
The zxy System for OpenASR21 Challenge

Hongyu Song, Guolong Zhong, Ruoyu Wang, Chang Wang, Jun Du and Lirong Dai

National Engineering Laboratory for Speech and Language Information Processing (NEL-SLIP)

University of Science and Technology of China,

Hefei, Anhui, P. R. China

cndragon@mail.ustc.edu.cn

Abstract—This report describes the systems of ‘zxy’

(abbreviated from ‘zui xing yun’ which means ‘the most fortunate’

in mandarin) team in the IARPA Open Automatic Speech

Recognition Challenge (OpenASR21). We participated in all

fifteen languages in the constrained training condition, and seven

languages in the unconstrained training condition. To increase the

amount of training data in constrained condition, we adopted text-

to-speech (TTS) techniques as an important data augmentation

method which was shown to be very effective for low-resource

languages. For the unconstrained condition, we trained several

end-to-end (E2E) ASR models which had different encoder

designs. During the evaluation stage, we focused more on case-

sensitive scoring (CSS) tasks for particular languages. Based on

the official ranking results at that time, we also submitted several

results in constrained-plus condition based on confidence in our

TTS based systems, though we did not use any pretrained models.

Finally, our submitted system yielded good results on several tasks,

including: swahili-constrained-css, tagalog-constrained-css and

tagalog-constrained-plus.

Keywords—low-resource languages, data augmentation, TTS,

case-sensitive scoring, system fusion

I. INTRODUCTION

The goal of the OpenASR (Open Automatic Speech
Recognition) Challenge is to assess the state of the art of ASR
technologies for low-resource languages. Every language is
separated into three training conditions: constrained,
constrained-plus and unconstrained. We submitted results of
Eval datasets for all languages in constrained condition and 7
languages in unconstrained condition. Case-insensitive
scoring(CIS) Eval dataset will be offered for all fifteen
languages and additional case-sensitive scoring (CSS) Eval
dataset for three of the languages.

For the constrained condition, the hybrid model trained with
Kaldi toolkit and the main architecture ResNet-TDNNF were
used. The acoustic training data can only consist of the 10-hour
Build datasets provided by the OpenASR21, so it’s crucial that
increasing the diversity of speech training data using
unsupervised method and a small amount of speech data. The
improvement of performance can be obviously observed after

using some methods of data augmentation, such as utterance-
level speed perturbation, training with text-to-speech TTS
synthesized data, and features concatenating. We purchased a
batch of publicly available text data from IARPA BABEL
program [1], WILLTECH [2-7] and LDC (Linguistic Data
Consortium) and crawled some public texts for different
languages from the internet to optimize our language models.
Finally we did decoding, rescoring, and fusing the recognition
results obtained from different structures. By the way, we
processed the languages for CSS with the same pipeline as CIS
but there are some details different. For the unconstrained
condition, we used extra thousands of speech data for pre-
training, then we adopted the end-to-end (E2E) based model as
the main strategy. Different designs of the encoder architecture
were also explored. These models were fused and rescored. For
both of the two conditions, the data processing methods were
similar.

During the challenge, the main members of ‘ustc_nelslip’
team and ‘zxy’ team have overlap. The two teams had different
priorities and plans in the evaluation stage: the ‘ustc_nelslip’
team focused more on constrained tasks, while the ‘zxy’ team
experimented with more methods and tasks. For the
unconstrained condition, because those tasks were very time-
consuming, the two teams worked together in both model
training and evaluation stages.

II. CONSTRAINED SYSTEM OF CIS

A. Training Data

For the constrained condition, the speech dataset allowed for
training is only a 10-hour subset of the Build dataset provided
by NIST for each language. For the text data, we also used
transcriptions from the IARPA BABEL language packages,
which lack Somali and Farsi. We crawled public texts from
website for most languages to further optimize the language
model. The collected texts were filtered and then added to the
training corpus.

The datasets we used from IARPA BABEL language
packages are listed as follows.

mailto:cndragon@mail.ustc.edu.cn

Fig. 1. Framework of the constrained system.

• Cantonese: IARPA-babel101b-v0.4c-build.

• Pashto: IARPA-babel104b-v0.bY-build.

• Tagalog: IARPA-babel106-v0.2g-build.

• Vietnamese: IARPA-babel107b-v0.7-build.

• Swahili: IARPA-babel202b-v1.0d-build.

• Tamil :IARPA-babel204b-v1.1b-build.

• Kurmanji-Kurdish: IARPA-babel205b-v1.0a-build.

• Kazakh: IARPA-babel302b-v1.0a-build.

• Guarani: IARPA-babel305b-v1.0c-build.

• Amharic: IARPA-babel307b-v1.0b-build.

• Mongolian: IARPA-babel401b-v2.0b-build.

• Javanese: IARPA-babel402b-v1.0b-build.

• Georgian: IARPA-babel404b-v1.0a-build.

B. Overall System Diagram

The overall framework of the constrained system is shown
in Fig. 1. It contains several main parts including GMM
modeling, data processing, acoustic model training, TTS system
and language modeling. Details of each part will be described in
following sections.

