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Outline
Current silicide device topics

• NiSi contacts for 45nm and 32nm CMOS
• Fully silicided gates (FUSI)
• Low-resistance Ohmic contacts (PtSi for PMOS, ErSi2 for NMOS, etc)
• Schottky-barrier S/D devices
• Barrier height tuning by interface engineering

(1) Metal thickness metrology using x-ray fluorescence (XRF)
• Why XRF?
• XRF standards (RBS, TEM, etc)
• XRF results and issues

(2) Silicide materials properties
• Transformation and crystal structure (X-ray diffraction)
• Depth profiles (Auger spectrometry)
• Influence of surface preparation (X-ray reflectivity)



TMFreescale™ and the Freescale logo are trademarksof Freescale Semiconductor, Inc. 
All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. 2

Self-aligned silicide (salicide) formation process flow

1. Silicide preclean
2. Blanket metal 

deposition
3. Silicide anneal
4. Selective etch
• Silicide anneal
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Self-aligned silicide (salicide) process

1. Blanket metal deposition
2. Thermal annealing (RTA1)
3. Selective etch to remove 

unreacted metal
4. Thermal annealing (RTA2)

Process issues needing metrology:
• Process control for blanket metal film thickness (~10 nm)
• Formation of thin silicide on narrow active and poly lines (<50 nm)
• Optimizing the silicide preclean process (ICMI 2006, UCPSS 2006)
• Choosing anneal temperature and time (ICMI 2006, MAM 2006)
• Selective etch development (ICMI 2006)
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XRF Measurement Principle
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(1) A primary x-ray photon ejects an electron from an inner shell, leaving behind a hole. 
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Thin-film metrology for metals: Why XRF?
Why not ellipsometry?

Proven optical thin-film metrology techniques such as ellipsometry or 
reflectometry measure transparent films such as dielectrics or thin 
silicon. They do not work well for metals (including silicides).

Why X-ray fluorescence (XRF)?
• Commercial fab tools available.
• High throughput (10 s per site for 10 nm Ni)
• Small spot size (~50 µm) with pattern recognition achievable
• Robust (areal density independent of chemical composition)
• No fitting or models required.

What are XRF issues?
• XRF needs standards
• Interference issues (different element, same peak energy)
• Diffraction background depends on substrate type
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Why XRF standards? XRF spectrum for 10 nm Ni on oxide

Si Kα Ni Kα
7480 eV

Energy-dispersive x-ray fluorescence
30 s data acquisition per site (fast)
Small spot size
Strong characteristic Ni peak.
Good signal to background ratio.

Standards translate the Ni peak 
height into a layer thickness.

Advantage: No fitting required.

Diffraction peaks

Background

Diffraction peaks independent of notch rotation for Si (100) surface!
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XRF standards

XRF standards translate XRF peak intensity into film thickness.

Two standards are often sufficient:
(1) Bare Si substrate (0 nm standard)
(2) Metal film of known thickness (10 to 100 nm)

How do we obtain a metal film of “known” thickness?
(1) Does “known” mean NIST-traceable?
(2) Match other existing metrology (“golden” wafer).
(3) Sheet resistance measurement (assume bulk resistivity).
(4) SEM or TEM microscopy: Consider calibration errors!
(5) Rutherford backscattering: Very good for transition metals!
(6) X-ray reflectivity (XRR) of metal film on oxide.
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X-ray reflectivity: Ni on oxide as XRF standard
Ni on SiO2:
Best fit using thin interfacial layer (fixed 
1 Å thickness) with Ni density fitted, 
others fixed. Very good fit. 
Range: θ=0.15 to 3.5°.
Background: 15 counts
Total parameters: 7 (3+4 roughnesses).

Ni density gradient or artifact ?

Add 50% of top and bottom thickness to main Ni thickness for total thickness.

