Robust GPS-based Timing for Phasor Measurement Units

Grace Xingxin Gao

University of Illinois at Urbana-Champaign

How to Make GPS Timing Robust?

Facts about GPS

- GPS provides timing for many applications, such as PMUs
- GPS civil signals are unencrypted
- GPS civil signal structures are completely open
- GPS received signals are extremely weak
- GPS is a legacy system

GPS Time for PMUs

- Free, readily available GPS civilian signal
- <100ns time synchronization</p>
- Wide area coverage

Risks	Goals
Noise, Jamming	Robustness against Interference
Multipath, Meaconing	
Data-level Spoofing	Spoofing detection
Receiver Errors	Accurate and Precise Time

Examples of GPS Timing Attacks

Jamming: Timing for PMU made unavailable

Meaconing: Mislead PMU with wrong time

Example Cont'd: Data-Level Spoofing

University of Illinois at Urbana-Champaign

Ephemerides

University of Illinois at Urbana-Champaign

Outline

- Local-area robust GPS timing
 - Approach
 - Implementation
 - Results
- Wide-area robust GPS timing
 - Pairwise check
 - Decision aggregation
 - Results
- Summary

Local-Area Approach: Multi-Receiver Position Aiding

- Multiple receivers
 - Geographical diversity
- Position Aiding
 - Static receiver location
- Direct Time Estimation (DTE)
 - Directly works in time domain
 - No intermediate pseudoranges
- Vector Tracking
- Triggered by a common external clock

Power substation, Sidney, IL

Improved Redundancy

Search Space | Redundancy | Robustness |

Implementation

 4 receivers on the rooftop of Talbot Lab, Urbana, Illinois

For processing the data: 4 US pyGNSS - object oriented python Chip platform developed by our lab

4 USRP's triggered by Chip Scale Atomic Clock (CSAC)

Laptop for data

Jamming: Carrier frequency

MRDTE (loses track at 17dB added jamming) offers **5dB** more noise tolerance than Scalar Tracking (loses track at 12dB added jamming)

Meaconing:

Scalar tracking is operational until **2dB** of added meaconed signal while MRDTE is operational till **5dB**

Ongoing Efforts: Impact on Power Systems

 Raw GPS signals are supplied to SEL-2488 (external clock) to trigger virtual PMU and the hardware PMU is triggered using our MRDTE algorithm.

Ongoing Efforts: Impact on Power Systems

 Timing attacks are simulated and added to the raw GPS signals being supplied to the SEL-2488 and USRP-LFTX.

Transforming GPS Time to IRIG-B

- Generated the IRIG-B000 timing pulse: Input to PMU
- Created a voltage shifter to convert the transmitted USRP-LFTX 0-1v IRIG-B signal to 0-5v IRIG-B000 signal

University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign

Outline

- Local-area robust GPS timing
 - Approach
 - Implementation
 - Results
- Wide-area robust GPS timing
 - Pairwise check
 - Decision aggregation
 - Results
- Summary

Cooperative Authentication: Architecture

Merits: *network* and *geographical* redundancy

Pair-wise Checking: Cross-correlation of P(Y) Code

Lo *et al.*, 2009 Psiaki, Humphreys *et al.*, 2013

Experiments Scenarios

San Francisco CA and Champaign IL, static

Rantoul IL, moving at ~45 mph and Champaign IL, static

Experiments: San Francisco & UIUC Everitt Lab

Performance of Cooperative Authentication

Assume 20% of the cross-check receivers are spoofed (an extremely challenging assumption)

- Robustness grows *exponentially* with the number of cross-check receivers
- A small number of unreliable cross-check receivers are on par with a reliable cross-check receiver.