C. Data Processing

1) Data cleaning
The data cleaning was first applied following the recipe in

Kaldi [8]. It aims to remove corrupted portions that are not
accurate enough. The basic idea is to decode the training speech
with an existing in-domain GMM acoustic model and build a
biased language model from the reference transcripts, and then
generate revised segmentation information [9].

2) Speed and volume pertubation
Speed and Volume perturbation [10] is as an effective data

augmentation method for the raw data, which can alleviate
overfitting and improve robustness of the models. We found that
perturbating the speed with 3 factor (0.9,1.0,1.1) can give the

best improvement. For volume perturbation, we used scale
factors randomly chosen between 0.125 and 2.0.

3) SpecAugment
SpecAugment [11] is a simple data augmentation method for

ASR which is applied directly to the input features of a neural
network. We applied SpecAugment to the filterbank features,
more details can be referred in [11].

D. Acoustic Model Training

1) Training pipeline
We built a hybrid DNN-HMM system using the Kaldi [8]

toolkit. For the training data, all audio files in the training set are
resampled to 8 kHz since most of the files are sampled at 8 kHz.

The rest 13 languages have corresponding IARPA BABEL
language packs except for Somali and Farsi. Thus, the
pronunciation lexicons were built based on BABEL. For Somali
and Farsi, we used the lexicons provided by the 10-hour Build
dataset.

A monophone GMM-HMM model was first trained with
inputs of 13-dim mel-frequency cepstral coefficients (MFCCs)
features (with 3 pitch features). Then, a context-dependent
triphone model was trained, followed by Linear Discriminant
Analysis (LDA) and Maximum Likelihood Linear Transform
(MLLT) estimation. Finally, a speaker adaptive training (SAT)
[12] model was trained with FMLLR [13]. We also estimated
the probability of silence [14] from aligned training data during
the training process.

For neural network training, alignments and numerator
lattices were generated from the GMM-HMM model. We chose
the ResNet-TDNNF network as our baseline acoustic model,
which was trained using LF-MMI criterion [9] with cross-
entropy (CE) regularization. Such pipeline is the so-called
‘chain model’ training in Kaldi.

2) Baseline: ResNet-TDNNF model
Our baseline acoustic model consists of stacks of Residual

Network (ResNet) and Factorized Time Delay Neural Network
(TDNNF). The Residual Network (ResNet) consists of
convolutional layers, Batch Normalization (BN) and Rectified
Linear Unit (ReLu) [15].

Fig. 2. ResNet-TDNNF architecture.

The popular TDNNF network, which is a fundamental
component of our acoustic model. TDNNF is structurally
similar to TDNN whose layers have been compressed via SVD,
but are trained from a random start with one of the two factors
of each matrix constrained to be semi-orthogonal in order to
prevent instability in back-propagation [16]. A regular TDNNF
block consists of a linear layer, an affine component, a ReLu
nonlinear component, and a batch normalization operation
followed by dropout.

Fig. 2 shows the architecture of ResNet-TDNNF. The
network has two inputs: 40-dimensional Mel-filter bank
coefficients (filter banks) features and 100-dimensional online i-
vector features. In our systems, we trained a diagonal UBM-
based i-vector extractor for speaker adaptation [17]. In order to
adapt to the CNN structure, the 100-dim i-vectors are mapped to
200-dim by LDA transformation before being concatenated to
the filterbanks.

We performed batch normalization on both i-vector and
filterbank features. SpecAugment was used in training. Two
inputs were transformed into spatial 40-dimensional planes (five
for i-vector features, one for filterbank features) and combined
with each other. The batch size was 128 or 64 with 6 epochs
training in total. The initial learning rate was 0.001 and decayed
during training, with the final learning rate 0.00005. In our
experiments, we used the baseline acoustic model to evaluate
different strategies and search for hyper-parameters.

3) Other architectures
In addition, we also trained other model architectures such

as CNN-TDNNF, ResNet-Multistream-TDNNF [18], ResNet-
TDNNF-Attention[19], and ResNet-TDNNF-RBiLSTM [19].
The details of them are listed as follows:

⚫ CNN-TDNNF: 6-layer CNN blocks + 12-layer
TDNNF

⚫ ResNet-TDNNF-Attention: 7-layer ResNet + 12-layer
TDNNF

⚫ ResNet-TDNNF-BiLSTM: 7-layer ResNet + 3-layer
TDNNF-RBiLSTM

⚫ ResNet-Multistream-TDNNF: 7-layer ResNet + 12-
layer TDNNF(x3)

These architectures were built using the LF-MMI training
criterion by Kaldi. Lattice fusion [20] followed by Minimum
Bayes Risk (MBR) decoding was performed to combine
recognition results from different models using different
architectures.

E. Increasing the Diversity of Training Data Acoustic

We found that the model trained on 10-hour data was easily
overfitting and it was difficult to improve the performance of
ASR by adjusting the parameters only. Therefore, we trained the
system with various data augmentation methods to alleviate the
overfitting problem. And the diversity of the system was of great
benefit to the final fusion.

1) TTS synthesized data
In constrained condition, using Text-to-speech (TTS)

outputs from TTS trained on designated constrained training
data is allowed. We used Flow-TTS [21], which is a non-
autoregressive end-to-end neural TTS model based on
generative flow. Using a simple feed-forward network trained
by jointly learning the alignment and spectrogram generation,
Flow-TTS can achieve high-quality spectrogram generation.

