 - Hardware description
 - One-time overhead, measures at different gallery sizes
 - Architecture (multi-core, multi-server) overhead

Metrics: Accuracy

Metric: Accuracy

- Accuracy depends on
 - Algorithmic sophistication
 - Feature detection
 - Feature matching
 - Biometric sample quality
- Most independent tests do an excellent job measuring accuracy on specific database samples
 - Most tests become dated quickly

Metric: Accuracy

- Measure for 1:1
 - Tradeoff between FMR and FNMR (aka FAR and FRR)
 - ROC or DET curve
 - + FTE
 - Examples: IREX, MINEX, PFT, FVC
- Measure for 1:N
 - Tradeoff between FPIR and FNIR (aka FAR and FRR, FMR and FNMR, Selectivity, 'Alarm' rates)
 - Use open set
 - Measures depends on result list size. Here we assume list size of 1.
 - Names of the metrics seem to drift from document to document why?
 - FNIR~FNMR_{1:1}
 - FPIR~FMR_{1:1} x N_{DB}
 - FTE
 - CMC (hit rate) useful when every search is reviewed by human (latent)
 - Examples: (FpVTE, FRVT, ICE), ELFT
- Also should document the FTA rate if possible

Metrics: Cost

14

Metric: Cost

- The cost metric is a direct reflection of
 - Hardware required for the solution = <u>system</u> <u>footprint</u>
 - Depends on computational efficiency (speed, size)
 - Engineering sophistication of matcher
 - System architecture
 - Maintainability (Power, Cooling, Support, etc...)
 - Human review workload (accuracy dependent)
- Cost usually not an independent variable in testing.
- Cost can be reasonably estimated if the system architecture and other metrics are understood
 - Modeling cost can be non-linear with project scale (both ways!)

ID System Modeling

ID System Models

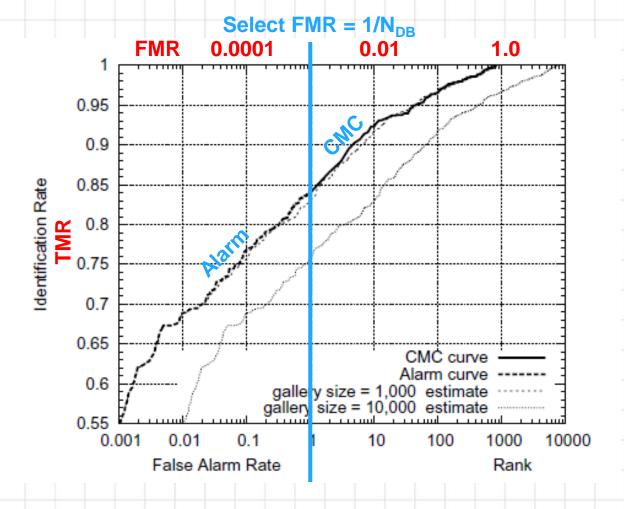
- Given test results, how do we use measurements?
 - Model accuracy, speed, and cost for some other system
- Can we keep things simple?

ID System Models – one problem

- Real world 'black-box'
 - Meets the requirements
 - Larger databases
 - Minimize cost = efficient

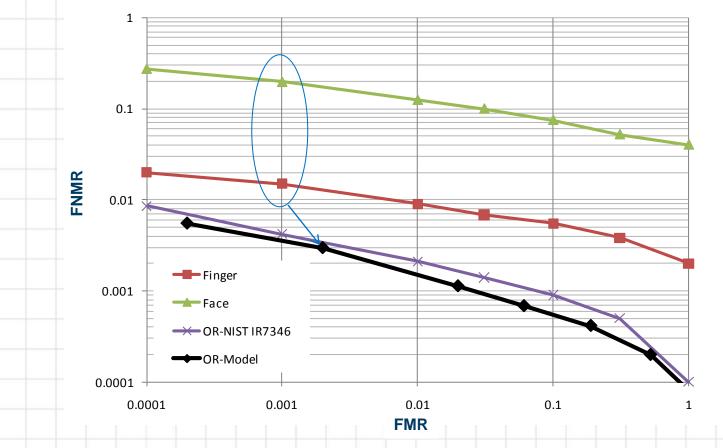
- Lab test 'black-box'
 - Configured for best accuracy
 - Smaller databases
 - Maximize cost/time to limits