Summary

- Local-area robust GPS timing
 - Multi-Receiver Direct Time Estimation
 - Robust against jamming and meaconing attacks
- Wide-area GPS authentication
 - Cooperative authentication
 - Robustness increases exponentially with the number of cross-check receivers

List of Our Prior Work

- Sriramya Bhamidipati, Yuting Ng and Grace Xingxin Gao, Multi-Receiver GPS-based Direct Time Estimation for PMUs, in Proceedings of the Institute of Navigation GNSS+ conference (ION GNSS+ 2016), Portland OR, Sep 2016, Best Presentation of the Session Award.
- Yuting Ng and Grace Xingxin Gao, **Robust GPS-Based Direct Time Estimation for PMUs**, in Proceedings of the IEEE/ION PLANS conference, Savanah GA, Apr 2016.
- Yuting Ng and Grace Xingxin Gao, Advanced Multi-Receiver Position-Information-Aided Vector Tracking for Robust GPS Time Transfer to PMUs, in Proceedings of the Institute of Navigation GNSS+ conference (ION GNSS+ 2015), Tampa FL, Sep 2015, *Best Paper of the Session Award*.
- Liang Heng, Daniel B. Work, and Grace Xingxin Gao, **GNSS Signal Authentication from Cooperative Peers**, *IEEE Intelligent Transportation Systems.* vol. 16, no. 4, pp. 1794-1805, Aug. 2015.
- Daniel Chou, Yuting Ng, and Grace Xingxin Gao, Robust GPS-Based Timing for PMUs Based on Multi-Receiver Position-Information-Aided Vector Tracking, ION International Technical Meeting 2015, Dana Point, California, January 2015.
- Daniel Chou, Liang Heng, and Grace Xingxin Gao, "Robust GPS-Based Timing for Phasor Measurement Units: A Position-Information-Aided Vector Tracking Approach," ION GNSS+ 2014, Tampa FL, Sep 2014, *Best Presentation of the Session Award*.
- Liang Heng, Daniel Chou, and Grace Xingxin Gao, "Cooperative GPS Signal Authentication from Unreliable Peers," ION GNSS+ 2014, Tampa FL, Sep 2014, *Best Presentation of the Session Award*.
- Liang Heng, Jonathan Makela, Alejandro Dominguez-Garcia, Rakesh Bobba, William Sanders, and Grace Xingxin Gao, "Reliable GPS-based Timing for Power System Applications: A multi-Layered Multi-receiver Approach," the 2014 IEEE Power and Energy Conference at Illinois (IEEE PECI 2014), Champaign, IL, Feb 2014.
- Liang Heng, Daniel B. Work, and Grace Xingxin Gao, "Reliability from Unreliable Peers: Cooperative GNSS Authentication," Inside GNSS Magazine, September–October 2013.

Thank You

This material is based upon work supported by the Department of Energy under Award Number DE-OE000078

University of Illinois at Urbana-Champaign

Backup slides

MRDTE: Architecture

Direct Time Estimation

Vector Correlation Continued

- Non-coherent summation across satellites
- Improved signal-to-noise ratio of the system

Pairwise Check

Received GPS signal from one satellite:

We want to cross correlate the $P(t)D_P(t)$ signals from two different receivers.

Estimate:

- Doppler frequency, f_D
- Phase shift, ϕ

Wipe off Doppler and align phase:

```
P(t-\tau)D_P(t-\tau) = \text{LPF}[\cos(2\pi(f+f_D)(t-\tau)+\phi)\cdot s(t)]
```

Pairwise Check – Ideal Results

Pairwise Results for Different Separation

22km separation

Modeling Unreliable Cross-Check Receivers

Definition

- S Actual status of user receiver
- A_i Authentication result using the *i*th cross-check receiver
 - = 0 authentic
 - $= 1 \ \text{spoofed}$

Cross-check receiver is authentic

with a probability $1 - P_{SD} - P_{SS}$

Cross-check receiver is spoofed by a different spoofer

with a probability P_{SD}

Cross-check receiver is spoofed by the same spoofer

Authentication Performance, Theoretical Results

- Authentication performance improves *exponentially* with increasing number of cross-check receivers.
- P_{SS} causes twice as great performance deterioration as P_{SD} does.
 - Choose a cross-check receiver far from the user receiver.