Beyond current testing standards: A framework for evaluating human-sensor interaction

International Biometric Performance Testing Conference 2010 | March 2-4, 2010

Eric P. Kukula, Ph.D.

Visiting Assistant Professor & Senior Biometric Researcher kukula@purdue.edu

> Stephen J. Elliott, Ph.D. BSPA Lab Director & Associate Professor elliott@purdue.edu

Biometric Standards, Performance, and Assurance Laboratory | www.bspalabs.org Purdue University, Department of Industrial Technology

Agenda

Current Testing Standards and Norms

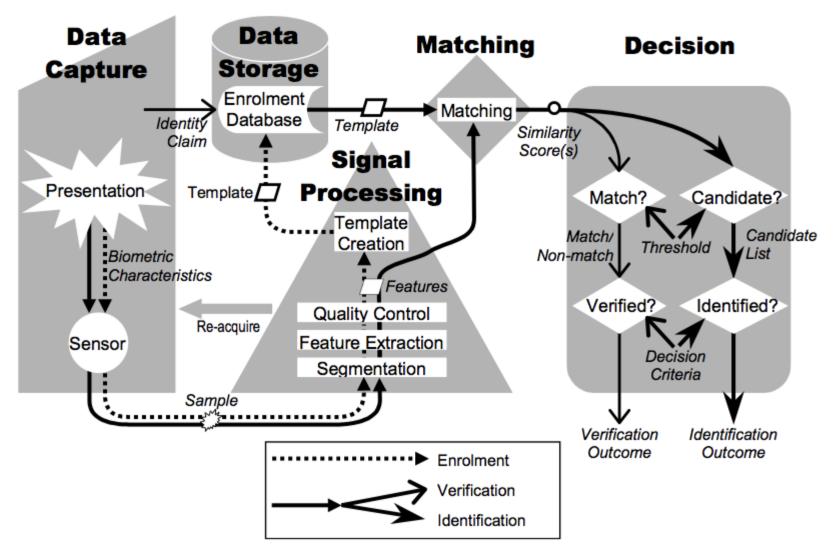
The Missing Link?

- What performance evaluations should also explain
- Usability & Biometrics: Our systems should be usable?
- The Human-Biometric Sensor Interaction (HBSI)
- HBSI Framework
- Applications & Uses
- Questions

Scope

From Mansfield & Grother's *The Wide World of Biometric Testing*

VS


Have tests been driven by what can be done

 Measure FRR after data collection What should be done

 Observe and count mispresentation effects

A General Biometric System Model (ISO/IEC 19795-1)

What do our testing standards say?

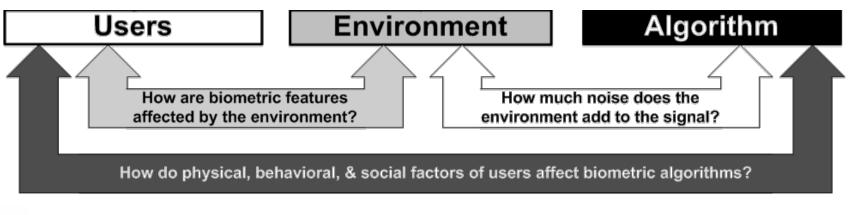
Distinctions between technology and scenario evaluations according to ISO/IEC 19795-2:

Type of Test	Technology	Scenario
Objective of Test	Measure performance of algorithm(s) on a standardized corpus	Measure performance of end- to-end system in simulated application
Typical metrics	 Most error rates [FMR, FNMR, FTE, FTA] Not end-to-end throughput Good for large-scale identification system performance where difficult to assemble large test crew 	 Predicted end-to-end throughput FMR, FNMR, FTE, FTA, GFAR, GFRR

What do our testing standards say?