We used a GMM model to get force alignment on the
cleaned data, in order to get training resources for Flow-TTS
training. The TTS model was used to synthesize MFCC (with
pitch) and filterbank features separately. MFCC (with pitch) was
used to generate the numerator lattices for chain model. And the
filterbank features were used as input features to the chain model.

However, most words in the external texts were out-of-
vocabulary (OOV). Therefore, we used the training lexicon
provided by BABEL to train a grapheme-to-phoneme (G2P)
model [22], which predicts the pronunciation of OOV words in
external texts. Then the TTS model worked well with the
predicted phonemes.

By using TTS synthesized data, we found that the
performance of different structural models were improved.
Table I shows the comparison of models trained without TTS
Data and with TTS Data on the Pashto Dev set.

TABLE I. THE COMPARISON OF MODEL TRAINED WITHOUT TTS DATA

AND WITH TTS DATA ON THE PASHTO DEV SET.

Model
WER (%)

Without

TTS data

With

TTS data

CNN-TDNNF 47.3 46.1

ResNet-TDNNF 47.1 45.6

ResNet-TDNNF-Attention 47.2 45.8

ResNet-Multistream-TDNNF 47.5 45.9

ResNet-TDNNF-RBiLSTM 50.0 47.3

2) Utterance-level speed and volume perturbation
The default perturbation process was performed for the

whole original audio. However, the speaker's speed and volume
usually change frequently in the dialogue scenarios. Therefore,
we performed speed and volume perturbations at the utterance-
level aiming to alleviate overfitting and improving the
robustness of the model. To prevent over-perturbation, we
calculated a series of allowable lengths based on the length of
the utterance and the perturbation factors. When the length of
perturbated utterances exceeds the allowed lengths, other
suitable speed factors will be chosen to be used until the length
meet the requirement.

Finally, we tripled the amount of training data. As for the
utterance-level volume perturbation, we used a randomly chosen
scale factor from 0.5 to 1.5.

3) Feature concatenating encoder representation
Considering that the end-to-end model and the hybrid DNN-

HMM model are complementary in model fusion, as in [23]. We
also trained the encoder-decoder (ED) model of the VGG-
transformer [24]. To make the training of the ED model
converge faster, we applied speed perturbation and Flow-TTS to
increase the training data. We generated 12 times of the original
training data with speed factors uniformly sampled from 0.8 to
1.2 at 0.25 intervals.

The 512-dim latent representations learned by the Encoder
can be concatenated to 40-dim filterbank features, which
brought further improvements to the final fusion system.

F. Languge Model

Language models trained on external texts are allowed to use
in the OpenASR21 challenge. So we firstly use transcriptions
from the "training" part of the IARPA BABEL program. For
most languages, we also obtained large amounts of text data
crawled from web. For convenience, the web-obtained data are
denoted as ‘public’ data. However, these data are quite different
from the data styles in BABEL. Data cleaning and filtering were
performed on the public data.

Firstly, we performed cleaning on the public data. Chars that
didn’t correspond to the language being processed were
removed. Secondly, a domain classifier was trained to select
data that have similar genres with BABEL from the public data
[25]. For Cantonese, the domain classifier was migrated from
the pre-training model Chinese BERT [26]. For the other
languages, the domain classifiers were migrated from the
multilingual pre-training model XLM-R [27]. Finally, we added
colloquial noise to the extra text since the data genre in
constrained condition is conversational telephone speech (CTS).

The first-pass language model was generated by
interpolating an N-gram model trained on public data and
another N-gram model trained on BABEL data. This process
was done by using the SRILM [28]. As for language model (LM)
rescoring, we adopted Transformer structure [29] for Cantonese
and bidirectional RNN structure [30] for the rest languages.

For Cantonese, we continued to train Chinese BERT for
several iterations using Cantonese public data and then fine-
tuned using Cantonese BABEL data, aiming to transfer Chinese
BERT to the domain of conversational style. We masked the

whole word to make the model learn the inter-phrase
relationship better. Compared to the first-pass decoding, the
BERT-based [31] pretraining language model can bring
absolute 0.3% WER improvement after rescoring on Cantonese.

For the rest languages, the models were initialized using the
public data and fine-tuned using the BABEL training data
corresponding to the language being processed. The RNNLM
rescoring is effective in most language excepts Tamil,
Vietnamese and Kurmanji-Kurdish. The RNNLM rescoring can
bring at least absolute 0.2% WER improvement.

G. Voice Activity Detection (VAD)

Since the audios in CIS task are conversational telephone
speech, most audios are without any environment noises. We
firstly trained a TDNN-LSTM based VAD model for each
language, using the implementations in Kaldi. However, the
data-driven based model trained on only 10-hour data was not
very stable according to our experiments. We found lots of
strange missed error where the speech was very clear. Thus, we
used an energy-based VAD method as a complement. The final
detection result took the intersection of the two methods.
Additionally, we expended the time regions in the front and back
of each detected segment to prevent missing any speech. Each
expanded duration is about 0.5 second.