ID System Models


- Lab testing can be useful, but the difference between the black-box in the lab and the black-box AFIS search engine must be acknowledged
 - Measuring more than accuracy helps bring this to light
- Now, lets look at a couple models for biometric search engines and examine how we can use test results

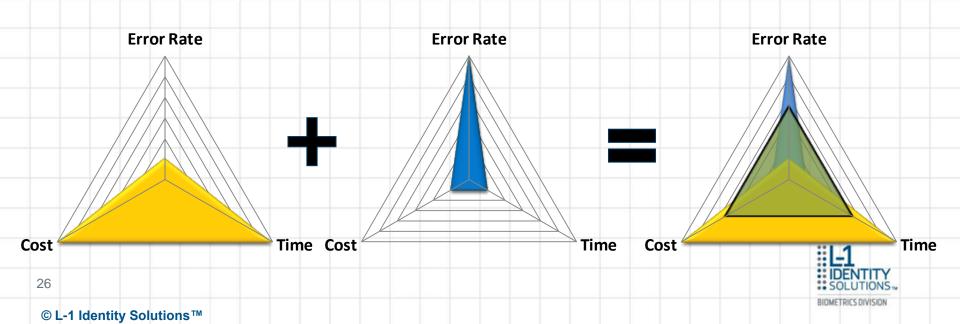
- The most common assumption for biometric identification systems is that 1:N = N x (1:1)
 - Rarely the case in practice
 - Easy to model and can provides good 'back of envelope' estimations for simple (small) ID systems
- Latency ≈ N x 1:1 latency
- Throughput ≈ 1/Latency
- System size estimated by:
 - Number of CPU cores directly calculated from throughput or latency
 - Amount of RAM required calculated from template size
- Accuracy modeling previously presented (BSYM06)

The 1:1 ROC curve can be used to estimate the CMC and alarm curves


Avoid this very tempting technique...!

- The ROC can also be used to model multi-modal fusion
 - Needed: 2 ROC curves of uncorrelated biometrics and a calculator
- This result of OR rule fusion is easy to derive
 - At each operating point, there are 2 scores S₁ and S₂
 - Chance the person is rejected is the probability of both scores being below the threshold (sum the probabilities of independent events)
 - $FNMR_{1|2} = (FNMR_1)x(FNMR_2)$
 - The person is falsely matched when $S_1 > \text{Tor } S_2 > \text{T or when } S_1 \text{ and } S_2 \text{ are } BOTH > T.$ This is 1 minus probability that the person is correctly rejected. This happens when BOTH S_1 and S_2 are correctly rejected. Again this is the sum of probabilities of independent events.
 - $FMR_{1|2} = 1 (TNMR_1)x(TNMR_2) = 1 (1 FMR_1)x(1 FMR_2)$
 - At low FMRs, FMR_{1|2} ≈ FMR₁+ FMR₂

- Example from NIST IR-7346 fusion study.
- Face and Finger fusion compared to score based result:

