Controlling Fire Fighter Exposures to Fire Retardants -

Dawn Bolstad-Johnson, MPH, CIH, CSP

Phoenix Fire Department September 30, 2009

Phoenix Fire

- Dispatches approximately 145,000 emergency calls a year
- About 10% or 14,500 are fire related
- These include everything from food on the stove, to car fires, to fully involved structural fires

Phoenix Fire Department

- 57 Fire Stations
- 1677members
 - 82 females
- 518 square miles
- Serving a population of 1.5 million

Preparing Firefighters

- 13 weeks of training
- PPE includes
 - o Turnouts
 - o SCBA
 - o Boots
 - o Gloves
 - Nomex Hood
 - o Helmet

Turnouts

- Bunker gear/Turnouts only protect firefighters against thermal insult.
- Firefighters consider themselves "bullet proof" when wearing it.
- It is their SUPERMAN cape.

QuickTime[™] and a decompressor are needed to see this picture.

Perceived Hazards at a Fire Scene

- Running out of air
- Becoming Lost/Trapped
- Structural collapse
- Falling through the roof/floor
- Flashover
- Thermal insult

What we know

 Typical house fires are not identified as potential "toxic hazards" by firefighters.

What we know

- On typical house fires, firefighters' perception of the overall hazard is low.
- "It's just a house fire".
- Built in "bias"
 - Houses are familiar territory
 Smaller than the "big box" fires
 Easier to escape
 - oLess likely to get lost or run out of air.

What we know

- Chemical Hazards are not even on a firefighter's radar.
- Their turnouts are like a "superman cape". Bullet proof.
- They are taught to have faith in their equipment and they do to a fault.

Fire Overhaul Studies

- 1998 Overhaul Study (Bolstad-Johnson, DM et al)
 - Went to 26 house fires
 - Sampled 17 analytes
- 1999 Overhaul Study (Burgess, JL et al)
 - 10 Fires in Phoenix
 - 10 Fires in Tucson
 - Biological Monitoring

Exposure Limits

Chemical	OSHA	ACGIH	NIOSH	STEL	IDLH
Acetaldehyde	200 ppm		LF	25 ppm (C)	2000 ppm
Acrolien	0.1 ppm		0.1 ppm	0.1 ppm (C)	2 ppm
Benzene	1 ppm	0.5 ppm	0.1 ppm	2.5 ppm	3000 ppm
Carbon monoxide	50 ppm	25 ppm	35 ppm	200 ppm (C)	1200 ppm
Formaldehyde	0.75 ppm		0.016 ppm	2 ppm	20 ppm
Glutaraldehyde				0.05 ppm (C)	
Hydrogen chloride				5 ppm	50 ppm
Hydrogen cyanide	10 ppm			4.7 ppm	50 ppm
Isovaleraldehyde					
Nitrogen dioxide		3 ppm		1 ppm	
Sulfur dioxide	5 ppm	2 ppm	2 ppm	5 ppm	100 ppm

1998 Overhaul Study

- The following analytes exceeded published ceiling values:
 - Acrolein 0.1 ppm (at one fire)
 - CO 200 ppm (at five fires)
 - Formaldehyde 0.1 ppm (at twenty-two fires)
 - Glutaraldehyde 0.05 ppm (at five fires)

Results from 1998 Study

- The following analytes exceeded published short term exposure limits (STEL):
 - Benzene 1 ppm (at one fire)
 - NO₂ 1 ppm (at two fires)
 - $SO_2 5$ ppm (at five fires)

Results from 1998 Overhaul Study

25 independent fires

- 14 houses, 6 apartments, 5 commercial buildings
- There was tremendous variation observed in the concentrations of the sampled contaminants.
- Variation may be explained by the diverse nature of each fire, including contents, number of rooms, commercial vs. residential.

1998 study

- Average sample time = 30 minutes
- Average response time to the scene = 20 minutes
- Sample results were averages over 30 minutes - peaks were not identified.
- Results are most likely an under estimation of true firefighter exposures.

1999 Study (Burgess, JL et al)

25 Firefighters in Tucson26 Firefighters in Phoenix

- Baseline biological monitoring
- Blood was drawn for serum pneumoprotein analysis.
- Following overhaul blood was analyzed for venous carboxyhemoglobin
- Pulmonary function

1999 Study (Burgess, JL et al)

- The study observed acute changes in spirometric measurements and lung permeability following fire overhaul.
- The changes were not prevented by the use of full-face cartridge respirators.

Arson Investigator Study

- Currently Phoenix Fire is conducting a study on our Arson Investigators to identify contaminant exposures and conduct a hazard assessment to determine appropriate PPE.
- Preliminary results indicate a presence of acetaldehyde and formaldehyde.

Couch Burn

DVD

Evaluation of CBRN Canisters for Use by Firefighters during Overhaul 2009 (Currie, Caseman and Anthony)

- 12 tests were conducted
- Measured breakthrough of challenge concentration
- Findings suggest that APR canister reduced overall exposures indicating that they could be used in fire overhaul if CO was controlled.

Controlling Exposures

- Heirarchy of controls
 - Engineering controls
 - Administrative controls
 - Personal Protective Equipment

Got Engineering Controls????

Challenges for Firefighters

Most of the equipment is designed for one hazard not multiple hazards.

 Example: Fire Bunker Gear
 Provides thermal protection but not chemical protection

N95 Mask

- Probably one of the most MISUSED forms of PPE by Emergency Responders.
- Protects against particulates and droplets like TB
- DOES NOTHING for CHEMICAL Exposures

Challenges for First Responders

- Identifying the hazard allows the responder to select appropriate hazard controls.
- There are not a lot of direct read instrumentation available to identify hazards on the fire scene.

Conclusions

- SCBA provides the best respiratory protection for all unknown chemical insults on the fire ground.
- Bunker gear provides protection from thermal insult only.
- A comprehensive study should be conducted to see how much of a chemical insult firefighters are exposed to on a typical fire.