Table II shows our VAD experiments on Cantonese and
Pashto. The 'manual' represents using the time stamps provided
in the transcripts of the Dev set. As we can see in the table,
performance of VAD on Cantonese is similar to the manual time
stamps. For Pashto, the VAD help to reduce the WER from 49.6%
to 47.9%, which is mainly due to the reduction of false alarm
errors in recognition results. In the evaluation stage, we directly
migrated the strategies tuned on the Dev set for all languages.

H. Decoding

We used the WFST-based method for decoding in Kaldi. For
the first-pass decoding, we used N-gram language model. The
decoding beam was set to 16, while the beam used in lattice
generation was 8.5. The LM weight was chosen from 7 to 17.

I. System Fusion

We used Lattice fusion followed by MBR decoding [20] to
combine the recognition results of acoustic models trained with
different architectures as well as different data augmentations.
Benefiting from the effective compensation of different systems,
the system fusion can greatly enhance the performance.

TABLE II. THE PERFORMANCE OF VAD FOR CANTONESE AND PASHTO

ON DEV SET

Language
WER (%)

Manual VAD

Cantonese 46.4 46.4

Pashto 49.6 47.9

J. Experiment Result

TABLE III. THE RESULTS OF EVAL SET

Language
WER (%)

Constrained Constrained-plus

Amharic 42.5652 40.4499

Cantonese 48.3032 38.7994

Guarani 45.4791 43.1233

Javanese 51.0991 48.3802

Kurmanji-Kurdish 65.3694 61.8481

Mongolian 44.8922 41.8978

Pashto 47.3383 44.0087

Somali 58.5455 55.2239

Tamil 65.7738 63.2312

Vietnamese 43.4393 40.4380

Swahili 34.7295 32.8487

Tagalog 43.6949 41.3216

Georgian 42.3085 39.7809

Kazakh 53.3439 49.9072

Farsi 69.8557 69.7951

The final results of Eval set were generated by fusing
systems of different architectures trained with TTS synthesized
data, utterance-level speed and volume perturbation and features
concatenating encoder representation.

Table III shows the final fusion results, which were released
by the OpenASR21 scoring server. Note that we also submitted
several results in constrained-plus condition, but we didn’t use
any pretrained models. Actually, the results of constrained-plus
condition were obtained under constrained condition.

III. UNCONSTRAINED SYSTEM OF CIS

In the unconstrained condition, we are allowed to use
additional speech and text training data from any language that
can be publicly accessed. Because of the large amount of data,
we used the encoder-decoder (ED) based end-to-end models as
our unconstrained systems. In OpenASR2021, we only
participated in Cantonese, Kazakh, Mongolian, Pashto, Tamil,
Javanese, and Farsi.

We will describe our system in these several sections: 1)
Data Pre-processing, 2) Modeling Unit, 3) Pretraining, 4) Model
Training, 5) Language Model Rescoring, 6) Voice Activity
Detection, 7) Force Alignment, and 8) Final Results.

A. Data Pre-processing

We used some external data which were purchased from
many corporations. In addition, we conducted a series of data
crawling to collect more speech-text data. Public videos which
have subtitles can be seen as the target of data crawling, then

pairs of audio and text are extracted. Due to time constraints, we
only did data crawling for speech in Cantonese.

For Cantonese, the final training dataset consists of three
main types: 140 hours data provided in IARPA BABEL package,
1,000 hours data from HUITING Tech Inc [32] and 3,000 hours
crawled data. For the other six languages, their training data
contain two main sources: from IARPA BABEL, and purchased
from WILLTECH (Kazakh: 362 hours, Mongolian: 454 hours,
Pashto: 315 hours, Tamil: 244 hours, Javanese: 332 hours, and
Farsi: 324 hours) [2-7]. Dev sets for all languages kept the same
with original OpenASR2021 datasets. In BABEL dataset, the
sampling rate is 8 KHz but most of additional speech data are
sampled at 16 KHz. As a result, we uniformly set the sampling
rate to 16 KHz.

We carried out a series of operations to further enhance the
diversity of original training data. Firstly, we used a method
called as long-term audio splicing. For example, the non-speech
segments were took as the separator to extract separate speech
segments in BABEL, then different speech segments were
stitched together. Considering the efficiency about data loading
and model training, we set the maximum length of audio to be
no more than 20 seconds. Secondly, we applied speed
perturbation to both the original and long-term spliced data with
the speed factors of 0.8, 1.0 and 1.2. Thirdly, we conducted noise
augmentation on all audios. Finally, the overall data of every
language reached more than 1,000 hours.

More importantly, we used the Flow-TTS based method to
generate more acoustic data for training. To achieve it, we first
sampled 100 hours data from original speech data to train TTS
models. Then, we collected a large amount of publicly available
text from websites. Using them, we can easily synthesize large
amounts of filterbank features. During training, we randomly
mixed real acoustic features and TTS synthesized features.

B. Modeling Unit

It’s necessary to do data cleaning on the collected text data,
aiming to determine proper modeling units. Firstly, all abnormal
characters were removed. As a result, Kazakh had 43 characters,
Mongolian had 38 characters, Pashto had 50 characters, Tamil
had 50 characters, Javanese had 28 characters, and Farsi had 38
characters. Secondly, we tokenized the remaining texts using
byte-pair-encoding (BPE) [33] and obtained 8,000 BPEs for
each language except Cantonese. For Cantonese, we directly
used Chinese characters which were more than 3,000 kinds and
26 English alphabets. Finally, all modeling units were sorted by
frequency of occurrence.