Table 6 - Registry of Biometric Performance Testing Methodology Standards

Domain of Applicability	Recommended Standard
Physical and logical access control tests	(1) ISO/IEC 19795-1:2005 (2) ISO/IEC 19795-2:2006
Testing of performance and interoperability of cross-supplier implementations generating and matching instances of standardized biometric data interchange data	(1) ISO/IEC 19795-1:2005 (2) ISO/IEC 19795-4:2008


What about the:

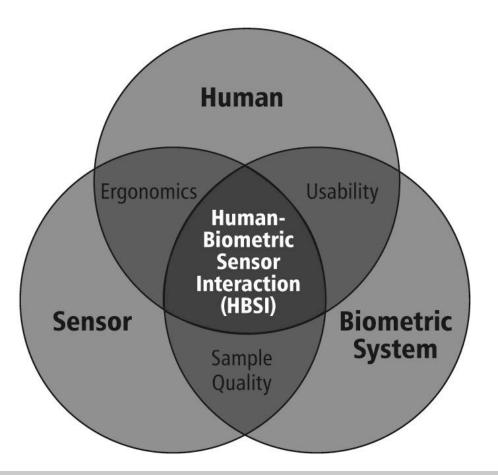
- Environment
 - ISO/IEC 1st WD 29197, Evaluation methodology for environmental influence in biometric systems
- Human-Sensor Interaction

What Performance Evaluations Should Also Explain

- Is the algorithm the cause of matching errors?
- Is the application or environment the problem?
- Is the design of the sensor the problem?
- Are the users/agents causing the issue?
 - Can users/agents do what the system/sensor is asking for?
 - Do users/agents understand how to use the system/sensor?
 - Can users/agents produce repeatable images?

Usability

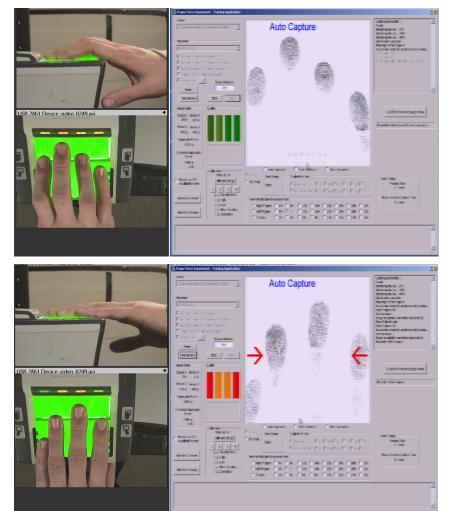
The extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use (ISO 9241-11:1998, ISO/ IEC 25062:2006)


Failure to Acquire (FTA)

- Traditional measure of "usability" in biometrics
- Proportion of verification or identification attempts for which the system fails to capture or locate an image or signal of sufficient quality (ISO/IEC 19795-1)

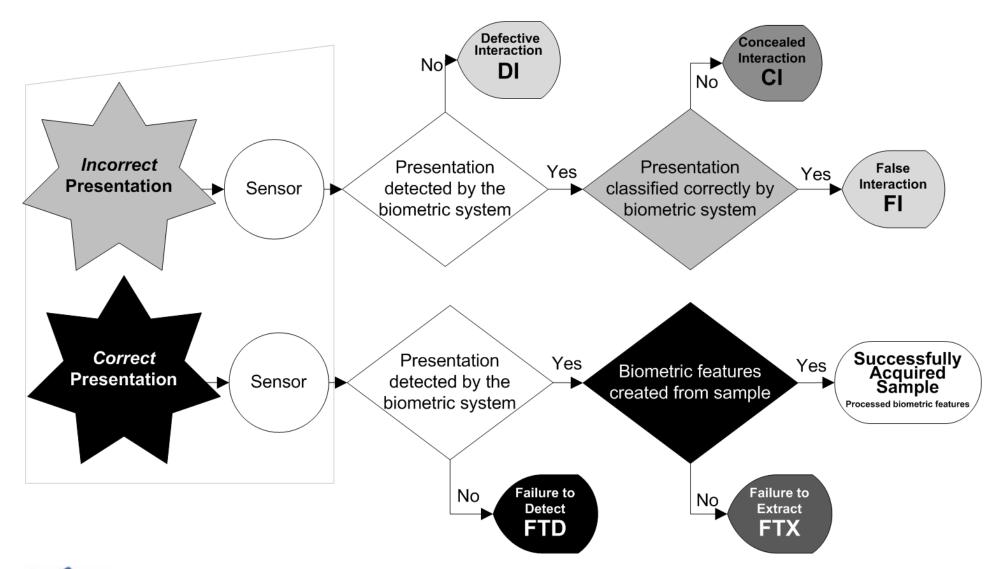
The Human-Biometric Sensor Interaction (HBSI)