Ni density a little lower than 
bulk Ni (8.9 g/cm3)
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Ni PVD, center
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XRF measurement results: 10 nm Ni on SiO2
Average: 93.8 Å,
σ: 1.0 Å, 10 s acquisition.
No obvious repeat 
or day-to-day trend.
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Standard deviation: σ=1 Å
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Tolerance: 20 Å (example)
P/T=30% for 10 s acquisition time

10% P/T desirable 
Increase acquisition time for 
improved P/T ratio.

Poisson statistics
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XRF application: 49-point wafer map
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XRF measurement results: 2 nm TiN on SiO2
TiN PVD, center
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XRF application: Anneal and selective etch development
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XRF application to patterned wafers
Metrology pads on mask sets:
(1) Uniform active Si block
(2) Uniform poly-Si block
(3) Active Si lines and spaces
(4) Poly-Si lines and spaces
Size: 70 by 100 µm.



TMFreescale™ and the Freescale logo are trademarksof Freescale Semiconductor, Inc. 
All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. 15

50
55
60
65
70
75
80
85
90
95

0 10 20 30 40 50 60 70 80 90

Die Index (2 wafers)

N
i X

RF
 th

ic
kn

es
s 

(A
)

Active Block 1
Poly on Active Block 4
Poly on Field Block 7

XRF application to patterned wafers: Uniform block

9 nm Ni on Si

NiSi formation similar on 
active and poly Si.

Normal across-wafer 
variations (flyers!).
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XRF application to patterned wafers: Lines and spaces

Good uniformity for active Si lines and spaces.
Large variations in Ni coverage for poly-Si lines on oxide (patterning issue).
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XRF issues

Light elements cannot be measured (Al or higher are practical).

Hard to measure low impurity levels (Example: 5% Pt in Ni)

XRF background depends on substrate choice.

XRF is an excellent thin-film metrology technique, because 
XRF does not get confused by details of materials science, such as

• Chemical reactions
• Chemical composition
• Surface and interface effects
• Crystal structure
• Crystal orientation and texture
• Interdiffusion of layers
• Surface roughness and agglomeration (evenly distributed across surface?)
This lack of sensitivity is also a limitation for XRF!
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XRF experimental setup: Four detectors improve throughput

Deviation by Channel
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Random variations (up to ±5 Å, with σ=2 Å) between each detector and the average.
Systematic differences between four detector channels are smaller than 1 Å.
These measurements performed for Ni film on Si (100) surface (symmetric diffraction).

Difference between each detector and average signal
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Bulk Si (110)
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XRF issues: Diffraction varies with surface orientation
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SOI Si (100): 98.5 Å, 2.5 Å σ

Bulk Si (100): 96.9 Å, 2.9 Å σ

Bulk Si (110): 105 Å, 21 Å σ

Recipe optimized for Ni on Si (100) 
does not work for Ni on Si (110).

Similarly: Bare Si and TEOS test 
wafers show different results than 
Si test wafers with silicon nitride. 
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Pt thickness from XRF (patterned wafer)
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Channel 2 and 3 signal independent of die and similar to average. 
Channels 1 and 4 are high/low and show variation by die (instrument artifact).
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Pt thickness from XRF (blanket wafer)

Channel 2 and 3 signal independent of location and distributed around average. 
Channels 1 and 4 are high/low and show variation by point (instrument artifact).
No background subtraction was used.
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Pt thickness from XRF (blanket wafer)
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With background subtraction and digital filtering to find the peaks, the data look 
much cleaner, but there are still large variations.
Four-channel σ=11 Å. After averaging: σ=3 Å.
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Wavelength-dispersive XRF
Wavelength dispersive XRF uses an x-ray crystal monochromator:
• Higher resolution
• Much larger spot size (~10 mm)
• Much lower throughput (5 min per data point)
• Less susceptible to background variations or interferences.

10 nm Ni on Si substrate with different 
surface orientations.