C. Pretraining

A good pretrained model can be transferred quickly to other
tasks. To accelerate our experiments in all seven languages, we
performed pretraining works using two main types of datasets.

The first dataset is derived from IARPA BABEL corpora,
including 25 languages. According to challenge rules, the
overlapping parts between BABEL and OpenASR2021 were
removed in advance. After speed perturbation and noise
augmentation, approximately 8,000 hours of data were obtained.
We directly used single characters in 25 languages as the

modeling units instead of using BPE. And all the characters in
words were segmented with tag ‘<sep>’.

The second dataset consists mainly of Chinese and English,
which includes many publicly available corpora such as Aishell
[34], Aishell2 [35], Librispeech [36], TIMIT [37] and
Switchboard [38]. The modeling units include 8,000 Chinese
characters and 6,000 English BPEs.

For convenience, the model trained on the first dataset is
denoted as ‘Multi-lingual pretrained’, and the other is ‘Ch-En
pretrained’. When using them, we only used the encoder of the
pretrained models.

D. Model Training

We trained five different encoder-decoder based models.
The optimization process follows a multi-task approach, one
task is the final cross-entropy loss of the ED model, and the other
one is the CTC loss of the encoder.

The Adam optimizer and warmup strategy were used and the
initial learning rate was set to 0.0007. We also applied the
SpecAugment and Scheduled Sampling [39] to make the system
more robust. The E2E systems were trained using the open-
source toolkit Fairseq [40]. Table IV describes the training
setups about all five models which differs in the encoder design.
As to the decoder part, five models use the same structure which
contains six transformer layers. For each language, we trained
all five types of models.

In the inference stage, we first conducted parameter
averaging to each model and got five final models. When
decoding, the beam size was set to 15. The posterior
probabilities of all models were weighted and averaged.
Meanwhile, those probabilities were also divided by the
temperature constant for smoothing. The strategy was first
validated in some languages and then extended to others. Table
V shows the results of Dev sets on both Mongolian and Farsi.

Comparing Model 1 and Model 2 in Table IV and V, it’s
observed that training with TTS synthesized data can improve
the overall performance. From the results of Model 2 and Model
5, the Multi-lingual pretrained model performs better than the
Ch-En pretrained model, which can be attributed to more
language coverage in training. Among all models, Model 5
yields the lowest WER. As the number of models increases in
fusion stage, the recognition results consistently improve. The
performance trend of the other five languages is similar to Table
V.

E. Voice Activity Detection (VAD)

The VAD strategy in the unconstrained condition is similar
to the constrained condition. Since an ED ASR model itself can
also serve as a VAD module to some extent, we found that a
simple energy-based VAD with proper thresholds could yield
good and stable performance in unconstrained tasks. In the Dev
set, replacing manual segments with energy-based VAD
strategy could yield similar WERs on an ED ASR model. Finally,
we migrated the same methods to the Eval set.

TABLE IV. THE TRAINING SETUPS OF DIFFERENT ED MODELS

Model Encoder
Training Data

Type

Pretrained

Model

Model 1

9-layer DenseNet +

12-layer conformer
block

Realistic Ch-En

Model 2

9-layer DenseNet +

12-layer conformer

block

Realistic + TTS Ch-En

Model 3
4-layer Vggblock + 12

conformer layers
Realistic + TTS Multi-lingual

Model 4
4-layer Vggblock + 12

transformer layers
Realistic + TTS Multi-lingual

Model 5
9-layer DenseNet + 12

conformer layers
Realistic + TTS Multi-lingual

TABLE V. THE RESULTS OF DIFFERENT MODELS AND MODEL FUSION

Dev Set
WER (%)

Mongolian Farsi

Model 1 35.6 41.1

Model 2 33.6 39.5

Model 3 33.8 38.5

Model 4 34.2 40.9

Model 5 33.2 37.5

Model 1 + Model 2 32.5 37.5

Model 1 + Model 2 + Model3 30.8 35.2

Model 1 + Model 2 + Model3 +
Model 4

29.5 34.8

Model 1 + Model 2 + Model 3 +

Model 4 + Model 5
28.4 33.7

F. Language Model Rescoring

Since the one-best sequence in decoder output may not be
the optimal result, we used an additional language model to do
rescoring. We trained language models based on BERT. The
training data consist of BABEL (training set) and the collected
text data described above. The LM rescoring is useful in a few
languages.

G. Force Alignment

As mentioned in the data pre-processing section, we used a
large amount of long-term audios in training. During testing, it’s
better to conduct long-term splicing on VAD segments for
matching such conditions. Segments spaced less than 1.5
seconds were sliced together, and the maximum length was set
to 20 seconds. In our experiments, long-term testing can
consistently get better results.

The final evaluation requires that the format of system output
files is CTM. But the output sequences of an ED based system
lacked fine-grained time information for every recognized word.
To solve this problem, we also trained a hybrid DNN-HMM
system using Kaldi, of which the model architecture is the same
as the baseline used in constrained tasks. This hybrid system was
only used to do force alignment on the recognized sequences
generated by the ED system. As a result, we got the duration of
each word and made final CTM files.

