Metrology and Failure Analysis for 3D IC Integration

Ehrenfried Zschech, Fraunhofer IZFP Dresden Fraunhofer Cluster Nanoanalysis Dresden, Germany

Alain Diebold, CNSE at the University at Albany/NY, USA

Grenoble, 26 May 2011

www.nanoanalysis.fraunhofer.de

3D IC integration – Process control and failure analysis

From International Technology Roadmap for Semiconductors: http://www.itrs.net

3D TSV scheme

Integrated Heterogeneous 2-Die Stack

Tier 1 : CMOS Logic SoC

- TSV (connect frontside to backside)
- Very thin Wafer (manage TSV aspect ratio)
- Active face down

Interface μ-Bump

- Backside RDL Metal (interface to µBump and/or routing to allow offset of µBump vs TSV)
- μ-Bump (Tier to Tier interconnect)
- Very thin underfill

Tier 2 : Commercial Die

- Memory or Analog die, or...
- Frontside Metal (interface to μBump)
- Active face down & Pretty Thin

Flip Chip (C4) Bump

- Regular flip chip bump
- Regular underfill
- Package
 - Regular PCB substrate
 - Regular plastic molding
 - Regular Package BGA Bump

💹 Fraunhofer IZFP

Contents

Process control / Metrology

- Quality control / Failure analysis
- Stress engineering

Contents

Process control / Metrology

- Quality control / Failure analysis
- Stress engineering

3D IC Integration: Process control/metrology needs (1)

TSV process

- TSV pitch and TSV CD (top & bottom)
- TSV depth: within wafer and wafer-to-wafer uniformity
- TSV etch profile: sidewall angle (top and bottom), via bottom profile (curvature)
- Sidewall oxide liner thickness
- Metal barrier dep: thickness uniformity, step coverage
- Cu ECD fill (filling defects: voids)
- Cu ECD overburden
- post-CMP topography

Microbump process

Microbump quality

3D IC Integration: Process control/metrology needs (2)

Wafer bonding

- Wafer thickness
- Wafer bonding quality: bond strenght, voids/micro-voids, hermeticity, …
- Overlay metrology: wafer-to-wafer alignment, bond alignment

Defects

- Defects: critical vs. non-critical defects (etch defects, wafer edge defects, particles, scratches, …)
- Delamination

Analytical techniques for process control

Requirements

- Full-wafer (for wafer-level 3D IC)
- Nondestructive
- No particle generation
- High throughput
- High technique reliability and tool uptime
- Easy to use (operators, no physicists!)

Analytical techniques for process control

In-line techniques (nondestructive)

- Scanning acoustic microscopy
- IR microscopy

. . .

Lab-based techniques

- X-sectioning of samples (e. g. FIB) + SEM imaging
- Scanning acoustic microscopy

Analytical techniques for process control

In-line techniques (nondestructive)

- Scanning acoustic microscopy
- IR microscopy

. . .

Talks Alain Diebold (Tue + Wed)

Lab-based techniques

- X-sectioning of samples (e. g. FIB) + SEM imaging
- Scanning acoustic microscopy

3D TSV process control: Target sample preparation

Focused Ion Beam is the method of choice for site specific preparation

Restrictions of standard FIB :

- large quantities of materials to be milled
- precise, but too slow (> 2...10 hours depending on geometry)

3D TSV process control: Fast sample preparation (work in progress)

Approaches for rapid X-sectioning:

- 1. increase of milling rate using chemical enhancement (for Si removal) and high current FIB
- 2. new plasma sources for FIB milling
- 3. laser ablation prior to high-rate FIB polishing

Reduction of preparation time (approaches 2 and 3): ~ 5 hours → ~ 0.5 hours

Monitoring of via etch process (depth, taper, ...)

Monitoring of sidewall and bottom oxide/barrier (thickness, uniformity,...)

Monitoring of fill material (voids, grain structure, impurities)

FIB Channeling Contrast

Monitoring of via-via-interconnections (IMC formation and distribution)

Contents

Process control / Metrology

- Quality control / Failure analysis
- Stress engineering

3D IC Integration: Quality engineering / failure analysis needs

- Liner/barrier coverage/homogeneity (> leakage)
- TSV incomplete fill / voids
- Adhesion/delamination
- Stress (> CPI, Si cracks, Cu extrusion/,,pop-up")

Analytical techniques for failure analysis

Requirements

- Full-wafer or samples
- Non-destructive or destructive
- Reasonable throughput
- Reasonable technique reliability and tool uptime

- - -

Analytical technique for failure analysis

In-line techniques (nondestructive)

- Scanning acoustic microscopy
- IR microscopy (?)