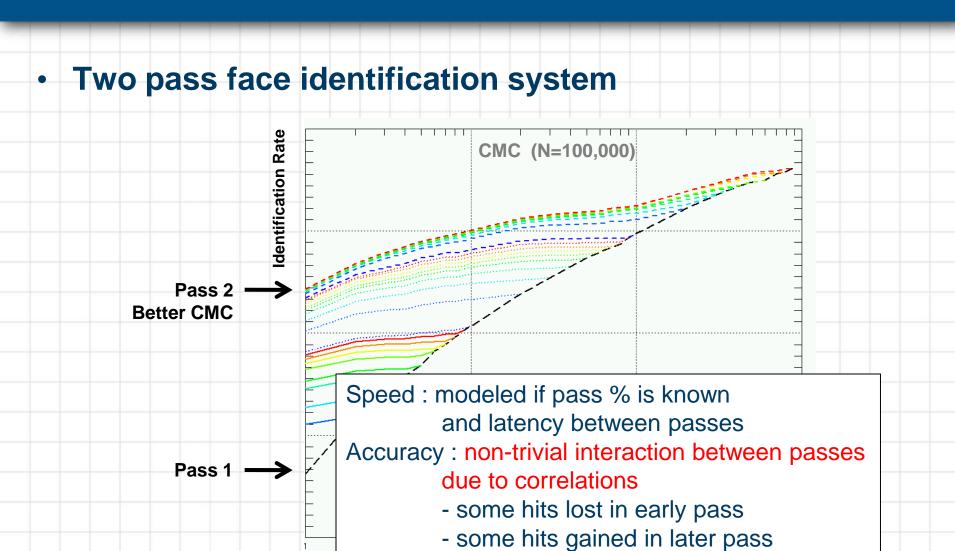

24

- Where does this model based on 1-to-1 matching breakdown?
 - Timing
 - Scaling behavior not clear
 - One-time latencies
 - Threading efficiency
 - Scoring overhead
 - Accuracy
 - When gallery normalization is used
 - When multiple matchers are used selectively
- The simple model doesn't handle advanced matching approaches which better scale to large DB sizes.
- The next model shows why things aren't so simple.

Model: 1-to-N

- One main issue with the previous model is the assumption that the a single 1:1 match event is repeated for 1:N search. This is typically not true for large scale, or high throughput systems.
- Most modern biometric identification systems employ a <u>multi-stage</u> matching approach for improving speed – this breaks our simple model

Model: 1-to-N


- Multi-stage matching breaks the Nx1-to-1 model
- Two examples of multi-stage matching
 - 1. Incremental
 - On each match attempt, effort depends on
 - Sample quality
 - Preliminary evaluation of the likelihood of match

2. Multi-pass

- Rank or filter all matches, apply additional matching effort on most promising candidates
 - Good for combining very different matching approaches including filtering and multi-modal
 - A cascade of the previous Nx(1:1) model

Multi-Pass Matching

Incremental Matching

- Increase intensity of matching as needed
 - Increment amount of data examined (minutiae, iris code bits, Eigen face coefficients, etc...)
 - Incremental algorithmic intensity

Speed: depends on data
Accuracy: some loss, mostly in
non-relevant operating region,
not trivial to model

Face image from www.cs.princeton.edu/~cdecoro/eigenfaces

face

Multi-Stage Matching

- Unfortunately there is no good generalized 'black-box' or 'gray box' model
 - Matching speed for large systems not easily predictable
 - Accuracy on different data not easily predictable
- Therefore, one needs some understanding of how the system works for relatively accurate modeling of larger systems
 - Also requires empirical measurements for several parts of the system separately from the whole system

Other Considerations to Keep in Mind

- Search engine architecture matters
 - The models presented here do not take into account the workload distribution over several match servers
 - Synchronizing, collation of results, etc..
 - How does architecture scale matchers?
 - Divide and conquer per thread, per machine?
 - Parallel search how many at once? Efficiency?
 - System overhead can overwhelm individual matcher timing

Take Home Messages

- Performance testing of a biometric search engine is multi-faceted, not just accuracy
- We can use simple 1:1 measurements to get very rough estimates for small biometric ID systems
 - In general, everything is much more complicated though
- Use caution when trying to extending lab testing results to other (larger) system requirements
 - Please don't assume anything talk to vendors about how their system scales if needed

Thank You

bmartin@L1ID.com