H. Final Result

TABLE VI. THE RESULTS OF EVAL SET

Language WER (%)

Cantonese 30.1925

Kazakh 38.1197

Mongolian 31.8812

Pashto 34.0277

Tamil 56.9548

Javanese 44.4218

Farsi 52.0046

The performances of our final fusion systems of Eval set
are presented in Table VI.

IV. CONSTRAINED SYSTEM OF CSS

Case-sensitive scoring tasks are offered about Kazakh,
Swahili, and Tagalog in OpenASR21, which means words
capitalized differently between the hypothesis with the reference
will not count as a match.

For CSS, all datasets stem from the IARPA MATERIAL
program. MATERIAL datasets are separated into three data
genres, conversational telephone speech (CTS), news broadcast
(NB) and topical broadcast (TB). Table VII show the
compositions of these two kinds of datasets.

CTS data in BABEL are from conversations between two
persons over the telephone on a topic of their choosing.
Conversations vary in length, up to approximately 10 minutes.
CTS data in MATERIAL are either from a subset of BABEL
CTS data or newer sets collected and annotated using the
BABEL methodology.

MATERIAL NB data contain audio segments of
approximately 2.5 minutes from widely distributed broadcasts
as well as regional and local news covering news topics and
current affairs. The broadcasts are recorded with studio quality,
and the speech context could be formal or informal depending
on the segments.

MATERIAL TB data are similar to NB data in terms of
audio quality and speech characteristics, but more of in-depth
topics. Each recording is approximately five minutes. Table VIII
show the durations of the different data genres in these three
languages.

For CSS task, we adopted the same strategies of data
processing, acoustic model training, VAD, decoding, and
system fusion as that in the CIS task.

A. Training Data

For each language, the 10-hour Build set provided by
OpenASR21 would be used for training the acoustic model. We
also selected the training transcriptions of BABEL as additional
text data to train the language model (see Table IX).

TABLE VII. THE COMPOSITONS OF CIS AND CSS DATASETS

Dataset Resources Data Genre

CIS
BABEL (MATERIAL

for Somali and Farsi)
CTS

CSS BABEL, MATERIAL CTS, NB, TB

TABLE VIII. TOTAL DURAITON ABOUT THE TRAINING DATA IN CSS

LANGUAGES .

Language Data Genre Duration

Kazakh
NB + TB 5 hours

CTS 5 hours

Swahili
NB + TB 5.5 hours

CTS 4.5 hours

Tagalog
NB + TB 3 hours

CTS 7 hours

TABLE IX. IARPA BABEL LANGUAGE PACKS USED FOR ADDITIONAL

TEXT DATA

Language LDC ID Language Package

Kazakh LDC2018S13 IARPA-babel302b-v1.0a-build

Swahili LDC2017S05 IARPA-babel202b-v1.0d-build

Tagalog LDC2016S13 IARPA-babel106-v0.2g-build

B. Modeling

According to the OpenASR21_Evaluation_Plan [41], words
capitalized differently from the reference transcriptions will not
count as a match, so we kept the cases of words in corpus,
lexicons and recognition results, which means the final words
we submitted would consist of upper and lower cases. In order
to obtain more available words, for each language, we combined
the corresponding lexicons from the Build dataset of
OpenASR21 and the IARPA BABEL language packs as the
final lexicon we used.

We tented to treat the prefix of file names as speaker-ids. For
CSS data, the NB/TB audios are named differently from the CTS
audios. The CTS audios were processed the same way in CIS,
while the NB/TB data were processed in two ways: one is
mapping all the NB/TB audios to the same speaker; another is
mapping each NB/TB audio to its own speaker. For Kazakh, the
first operation reduced WER of Dev set by absolute 2.8%
compared to the second operation, but brought no improvement
to the other two languages.

C. Language Model

We found that part of the Build datasets of OpenASR21 is
the subset of the training datasets of BABEL. So we removed
the extra repeated transcriptions to avoid the overfitting of
language model caused by the overlapping data. Then the rest
transcriptions were adopted as the corpus for language modeling.

The language model was an N-gram model trained on the
corpus using the SRILM [28]. We knew the BABEL datasets

https://catalog.ldc.upenn.edu/LDC2018S13
https://catalog.ldc.upenn.edu/LDC2017S05
https://catalog.ldc.upenn.edu/LDC2016S13

only consist of CTS, but it really reduced the WER of Dev set
compared to the language model which only used the text in 10-
hour build corpus, about absolute 0.8% for Kazakh and Swahili,
2.4% for Tagalog.

We also attempted the same language modeling method used
in CIS to build the second-pass language models without
adjustment because of the poor time. The public data made no
contribution to the WER because of the unreasonable data
composition, which needs to be further tuned and researched.

D. Confidence Filtering

We applied confidence filtering to the ASR results obtained
from lattice. Words are filtered according to their confidence
scores. The threshold was set to be 0.2, which means the
recognition results with confidence scores below the threshold
would be discarded. If the deletion errors is high, we will tend
to set a small threshold. The higher the threshold, the less
substitution and insertion errors. We found that confidence
filtering bring about at least 0.1% improvement in WER for each
language.

E. Experiment Results

When testing on Dev set, for example, we got different
results for ‘Manila’. The results are shown in Fig. 3. For the
lower case, the substitute error was generated. But for the upper
case, the recognized word was correct. So it is necessary to get
the right form of each recognized word for the case-sensitive
scoring.

