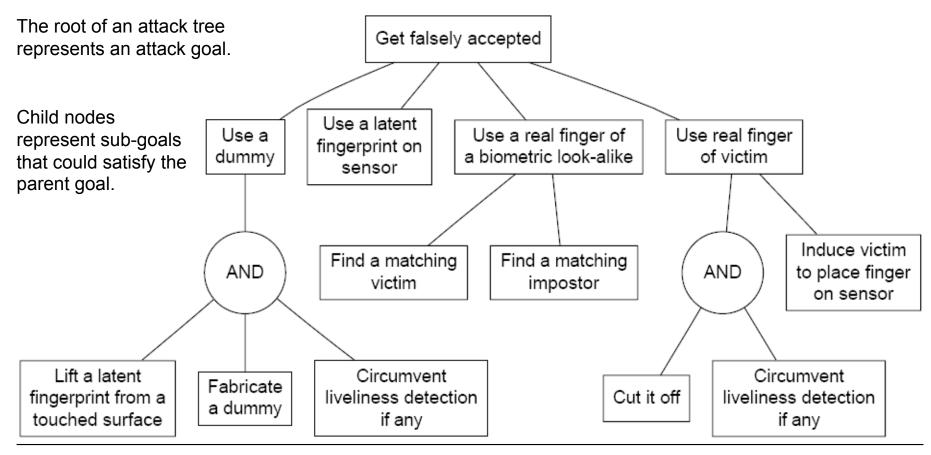
On security evaluation of fingerprint recognition systems

Olaf Henniger, Dirk Scheuermann, and Thomas Kniess Fraunhofer Institute for Secure Information Technology Darmstadt, Germany

Outline

- Motivation
- Potential vulnerabilities specific to fingerprint verification systems
- Assessment of attack potentials
 - For using a fingerprint dummy
 - For zero-effort attacks
- Summary

Motivation


- To address open issues in the methodology for vulnerability analysis of biometric systems
 - How to assess the level of difficulty of attacks (attack potential)
 - How to keep track of the multitude of possible attacks

using fingerprint recognition systems as example (based on hands-on experience in fabricating fingerprint dummies)

To discuss methodology (no ready solution given)

Vulnerabilities specific to fingerprint verification systems

Attack potential

- Corresponds to the minimum effort required to create and carry out an attack
- For leaf nodes of attack tree ("elementary" attacks): Evaluated using established, structured approach of "Common Criteria"
- For parent nodes:
 Aggregation of attack potentials of children nodes
 - OR relation: As low as for the easiest option
 - AND relation: As high as for the hardest essential element
- Inversely related to frequency of success, which is used in risk analysis (risk = frequency of success · severity)
 - The easier the attacks are,
 the more frequent they occur and succeed.

Rating of attack potential

<u></u>	Level	Value			
Factor			Guidelines desirable for biometric systems What exactly does it take to be		
Elapsed time	≤ 1 day	0			
	≤ 1 week	1			
	≤ 1 month	4	What exactly does it take to be "proficient" or "expert"?		
	≤ 3 months	10			
	≤ 6 months	17	What equipment can be considered "standard"?		
	> 6 months	19			
	not practical	∞	1 1		
Expertise Knowledge of TOE	Layman	0			
	Proficient	3			
	Expert	6			
	Multiple experts	8			
	Public	0			
	Restricted	3			
	Sensitive	7			
	Critical	11			
Window of opportunity	Unnecessary/unlimited	0	_		
	Easy	1	[©] -Values Attack pote	ntial	
	Moderate	4	0–9 Basic		
	Difficult	10			
	None	∞	10–13 Enhanced-Basic		
Equipment	Standard	0	14–19 Moderate		
	Specialized	4	20–24 High		
	Bespoke	7	≥ 25 Beyond High		
	Multiple bespoke	9		1	

Fabricate a dummy from a fingerprint image

- Steps
 - 1. Image enhancement
 - 2. Print image on transparency
 - 3. Expose photo-reactive polymer plate to UV light through transparency
 - 4. Wash out unexposed locations
 - 5. Press dummy material onto mould, e.g.
 - Wax, gelatin, material for dental casts
- For all tested sensor technologies,
 - Optical sensors, capacitive sensors, e-field sensors, thermal sensors
 matching dummies could be fabricated if liveliness detection is deactivated.