 Derived from multiple research fields to better understand and evaluate overall functionality and performance of a biometric system


HBSI Framework for Biometric Interactions

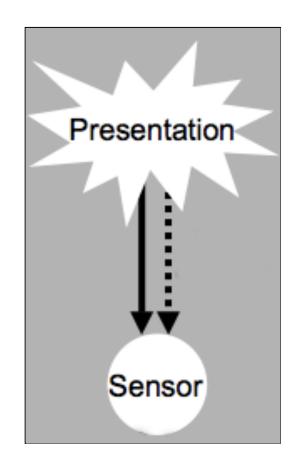
- Objective
 - Classify every human-sensor interaction "event" with the resulting biometric system "reaction"
 - Event + Reaction = HBSI episode
- Purpose
 - Understand and classify all interactions / movements / behaviors that occur with a biometric device to improve performance, quality, and usability
- Examines a biometric system from 2 perspectives:
 - User
 - Biometric System

HBSI Episodes


Event Reaction

Biometric Standards, Performance & Assurance Laboratory | www.bspalabs.org

HBSI Framework for Biometric Interactions



Biometric Standards, Performance & Assurance Laboratory | www.bspalabs.org

Technology Evaluations & Offline Analysis

- How do we analyze:
 - Previously collected data
 - Black-box systems
- Can we calculate:
 - FTE
 - FTA
 - • •
- Modifications
 - Failure to Extract (FTX)
 - Capable of handling black-box systems
 - Non-Biometrically Captured Data (NBC)
 - Analyzing data not originally collected for biometric systems.

Application & Use of the HBSI Framework

Government & Integrators

- System development
- Field Readiness
- Training
- Vendors
 - Alpha & Beta Testing

Future Work

- Evaluate more modalities with the framework
 - physical-interactive
 - image-based
 - behavioral
- Refinement of the metrics
- T&E Standard Methodology?

HBSI Publications

Available on: <u>http://www.bspalabs.org/publications</u>

- S. Elliott and E. Kukula, "A definitional framework for the human biometric sensor interaction model," in <u>Proc. SPIE Symposium on Defense, Security, Sensing: Biometric</u> <u>Technology Human Identification VII Conf.</u>, Orlando, FL, April 5-9, 2010.
- E. Kukula, M. Sutton, and S. Elliott, " <u>The Human-Biometric Sensor Interaction Evaluation Method: Biometric</u> <u>Performance and Usability Measurements</u>," *IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 4,* Apr 2010. doi: 10.1109/ TIM.2009.2037878. p. 784-791
- E. Kukula, "Design and evaluation of the human-biometric sensor interaction method," Ph.D. dissertation, Purdue Univ., West Lafayette, IN, 2008._

Thank you for your attention. Questions?

Contact Information:

Eric P. Kukula, Ph.D. Visiting Assistant Professor & Senior Biometric Researcher <u>kukula@purdue.edu</u>

Stephen J. Elliott, Ph.D. Associate Professor & BSPA Lab Director <u>elliott@purdue.edu</u>

BSPA Laboratory | www.bspalabs.org

Purdue University, Knoy Hall of Technology 401 North Grant Street West Lafayette, IN 47907-2021 Phone: (765) 494-2311 Fax: (765) 496-2700