Table X shows our final fusion results on Eval datasets.

Fig. 3. Evaluation results of ‘Manila’.

TABLE X. THE WER ON EVAL DATASETS

Language
WER(%)

Constrained Constrained-plus Unconstrained

Swahili-CSS 43.4985 43.9941 ——

Tagalog-CSS 46.177 46.2981 ——

Kazakh-CSS 54.6797 52.8451 ——

HARDWARE AND TIME REQUIREMENT

TABLE XI. THE HARDWARE DESCRIPTION OF A SINGLE SERVER

OS CentOS 7.2 64-bit

CPU num 48

CPU description
Intel(R) Xeon(R) CPU E5-

2650 v3 @ 2.30GHz

GPU num 4

GPU description Tesla V100-PCIE 32GB

RAM 128 GB

Disk storage 10 TB

The hardware description of a single server is shown in
Table XI. In constrained condition, we performed all training
experiments on a single server. For each language, the elapsed
wall-clock time is approximately 20 hours for a single whole
system. It takes 40 minutes for GMM training, 5 hours for TTS
model training on 1 GPU and 4 hours for chain model training
on 1 GPU. With TTS synthesized data, it takes 6 hours for
GMM training, 7 hours for chain model training on 4 GPU in
parallel. GPU resources were only used for NN acoustic model
training. Running decoding pipeline using GPU on the Eval set
takes about 30 minutes. And the maximum memory
consumption in decoding was around 12 GB.

In unconstrained condition, the processing time of
pretraining on 25 languages using 24 GPUs is about 40 hours.
For each language, it takes 10 hours for TTS training on 4 GPUs,
40 hours for a single ED model training on 12 GPUs. The total
processing time required is about 80 hours.

REFERENCES

[1] (2011) Babel program. [Online]. Available:
https://www.iarpa.gov/index.php/research-programs/babel

[2] https://www.futve.com/#/recommend/details/?id=738&classId=20

[3] https://www.futve.com/#/recommend/details/?id=732&classId=20

[4] https://www.futve.com/#/recommend/details/?id=742&classId=20

[5] https://www.futve.com/#/recommend/details/?id=735&classId=20

[6] https://www.futve.com/#/recommend/details/?id=744&classId=20

[7] https://www.futve.com/#/recommend/details/?id=746&classId=20

[8] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M.
Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi speech
recognition toolkit,” in IEEE 2011 workshop on automatic speech
recognition and understanding, no. CONF.IEEE Signal Processing
Society, 2011.

[9] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na,
and S. Wang, Y.and Khudanpur, “Purely sequence-trained neural
networks for ASR based on lattice-free MMI,” in Proc. of
INTERSPEECH, 2016, pp. 2751–2755.

[10] Ko T., Peddinti V., Povey D., & Khudanpur S., “Audio augmentation for
speech recognition,” in Proc. INTERSPEECH, Dresden, Germany, Sep.
2015, pp. 3586–3589.

[11] D. S. Park, W. Chan, Y. Zhang, Y. Chiu, C. C. Zoph, B. Cubuk et al.,
“SpecAugment: A simple data augmentation method for automatic speech
recognition,” in Proc. INTERSPEECH, Graz, Austria, Sep. 2019, pp.
2613–2617.

https://www.iarpa.gov/index.php/research-programs/babel
https://www.futve.com/#/recommend/details/?id=742&classId=20
https://www.futve.com/#/recommend/details/?id=746&classId=20

[12] V. V. Digilakis, D. Rtischev and L. G. Neumeyer, “Speaker adaptation
using constrained estimation of Gaussian mixtures”, in IEEETransactions
on Speech and Audio Processing, vol. 3, pp. 357-366, 1995

[13] M.J.F Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Computer Speech and Language, vol. 12, pp.
75-98, 1998.

[14] "Pronunciation and Silence Probability Modeling for ASR", Guoguo
Chen, Hainan Xu, Minhua Wu, Daniel Povey and Sanjeev Khudanpur,
Interspeech 2015

[15] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image
Recognition," 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

[16] Povey, Daniel & Cheng, Gaofeng & Wang, Yiming & Li, Ke & Xu,
Hainan & Yarmohammadi, Mahsa & Khudanpur, Sanjeev. (2018). Semi-
Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks.
3743-3747. 10.21437/Interspeech.2018-1417.

[17] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adaptation of
neural network acoustic models using i-vectors,” in 2013 IEEE Workshop
on Automatic Speech Recognition and Understanding. IEEE, 2013, pp.
55–59.

[18] K. J. Han, J. Pan, V. K. N. Tadala, T. Ma and D. Povey, "Multistream
CNN for Robust Acoustic Modeling," ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021, pp. 6873-6877, doi:
10.1109/ICASSP39728.2021.9414639.

[19] Chai, Li & Du, Jun & Liu, Di-Yuan & Yanhui, tu & Lee, Chin-Hui. (2021).
Acoustic Modeling for Multi-Array Conversational Speech Recognition
in the Chime-6 Challenge. 912-918. 10.1109/SLT48900.2021.9383628.

