Calibrated (Probabilistic) Confidente Scoring for Biometric Identification

Goal: from scores to probabilities $(0, .5, .5) \rightarrow(80 \%, 10 \%, 10 \%)$

IBPC Conference (NIST), March 2-4, 2010

Dmitry O. Gorodnichy (PhD, CS/Math) Head of Video Surveillance and Biometrics Section (2008-)

Science and Engineering Directorate

$$
\begin{aligned}
& \text { Richard Hoshino (PhD, Math) } \\
& \text { Head of Mathematics and Data Exploration Section (2008-) }
\end{aligned}
$$

CBSA - a prime user of lris biometri

Why iris ? - Easily accepted by public, touch-less / non-intrusive

Today: for collaborative user-engaged identification of pre-approved travellers in structured/overt environment (NEXUS)
Tomorrow: for fully-automated stand-off (on-the-fly) identification of Good and Bad people as they cross the border ?(3 persons crossing / sec)

Recent RFI examination (Feb 2009-Aug 2009) exposed the problems even with Today's systems/data
With Tomorrow's stand-off systems, these problems will be even more significant!

Gorodnichy, D. O. "Evolution and evaluation of biometric systems"IEEE Symposium:
Computational Intelligence for Security and Defence Applications, Ottawa June 2009
Gorodnichy, D. O. "Multi-order analysis framework for comprehensive biometric performance evaluation", SPIE Conf. on Defense, Security, and Sensing. Orlando, April 2010

Problems exposed through RFI

(With over 20.000.000 CBSA iris data, several state-of-art products, and over 6 months of coding and collecting/analyzing results)

1. There exist many (>5) matching algorithms now

- All produce single scores output only (no confidence)!
- Binomial nature of Imposter distributions
- Binomial nature of Genuine distribution ? - with no noise

2. High FNMR (False Rejects, False Non-Match Rate)
3. High FTA (Failure To Acquire)
4. Despite many vendor/publications claims, systems often have :
1) more than one match below the threshold,
2) two or more close matching scores

There is a need therefore to assign Confidence value to output!

Anonymized score distributions

Anonymized stats

Using Multi-order score analysis [Gor09,10], Order 3 have shown that: Many systems may improve FTA, FNMR, DET (match/non-match tradeoff) at the cost of allowing more than one score below a threshold

(With 500 enrolled travelers, each having 6 passage images)

Trade-off Curves with FCR

DEFINITION [Gor10]: Failure of Confidence Rate (FCR) -

 the rate of incidences in which there are more than one match below threshold

FMR

Goal: assign confidences to decisic

Given: Person X arrives at the kiosk and produces n scores: n-tuple $S=(s 1, s 2, \ldots, s n)$, si $=H D(X$, xi)
Find: Sequence of calibrated confidence scores:
the probability vector $\mathrm{C}=(\mathrm{c} 1, \mathrm{c} 2, \ldots, \mathrm{cn}), \mathrm{ci}=\mathrm{P}(\{\mathrm{X}=\mathrm{xi}\} \mid \mathrm{S})$
How: as in probabilistic weather forecasting [DeGroot1983]

1. Make use of (assume) binomial nature of Genuine and Imposter score distributions [Daugman1993,2004]:

- $\mathrm{G} \sim \operatorname{Binom}\left(\mathrm{m}^{\prime}, \mathrm{u}^{\prime}\right)$, with $\mathrm{u}^{\prime}=0.11, \mathrm{~d}^{\prime}=0.065\left(\mathrm{~m}^{\prime}=\sim 115\right)$.
- I ~Binom(m, u), with $\mathrm{u}=0.5, \quad \mathrm{~m}=249 \quad(\mathrm{~d}=\sim 0.03)$
- $P(H D=k / m)=(k, m) u^{\wedge} k(1-u)^{\wedge}(m-k)$

2. Bayes's Theorem for $\mathrm{ci}=\mathrm{P}(\{\mathrm{X}=\mathrm{xi} \mid \mathrm{I})=$

$$
=P(\{X=x i\} \wedge S)=P(\{X=x i\} \wedge S) / P(S)=\ldots
$$

3. $P(\{X=x i\} \wedge S)=\ldots$

Simple example to illustrate

Enrolled: three individuals $\{x 1, x 2, x 3\}$, six bits in iris string.