Energy-dispersive XRF yields 
consistent results without variations 
due to substrate orientations. 
Background subtraction was used.

(No standards were used for this tool).4.1
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Why not X-ray reflectivity (XRR) ?

• XRR spectra for metal films vary with processing and depend on many 
factors (composition, interface and surface layers, processing, etc).

• Difficult line shape fitting is required for new film stacks.
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Materials science of silicide formation

Need metrology techniques for
• Surface roughness and agglomeration 

(AFM, TEM, scatterometry, Raman, XRD)
• Chemical reactions
• Chemical composition
• Surface and interface effects 
• Crystal structure (XRD)
• Crystal orientation and texture (XRD, lab or synchrotron, EBSD)
• Interdiffusion (SIMS or Auger depth profiling)

Many non-routine techniques are needed during process 
development.
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Agglomeration: Formation of nano-islands

TEM

Surface energy vs.
bulk energy

Ref:
Niranjan, PRB 73 & 75
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Thin Ni films agglomerate after annealing,
do not form continuous silicide film.
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UV-Raman spectra of 
the Si LO mode from 
the Si substrate.
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NiSi Crystal orientation influences agglomeration

C. Detavernier et al., Nature 426, 641 (2003).

NiSi (002) pole figure obtained using 
synchrotron x-ray diffraction.

Spots: epitaxial alignment
Rings: Conventional fiber texture
Arcs: Tilted fiber texture (axiotaxy)

Texture is influenced by lattice 
constants of Si and NiSi.

Good lattice match produces tilted 
fiber texture, which leads to early 
agglomeration.
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Reducing contact resistance and Schottky barrier height
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Future CMOS devices will lose 20% of their power in the contacts.
New materials for low-barrier contacts are crucial to reduce power.
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PtSi film properties:
TEM, RBS, AFM

Silicon

600°C
0.8 nm rms

PtSi formed by
• Si substrate preclean
• Pt sputtering (PVD)
• Thermal annealing
• Selective etch
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X-ray reflectivity (XRR) of as-deposited Pt on Si

Complex graded-density model:
PtO-Pt-Pt2Si-PtSi-Si
All densities fixed except Pt.
Excellent fit at all angles.

Reaction of Pt with Si already started without anneal.

Perhaps amorphous Pt/Si 
interfacial layer

Effective Pt thickness: 177 Å
(normalized to Pt density of 21.7 g/cm3)
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PtSi phase diagram and transformation
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PtSi phase transformation by XRD
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PtSi surface orientations

LDA structure calculations indicate many different surface orientations 
with similar surface energies (Niranjan, Demkov, Kleinman, PRB 73 & 75).
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Optical properties of Pt

Platinum

Energy (eV)
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Stefan Zollner, phys. status solidi (a) 177, R7 (2000).

Penetration depth: 100 to 150 Å
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Optical properties of Pt, 
Pt2Si, and PtSi

T. Stark et al.
Thin Solid Films 358, 73 (2000).

• Drude tail for Pt (diverges at E=0).
• Weaker divergence plus peak 
near 4 eV for Pt2Si.

• Weak absorption plus peak 
near 3.2 eV for PtSi.



TMFreescale™ and the Freescale logo are trademarksof Freescale Semiconductor, Inc. 
All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. 37

PtSi phase transformation by ellipsometry
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Summary: Silicide Nanowires
Modern CMOS devices need low-resistance current electrode 

contacts (between silicon transistor and metal interconnects)
• PtSi for PMOS
• Rare earth silicides (ErSi1.7) for NMOS
• Fermi level of silicide should be aligned with the conduction and valence 

bands of silicon, respectively.

Much silicide on THICK films was carried out many years ago.

Thin silicide films and narrow lines behave differently.
• Surface preparation (atomically clean, preamorphized, etc.)
• Bulk energy versus surface energy

• Agglomeration
• Crystal structure, texture
• Measurement techniques, modeling using ab initio theory. 
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