...

Lab-based techniques

Nano-XCT + subsequent X-sectioning (z. B. FIB) + SEM imaging

...

Analytical technique for failure analysis

In-line techniques (nondestructive)

- Scanning acoustic microscopy
- IR microscopy (?)

Talks Alain Diebold (Tue + Wed)

Lab-based techniques

Nano-XCT + subsequent X-sectioning (z. B. FIB) + SEM imaging
 ...
 → Today

Xradia NanoXCT: Lab based X-ray microscopy

Courtesy: Xradia Inc.

Xradia nanoXCT @ Fraunhofer IZFP Dresden

Zone plate's key parameters

Zone plate (X-ray lense) consists of concentric rings (zones) with zone width decreasing with radius

SEM image of a zone plate and its zone profile

Interference principle of Huygens and Fresnel: Delay of the light in different regions, strong chromatic aberration.

Number of zones > 100 required for good focusing

Resolution is proportional to the width of the outermost (smallest) zone.

Outermost (smallest) zone width determines resolution and NA

(current limit: ~ 30nm, A/R ~ 30)

Limits of zone plates: ~ 30 nm structures

Zone plates are fabricated out of high-Z (typically gold) material using electron beam lithography, reactive ion etching and electroplating.

Focusing efficiencies 10-30% currently achievable (depends on A/R).

TSV sample preparation for nano X-ray tomography

Prepreparation (e. g. with laser ablation) + Focused Ion Beam

Process development: nanoXCT analysis of TSVs

Failure localization in TSVs: Large filling defects

Cooperation with Lay Wai Kong, College of Nanoscale Science and Engineering at the University at Albany/NY © Fraunofer IZFP-D

Flat samples: Laminography with tilted axis

Johann Radon

- Back projection possible based on projections of different angles
- Rotation of sample or X-ray source
- Reconstruction of 3D data, e.g. by filtered back projection
- Acquisition geometry depends on sample shape
 - cylindrical samples: normal CT
 - flat samples: Laminography, typical artifacts

X-ray microscope – setup

Sample tilt

X-ray computed laminography study of TSVs

Comparison for equal measurement time

Limited Angle CT

CT with tilted rotational axis

- Better image quality (contrast)
- Less artifacts at the bottom of the TSV

Xray tomography at TSV sample: < 100nm voids visible

FIB X-section of TSV after XCT study

Contents

Process control / Metrology

- Quality control / Failure analysis
- Stress engineering

TSV performance and reliability risks

Courtesy: Xiaopeng Xu, Synopsys

Cu TSV extrusions – Quantitative analysis

Both 4 and 5um TSV show Copper is extruded and with de-lamination at the wall

Cooperation with Lay Wai Kong, College of Nanoscale Science and Engineering at the University at Albany/NY Fraunhofer IZFP-D

Stress-induced reliability-limiting effects

Example: Cu extrusion / "pop-up"

• Reasons:

- Shear stress (depends on geometry, process flow (thermal cycles) and materials (E, CTE values)
- Adhesion (sidewall)
- Nano-XCT is a potential technique to study this effect nondestructively (region of interest not destroyed)
 - → Systematic quantitative analysis possible

Summary

3D TSV integration (new processes and materials) requires

- advanced techniques for process control / metrology
 Time-to-data has to be reduced for X-sectioning techniques
 Plasma FIB, Laser ablation + FIB, ...
- advanced techniques for quality control / failure analysis
 → Time-to-data has to be reduced for nanoXCT
 Improved X-ray sources, optics and detectors
 Improved data analysis strategies (→ Discrete tomography)

Acknowledgement

Dresden Fraunhofer Cluster Nanoanalysis (<u>www.nanoanalysis.fraunhofer.de</u>)

Peter Krueger, Sven Niese

Dresden Microscopy Innovation Center (FhG IZFP-D + Carl Zeiss NTS)

Bernd Köhler, Rüdiger Rosenkranz, Yvonne Ritz

CNSE at the University at Albany/NY

Lay Wai Kong

Xradia Inc., Concord/CA

Kevin Fahey, Jeff Gelb

