



# A Brief Tutorial on Private Automated Exposure Notification for COVID-19

26 January 2021 Marc Zissman, PhD MIT Lincoln Laboratory MAZ@LL.MIT.EDU



Internet Policy Research Initiative<br/>Massachusetts Institute of Technology





PACT is a collaboration led by the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT Internet Policy Research Initiative, Massachusetts General Hospital Center for Global Health and MIT Lincoln Laboratory. It includes close collaborators from Boston University, Brown University, Carnegie Mellon University, the MIT Media Lab, the Weizmann Institute and a number of public and private research and development centers. The PACT team is a partnership among cryptographers, physicians, privacy experts, scientists and engineers. PACT's mission is to enhance contact tracing in pandemic response by designing exposure detection functions in personal digital communication devices that have maximal public health utility while preserving privacy.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Defense Advanced Research Projects Agency under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency. © 2020 Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.







- Many non-pharmaceutical interventions to COVID spread can and do have impact, e.g.
  - Mask wearing, social distancing, testing, quarantine, isolation, contact tracing, etc.
- Automated exposure notification (AEN) can supplement manual contact tracing efforts
  - Automatic detection of high-risk exposure events
  - Hypotheses: AEN can decrease delay, decrease workload, broaden exposure detection
- There is both mod/sim and operational data that show that the system works
- Significant opportunities for future technical innovation exist





- Beginning early in the pandemic, <u>many</u> international teams of:
  - Cryptographers
  - Engineers and computer scientists
  - Physicians and public health professionals
  - System analysts, privacy experts and other specialists

proposed approaches to <u>private</u>, <u>automated detection</u> of potential exposure to COVID-19-infected individuals using Bluetooth signaling on smartphones that could <u>supplement</u> conventional, manual contact tracing

- Many of these teams worked in parallel, in collaboration with each other, and in collaboration with Apple|Google
- This talk provides an overview of <u>some</u> of that work







- Identify "contacts" that could have infected this person (reverse)
- Identify "contacts" that this person could infect (forward)





*Contact tracing* is an epidemiological technique used to identify people who have had "contact" with an infected person

- Traditional uses (examples):
  - Tuberculosis
  - Smallpox
  - Sexually transmitted diseases



#### Contact tracing can help inform public health interventions to slow virus transmission





- Prior to COVID-19, contact tracing was primarily a manual process
- Primarily used for diseases with longer temporal characteristics



#### Challenges

- Index case must remember who they were in contact with, where they were
- Index case must know identifying information for contacts
- Labor intensive and time consuming
- Risk of data errors
- Difficult to apply analytics
- May not scale to need

Advanced contact tracing tools are urgently needed to handle COVID-19







| 7 |  |
|---|--|
|   |  |

\*Video courtesy of Robin Marsden (RGM Productions), <u>https://youtu.be/qQYM25bpiLo</u>



# **General Approach**







Page 9



- Automatic exposure notification (AEN) can lead to <u>faster</u> exposure 1. notification vs traditional manual contact tracing (MCT) alone
- 2. AEN can reach persons who are not personally known to an index case
- AEN can still work when MCT reaches resource limits or breaks down 3.
- AEN alerts contacts privately and automatically about potential exposure, 4. enabling them to choose how they wish to engage with public health authorities
- 5. Public health can set an operating point such that benefits from AEN detection of true exposures outweigh potential costs from AEN false positives

\*Adapted from conversations with Viktor von Wyl (University of Zurich) et al. MAZ 01/26/2021

See also: von Wyl Viktor, et al. A research agenda for digital proximity tracing apps. https://smw.ch/article/doi/smw.2020.20324

# January 2021 Status: >30 Nations and U.S. States





Page 10 MAZ 01/26/2021 Massachusetts

Institute of Technology



### **AEN Stack Layers**



#### Layer 3A: Public Health Interface

#### Major Challenges

- Integration into manual contact tracing systems
- Certification of infection
- Interoperability across public health authorities
- Specifying "Too Close for Too Long" requirements
- Trustworthy systems to earn broad societal trust

#### Layer 3B: Individual Interface

#### Major Challenges

- Clear and local culture-appropriate opt-in instructions and explanation of privacy guarantees
- Simple functionality for reporting and certifying infection
- Simple functionality for notification of possible "too close for too long" contact and related instructions
- Integration with other public health functionality not directly AEN related

#### Layer 2: Private Cryptographic Protocol

#### Major Challenges

- Privacy preservation
- Chirp rollover frequency
- Reporting chirps sent vs chirps rec'd
- Mitigating threats posed by malicious parties

#### Layer 1: Proximity Measurement

#### Major Challenges

- Bluetooth phenomenology & data collection
- Implementing & evaluating "Too Close for Too Long" analytic
- Android, iOS interoperability
- Operating system policy compliance
- Smartphone power constraints
- OS vs app functional decomposition
- Other signaling options, e.g. ultrasound and UWB