[20] H. Xu, D. Povey, L. Mangu, and J. Zhu, “Minimum bayes risk decoding
and system combination based on a recursion for edit distance[J].
Computer Speech & Language, 2011, 25(4):802-828.

[21] C. Miao, S. Liang, M. Chen, J. Ma, S. Wang and J. Xiao, "Flow-TTS: A
Non-Autoregressive Network for Text to Speech Based on Flow,"
ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 7209-7213, doi:
10.1109/ICASSP40776.2020.9054484.

[22] M. Bisani and H. Ney: "Joint-Sequence Models for Grapheme-to-
Phoneme Conversion". Speech Communication, Volume 50, Issue 5, May
2008, Pages 434-451

[23] Liu, Andy & Li, Shang-Wen & Lee, Hung-yi. (2020). TERA: Self-
Supervised Learning of Transformer Encoder Representation for Speech.

[24] Mohamed, Abdelrahman & Okhonko, Dmytro & Zettlemoyer, Luke.
(2019). Transformers with convolutional context for ASR.

[25] Zhao, J., Lv, Z., Han, A., Wang, G.-B., Shi, G., Kang, J., Yan, J., Hu, P.,
Huang, S., Zhang, W.-Q. (2021) The TNT Team System Descriptions of
Cantonese and Mongolian for IARPA OpenASR20. Proc. Interspeech
2021, 4344-4348, doi: 10.21437/Interspeech.2021-1063

[26] https://github.com/ymcui/Chinese-BERT-wwm

[27] https://github.com/facebookresearch/XLM

[28] A. Stolcke, “SRILM - an extensible language modeling toolkit,” in proc.
ICSLP - interspeech, Denver, Colorado, USA, Sep. 2002.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, et al. "Attention is all you need." Advances in
neural information processing systems. 2017.

[30] H. Xu, T. Chen, D. Gao, Y. Wang, K. Li, N. Goel, Y. Carmiel, D. Povey,
and S. Khudanpur, “A pruned rnnlm lattice-rescoring algorithm for
automatic speech recognition,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp.
5929–5933.

[31] Kenton, Jacob Devlin Ming-Wei Chang, and Lee Kristina Toutanova.
"BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding." Proceedings of NAACL-HLT. 2019.

[32] http://www.huitingtech.com/en/dataInfo.action?id=1005

[33] Sennrich R , Haddow B , Birch A . Neural Machine Translation of Rare
Words with Subword Units[J]. Computer Science, 2015.

[34] Bu H, Du J, Na X, et al. Aishell-1: An open-source mandarin speech
corpus and a speech recognition baseline[C] 2017 20th Conference of the
Oriental Chapter of the International Coordinating Committee on Speech
Databases and Speech I/O Systems and Assessment (O-COCOSDA).
IEEE, 2017: 1-5.

[35] Du J , Na X , Liu X , et al. AISHELL-2: Transforming Mandarin ASR
Research Into Industrial Scale[J]. 2018.

[36] Panayotov V, Chen G, Povey D, et al. Librispeech: an asr corpus based
on public domain audio books[C] 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE, 2015: 5206-
5210.

[37] Victor Z , Seneff S , Glass J . TIMIT Acoustic-phonetic Continuous
Speech Corpus[C] Linguistic Data Consortium. 1993.

[38] Godfrey, J. J. , E. C. Holliman , and J. Mcdaniel . "SWITCHBOARD:
telephone speech corpus for research and development." Acoustics,
Speech, and Signal Processing, 1992. ICASSP-92. 1992 IEEE
International Conference on IEEE, 2002.

[39] Bengio, Samy, et al. "Scheduled sampling for sequence prediction with
recurrent Neural networks." Proceedings of the 28th International
Conference on Neural Information Processing Systems-Volume 1. 2015.

[40] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross,
Nathan Ng, David Grangier, Michael Auli: fairseq: A Fast, Extensible
Toolkit for Sequence Modeling. NAACL-HLT (Demonstrations) 2019:
48-53

[41] (2021) OpenASR21_Evaluation_Plan. [Online]. Available:
https://www.nist.gov/document/openasr21-challenge-evaluation-plan

https://github.com/ymcui/Chinese-BERT-wwm
https://github.com/facebookresearch/XLM
https://dblp.uni-trier.de/pid/26/9012.html
https://dblp.uni-trier.de/pid/15/8264.html
https://dblp.uni-trier.de/pid/202/2051.html
https://dblp.uni-trier.de/pid/87/4805.html
https://dblp.uni-trier.de/pid/184/3736.html
https://dblp.uni-trier.de/pid/184/3736.html
https://dblp.uni-trier.de/pid/202/2262.html
http://www.huitingtech.com/en/dataInfo.action?id=1005
https://dblp.uni-trier.de/pid/92/9767.html
https://dblp.uni-trier.de/pid/166/8381.html
https://dblp.uni-trier.de/pid/227/3374.html
https://dblp.uni-trier.de/pid/192/1872.html
https://dblp.uni-trier.de/pid/177/8797.html
https://dblp.uni-trier.de/pid/195/5521.html
https://dblp.uni-trier.de/pid/57/1192.html
https://dblp.uni-trier.de/pid/11/9768.html
https://dblp.uni-trier.de/db/conf/naacl/naacl2019-4.html#OttEBFGNGA19