- Thus, $\mathrm{n}=3, \mathrm{~m}=\mathrm{m}^{\prime}=6$.
- $G=\operatorname{Binom}\left(m^{\prime}, u^{\prime}\right), I=\operatorname{Binom}(m, u)$ with $u^{\prime}=1 / 3$ and $u=1 / 2$.
- $\mathrm{x} 1=[0,1,0,1,0,1], \mathrm{x} 2=[1,0,0,1,1,1], x 3=[1,0,1,1,0,1]$

New person: $\mathrm{X}=[0,1,0,1,0,1]$.

- Matching scores $S=(0,0.5,0.5)$. Decision scores: ($1,0,0$). Using the theorem (for $\mathrm{q}=0$ and $\mathrm{P} 1=\mathrm{P} 2=\mathrm{P} 3$), we obtain:
- confidence scores $C=(0.8,0.1,0.1)$.

How to apply to real system?
> Vendor should provide: m', u' m, u
> User knows: Pi, q (a-priory probabilities of each person / imposter)

Applied to real system

Proposed probabilistic score calibration can be added to any system at little computation cost as post-processing filter:
> Provides more meaningful output - for risk mitigating procedures
> Improves overall recognition
> Introduces Order-3 biometric systems

Appendlices

Iris biometrics

> Image converted to 2048 binary digits $\{0,1\}$

- only small subsets of bits are mutually independent [1].
> Impostor HD scores follow binomial distribution:
$\mathrm{I} \sim \operatorname{Binom}(\mathrm{m}, \mathrm{u})$, $m=249$ and $u=0.5$.
$>$ The variable m represents the degrees-of-freedom and is a function of the mean u and the standard deviation d :
$\mathrm{m}=\mathrm{u}(1-\mathrm{u}) / \mathrm{d}^{\wedge} 2$

G3-1000 Normalized Score Distribution

Score
$>$ Genuine HD scores [2]:
G ~ Binom($\mathrm{m}^{\prime}, \mathrm{u}^{\prime}$) with
$u^{\prime}=0.11, d^{\prime}=0.065$

Main theorem and proof:

Theorem 3.1 Let G be the set of genuine matching scores, and I be the set of impostor matching scores. Suppose $G \sim \operatorname{Binom}(\hat{m}, \hat{u})$ and $I \sim \operatorname{Binom}(m, u)$. Let $p_{i}=P\left(X=x_{i}\right)$ and $q=1-\sum_{i=1}^{n} p_{i}$. Let $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be the n-tuple of matching scores produced by person X. Then for each $1 \leq i \leq n$, we have

$$
c_{i}=P\left(X=x_{i} \mid S\right)=\frac{p_{i} z_{i}}{\sum_{i=1}^{n} p_{i} z_{i}+q \cdot \frac{(1-u)^{m}}{(1-\hat{u})^{\hat{m}}}}, \quad \text { where } z_{i}=\frac{\binom{\hat{m}}{\bar{m} s_{i}}}{\binom{m}{m s_{i}}} \cdot\left(\frac{\hat{u}^{\hat{m}}(1-u)^{m}}{u^{m}(1-\hat{u})^{\hat{m}}}\right)^{s_{i}} .
$$

Proof: For each $1 \leq i \leq n$, define $r_{i}=P\left(\left\{X=x_{i}\right\} \wedge S\right)$. Also define $r_{\text {imp }}=P\left(\left\{X \notin\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right\} \wedge S\right)$. By definition, $r_{i m p}=P(S)-\sum_{i=1}^{n} r_{i}$. By Bayes' Theorem, we have

$$
c_{i}=P\left(\left\{X=x_{i}\right\} \mid S\right)=\frac{P\left(\left\{X=x_{i}\right\} \wedge S\right)}{P(S)}=\frac{r_{i}}{r_{1}+r_{2}+\ldots+r_{n}+r_{i m p}} .
$$

To calculate $r_{i}=P\left(\left\{X=x_{i}\right\} \wedge S\right)$, we multiply the probabilities of the following $n+1$ independent events: it is x_{i} who comes to the kiosk; the genuine matching score $\operatorname{HD}\left(X, x_{i}\right)$ is s_{i}; and the impostor matching score $H D\left(X, x_{j}\right)$ is s_{j} for all $1 \leq j \leq n$ with $j \neq i$.