### **User Interface**



#### **Mobile Phone App\***



- For individual smartphone users
- Turns exposure notification on and off
- Alerts user of potential exposure
- May provide additional functionality, e.g.
  - PHA updates for users
  - Daily user health inputs for PHA
- Simpler "App-less" version also available (EN Express for iOS)





#### Massachusetts Institute of Technology The 4-Circle Venn Diagram





- I: Individuals who are infected with the virus
- E: Individuals who are exposed as defined by a PHA
- C: Contacts identified via manual contact tracing (MCT)
- A: Contacts identified via automated exposure notification
- X: Union of MCT and AEN, i.e. C U A

# Note: These Venn diagrams don't capture speed of either MCT or AEN

- Many classes of false alarms
  - Class 1: Contact was actually further than 6ft from index, or was close but for less than 15min
  - Class 2: Contact was too close for too long, but just didn't get infected
  - Class 3: Contact was too close for too long, but was unexposable (e.g. in an adjacent apartment)





- >30 nations and US states using A|G ENS/ENX operationally
- Example: Switzerland (week ending 11 Jan 2021)
  - Data updated publically, daily

Institute of

Technology

- MCT performed ~26 cantons
- **AEN** managed at national level
- ~2K-5K new cases per day in past week
- 1.8M active AEN apps (total population = 8.5M people)
- ~200-500 COVID codes entered by users per day
  - ~2500 COVID codes entered in seven days ending 11 January
- ~20-40 calls per day to SwissCovid infoline re AENs rec'd (had been 300-400 per day in December)
- Delays between symptom onset and transmission of COVID code grow and shrink
- Many contacts who have tested positive were first alerted by an AEN, but hard to measure precisely

ENS: Exposure notification service (PHA builds app) ENX: ENS "Express" (PHA not required to build app)

See also: Salathé Marcel, et al, "Early evidence of effectiveness of digital contact tracing for SARS-CoV-2 in Switzerland," Swiss Medical Weekly, 2020;150:w20457 December 2020.





Page 15 MAZ 01/26/2021 https://down.dsg.cs.tcd.ie/tact/tek-counts/ downloaded 13 January 2021

https://www.experimental.bfs.admin.ch/expstat/en/home/innovative-methods/swisscovid-app-monitoring.html downloaded 13 January 2021 https://www.google.com/search?client=firefox-b-1-e&g=switzerland+covid+cases+today downloaded 13 January 2021



Page 16

### Recent Results from **Canton of Zurich, Switzerland\***



- AEN is faster than manual contact tracing
  - AEN-notified contacts with exposure risk outside own household entered quarantine one day earlier (on average) vs manual contact tracing (MCT)
- AEN finds infected people that MCT would miss
  - Analysis of Sept 2020 results in Zurich
  - 324 of 1923 (16.8%) PCR positive cases uploaded CovidCodes
  - 722 persons called the help line after they received an AEN \_
  - 170 of the 722 were given a quarantine recommendation
  - 30 of the contacts receiving AENs tested PCR positive

Massachusetts Institute of Technology

### Assessing TC4TL Systems (Notional DET Curves)





Page 17 MAZ 01/26/2021 \*A. Martin, A., G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki. "The DET Curve in Assessment of Detection Task Performance", Proc. Eurospeech '97, Rhodes, Greece, September 1997, Vol. 4, pp. 1895-1898.



### The Basics of Estimating Risk Exposure





- Contact receives Bluetooth signals from the index
  - Random, binary data (no personal information)
  - Distance is estimated by measuring attenuation in the Bluetooth signal between when it was transmitted and when it was received; duration is measured too
- Overall risk is a weighted sum of exposure minutes, which is then multiplied by case infectiousness (which itself is a function of days since symptom onset)





- For simplicity, most states have adopted one of two sets of standard AEN parameters (e.g. thresholds, weights, etc.)
  - "Narrower Net" Prioritizes lower PFA at the expense of higher PMISS
  - "Wider Net" Prioritizes lower PMISS at the expense of higher PFA
- The standard parameter sets were defined at an international workshop when a modest amount of real data was available\*
- Much more data collected since then permits quantification of what the standard parameter sets really do
  - Permits more informed public health authority decisions
  - Might possibly indicate that the standard parameter sets should be adjusted

#### Massachusetts Experiment-based AEN Evaluation (PACT Institute of Technology



Simulation

Test many hypothetical scenarios



- Explore A|G parameter space ٠
- Estimate system impacts •
- **Explore PH integration modes**



#### **Highly controlled experiments**



- Test A|G proximity alerts
- Examine app data flows
- **Baseline P(miss) vs. P(fa)**



#### In situ Pilots

#### Real users, real environments



- Assess app usability
- Estimate real P(miss) vs. P(fa)
- Test end-to-end PH workflow