Fabricate a dummy from a fingerprint image

Elapsed time: ≤ 1 week of experiments till a match is achieved

(if liveliness detection is missing)

Expertise: Proficient

Knowledge of the TOE: Public

Window of opportunity: Unnecessary/unlimited

Equipment: Specialized (can be easily acquired)

Attack potential: Basic

Circumvent liveliness detection (if any)

Elapsed time: ≤ 1 month

Expertise: Expert

Knowledge of the TOE: Sensitive

Window of opportunity: Easy (if unattended)

Equipment: Specialized

Attack potential: High

Lift a latent fingerprint from a touched surface

Elapsed time: $\leq 1 \text{ day}$

Expertise: Proficient

Knowledge of the TOE: Public

Window of opportunity: Difficult (if the person impersonated is not cooperati

Equipment: Standard

Attack potential: Moderate

Use a fingerprint dummy

Essential elements:

- Lift a latent fingerprint from a touched surface,
- Fabricate a fingerprint dummy and
- Circumvent liveliness detection

Attack potential:

As high as that of the hardest essential element, i.e.

- High if there is liveliness detection or
- Moderate if there is no liveliness detection

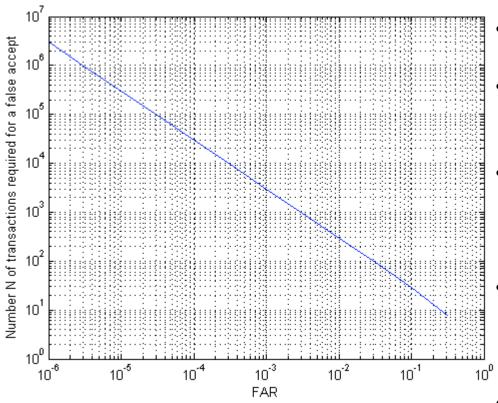
Get falsely accepted as somebody else (zero-effort attack)

Elapsed time: Depends on

- number of persons an attacker needs to try to impersonate until being falsely accepted with 95% probability or
- number of attackers that have to team up with each other to try to impersonate a particular person

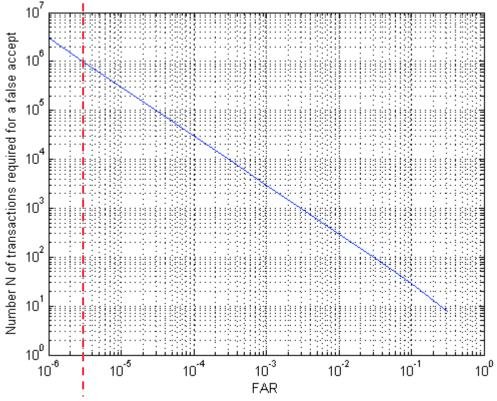
Expertise: Layman

Knowledge of the TOE: Public


Window of opportunity: Easy (if unattended one-factor authentication)

Equipment: Standard

Attack potential: Depends on FAR


Number of transactions till false accept (95% confidence)

- Let number of retries be limited to m.
- Then a failed transaction consists of m failed attempts.
- Let transactions be independent from each other (different attacker or victim in each transaction).
- Then it takes $N = \log_{(1-FAR)}(1-0.95)$ transactions to be falsely accepted with 95% confidence.
- Elapsed time and required window of opportunity proportional to N

Comparison with brute-force attack against PIN

- 6-digit PIN with 3 permitted retries is resistant against high attack potential
- Probability of guessing it right is 3·10⁻⁶
- If single fingerprint presentation does not take longer than single PIN entry, then FAR should also be 3·10⁻⁶ for the same security.
- Higher FAR admissible
 if fingerprint recognition is part of multifactor authentication,
 e.g. in combination with smart card
 (stealing 10⁶ cards should be difficult)

Summary

- Attack potential that the TOE is able to withstand depends on the particular TOE and its environment.
- System is only as secure as its "weakest link".
- Importance of multi-factor authentication
- Need for more experiments and consensus building on attack potential assessment for biometric systems

Thank you! Questions?

- Contact: olaf.henniger@sit.fraunhofer.de
- Summary paper will be in the post-proceedings.