Since $G \sim \operatorname{Binom}(\hat{m}, \hat{u})$, there are \hat{m} degrees-of-freedom, and the probability that any of these \hat{m} bits differ is \hat{u}. So if $H D\left(X, x_{i}\right)=s_{i}$, then $\hat{m} s_{i}$ of the \hat{m} bits differ. We derive the analogous result for the impostor distribution $I \sim \operatorname{Binom}(m, u)$, for all $1 \leq j \leq n$ with $j \neq i$. Therefore, we have

$$
r_{i}=p_{i}\binom{\hat{m}}{\hat{m} s_{i}} \hat{u}^{\hat{m} s_{i}}(1-\hat{u})^{\hat{m}-\hat{m} s_{i}} . \prod_{j=1, j \neq i}^{n}\binom{m}{m s_{j}} u^{m s_{j}}(1-u)^{m-m s_{j}}
$$

Details of our simple example

Because $m=m^{\prime}=6$, and $u=1-u=1 / 2,2^{*} u^{\prime}=1-u^{\prime}=2 / 3$ many things get cancelled out ...
$\mathrm{Zi}(\mathrm{Si})=(6,6 * \mathrm{Si}) /(6,6 * \mathrm{Si})^{*}\left((1 / 3 \wedge 6\right.$ * $1 / 2 \wedge 6) /\left(1 / 2^{\wedge} 6\right.$ * $2 / 3^{\wedge}$ 6) $)^{\wedge} \mathrm{Si}=\left(1 / 2^{\wedge} 6\right)^{\wedge} \mathrm{Si}=(1 / 2)^{\wedge}\left(6^{\star} \mathrm{Si}\right)$

For $S 2=S 3=0.5$, we have: $Z 2=Z 3=(1 / 2)^{\wedge} 3=1 / 8$.
For $\mathrm{S} 1=0, \mathrm{Z} 1=1$

Then $\mathrm{Ci}=(\mathrm{Zi}) /(\mathrm{SUM} \mathrm{Zi})=\mathrm{Zi} /(1 / 8+1 / 8+1)$ and $C 2=4 / 5^{*}(1 / 8)=1 / 10, \quad C 1=8 / 10$

Order 0:

Order 2:

Order 1:

Order 3:

Rě̌f. [Gorodnichy2009,2010]

Multi-order score analysis

Order 1 (Traditional):
$>$ Examine single-scores to report trade-off (FMR/FNMR) curves
Order 2:
$>$ Examine all scores to report the best (smallest) score
Order 3:
$>$ Examine all scores relationship to report Confidences

Five-score example: $\{0.51,0.32,0.47,0.34,0.31\} . \mathrm{T}=0.33$
$>$ Order $1 \rightarrow 0.32$
$>$ Order $2 \rightarrow 0.31$
$>$ But in reality it could have been 0.34 ! (if there was noise)

References

Daugman, J. (1993). High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence,

Daugman, J. (2004). How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 14(1) 21-30.

DeGroot, M. H. and Fienberg, S. E. (1983), The comparison and evaluation of probability forecasters, Statistician, 12, 12-22.
Gorodnichy, D. O. (2009). Evolution and evaluation of biometric systems. Proc. of the IEEE Workshop on Applied Computational Intelligence in Biometrics, IEEE Symposium: Computational Intelligence for Security and Defence Applications, Ottawa, 2009.

Gorodnichy, D. O. (2010). Multi-order analysis framework for comprehensive biometric performance evaluation, In Proceedings of SPIE Conference on Defense, Security, and Sensing. DS108: Biometric Technology for Human Identification track. Orlando, 2010