### The Robot Dance (MIT LL Test Range)





 Electro-magnetic phantoms support Bluetooth proximity measurements



# **Bluetooth Phenomenology**





RA

- Data collected using human-like robots with smartphones on at a test range at MIT Lincoln Laboratory
- Variety of distances, poses, orientations, body blocking, bags, pockets, etc.
- Phone conditions can lead to >20dB (>100x) variation in RSSI\* at fixed distances



# **Narrower vs Wider Net Settings**





Narrower and wider net settings yield very similar options for operating points

Massachusetts

Institute of

Technology



### The AEN Value Proposition\* (Revisited)



- 1. Automatic exposure notification (AEN) can lead to <u>faster</u> exposure notification vs traditional manual contact tracing (MCT) alone
- 2. AEN can <u>reach persons who are not personally</u> <u>known</u> to an index case
- 3. AEN can still work <u>when MCT reaches resource</u> <u>limits</u> or breaks down
- 4. AEN alerts contacts <u>privately and automatically</u> about potential exposure, enabling them to choose how they wish to engage with public health authorities
- 5. Public health can set an operating point such that benefits from AEN detection of true exposures outweigh potential costs from AEN false positives



\*\* https://www.swissinfo.ch/eng/top-epidemiologist-urges-greater-uptake-of-contact-tracing-app/46108064

\*\* https://www.grandforksherald.com/newsmd/coronavirus/6726337-Overwhelmed-by-cases-North-Dakota-tells-residents-with-COVID-19-to-do-their-own-contact-tracing

🗸 Yes – data confirm

Yes – the A|G protocol provides this functionality by design and data confirm

Yes – MCT has broken down in some jurisdictions\*\*, and yet AEN still functions



Yes – the A|G protocol preserves privacy by design

<sup>\*</sup> See also: von Wyl Viktor, et al. A research agenda for digital proximity tracing apps. https://smw.ch/article/doi/smw.2020.20324

# Institute of Challenges (An Incomplete List!)

- Adoption
  - By public health authorities
  - By the public within these jurisdictions
- Speed of distribution of verification codes
- Willingness to use the verification codes and actually upload keys
- Willingness to follow public health instruction upon receiving an AEN
- Assessments
  - Measures of performance
  - Measures of effectiveness
- And the "big one": The trade-off between privacy and public health effectiveness... did we all get it right?





# **Example R&D Focus Areas**



Healthcare

Societal

nemerolwe







### NIST TC4TL Challenge September 2020





- Explored promising new ideas in TC4TL detection using BLE signals
- Supported the development of advanced technologies incorporating these ideas
- Measured and calibrated the performance of the state-of-the-art TC4TL detectors



Summary



- Many non-pharmaceutical interventions to COVID spread can and do have impact, e.g.
  - Mask wearing, social distancing, testing, quarantine, isolation, contact tracing, etc.
- Automated exposure notification (AEN) can supplement manual contact tracing efforts
  - Automatic detection of high-risk exposure events
  - Hypotheses: AEN can decrease delay, decrease workload, broaden exposure detection
- There is both mod/sim and operational data that show that the system works
- Significant opportunities for future technical innovation exist

### Acknowledgments



- PACT Leadership\*
  - Prof Ron Rivest

Massachusetts Institute of

Technology

- Danny Weitzner
- Dr Louise Ivers, MD MPH
- Israel Soibelman
- Ed Wack
- Adam Norige
- Prof Yael Kalai
- Bill Streilein
- Emily Shen
- Gary Hatke
- John Wilkinson
- Doug Reynolds
- Paula Ward
- Jenn Watson
- Chris Roeser
- Larry Candell
- Mark Smith
- Charlie Ishikawa
- Tim Dasey
- Marc Zissman

- PACT Tech Leads\*
  - Bobby Pelletier
  - Jess Alekseyev
  - Dieter Schuldt
  - Ted Londner
  - Emily Kosten
  - Gwen Gettliffe
  - Elliot Singer
  - Cassian Corey
  - Curran Schiefelbein
  - Richard Gervin
  - Joe St. Germain
  - Steve Mazzola
  - Eyassu Shimelis
  - Stacy Zeder
  - Mary Ellen Zurko
  - John Meklenburg
  - Mike Specter
  - Michael Wentz
  - Marc Viera

- Our sponsors and colleagues at IBM Research, DARPA and CDC
- 100+ other staff at MIT Lincoln Laboratory, CSAIL and IPRI who have contributed time to PACT since March
- Our colleagues at Apple and Google
- Our colleagues in Ireland, UK, Switzerland, Singapore, Finland
- Our colleagues at NIST
- Our colleagues in the academic and public health communities of Arizona, Pennsylvania and Massachusetts



\* A partial list of the PACT team members working at MIT and MGH on automatic exposure notification. Many other such teams have been working on AEN worldwide since the beginning of the pandemic.