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The Potential of a Quantum Computer (QC)

FSFACE problems

— « Computer science: QC

(e compiere) can solve problems not
- i possible with any classical
\ — computer
_ Eqg, factorizing large integers
aka cracking passwords
o + Why is this?
i1 o Complo — “Superposition” means all
possible iterations are
pes v b solved at the same time!

‘the Physical Reality’ Can Be
Provided Eventually.
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The Potential of a Quantum Computer (QC)

« Computer science: QC
can solve problems not
possible with any classical
computer
— Eg, factorizing large integers
aka cracking passwords
* Why is this?
— “Superposition” means all
possible iterations are
« Decoherence destroys

| superposmon (bad
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Some necessary items for a QC

 Si qubits with electron spin as the state variable (cf

charge on the gate of a MOSFET switch)
— Need T, [MTyiven > 103 (assumes QEC).

oherence’ " switc
* Eg, switching time 1 ns
* No decoherence for 1 us

— Need up to 500 million qubits all operating correctly
* No decoherence

» No drift or other gross problems
— Need up to 3 X 1013 (30 Th) of classical bits
* Other candidates:
— Atoms and ions
— Superconducting qubits
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« Characterization future needs of Si qubits
— Structural
— Electrical
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Two prototypes of Si qubits

“single atom” “quantum dot”
Patterned P atoms Si/S102 multi-gate
encased in Si multi-layer MOSFET

" Fuechsle, M, etc., A single-atom transistor.
Nat Nano 2012, 7, (4), 242-246.

Koppinen, Stewart, Zimerman, |IEEE TED
2013
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A smattering of metrology and characterization
needs

e Just illustrative, not exhaustive

AN
‘Fuechsle, M, etc., A single-atom transistor.
Nat Nano 2012, 7, (4), 242-246.
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A smattering of needs: Decoherence
measurements

« Decoherence measurements — need 99.9% fidelity

— For a single qubit, need to repeat 100’s of microwave
pulses 1000’s of times

— For 500 000 000 qubits?!?
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Aside: Everything is harder at low temperatures

« Many of the measurements we discuss must be
done at low temperatures.
— Limited number of leads
— Can't see inside dewar
— Power < 1 mW = current < 1 pAl




A smattering of needs: %8Si isotopic enrichment

« Spin qubits were in GaAs, but nuclear spins cause decoherence

« In Si, isotope 5% 2°Si (bad)
« Want << 10# 2°Sij — this SIMS measurement down to 1 ppm!

K J Dwyer et al
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A smattering of needs: dopant "monolayer”
thickness

« How do we measure the thickness of an epitaxial 1 nm
layer?

- LL SIMS Data

* No LL SIMS Data .
We believe the
monolayer (green

curve) is about
5 A thick.
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Fuechsle, M, etc., A single-atom transistor.
Nat Nano 2012, 7, (4), 242-246.

50 100 150 200
Z (Angstrom)

Physical Measurement Laboratory ™ = e A_— 3/29/2017 —»a,,- 'EO] % 18-




A smattering of needs: single atom overgrowth

thickness, etc.

« We would like to characterize the Si overlayer

— Thickness
— Purity

— Crystallinity, ...
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Fuechsle, M, etc., A éiﬁgle-atom transistor.
Nat Nano 2012, 7, (4), 242-246.
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A smattering of needs: single atom locations

 For CMOS now, and even more for single atom devices,
knowledge of the location of every individual dopant is crucial

« STM imaging

N (slow)
N * No deeper
" than 5 nm
§ ©  Required
Fuechsle, M, etc., A single-atom transistor. ISOlatEd
Nat Nano 2012, 7, (4), 242-246.
dopant
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A smattering of needs: dopant identification

« Given background doping of wafers, we need to identify
the species

« Can be done by comparing I(V) and modelling

Koppinn, Stewart, Zimmerman, IEEE TED
2013
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A smattering of needs: strain-induced quantum
dots

« Stress and strain are very important in CMOS, for
enhancing mobility

Physical Measurement Laboratory™ ™ = 3/29/2017 -,==='::::-.::;;:: -



A smattering of needs: strain-induced quantum
dots

« Stress and strain are very important in CMOS, for
enhancing mobility

 We have discovered that they also can change the device
electrical geometry completely!

A quantum
dot forms
2 without
5 voltages
B -

E_{meV)

UG poly-Si

LG poly-Si
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Thorbeck, Zimmerman, AIP Adv 2016 Si
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A smattering of needs: defect-induced time
Instabllity

« “Charge offset drift” — similar to V; shift

Koppineh, Stewart, Zimmerman, IEEE TED
2013

UG poly-Si

LG poly-Si
/ BOX
anowire
Stewart, Zimmerman, Appl. Sci. 2016
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Research performed in part at

the NIST Center for Nanoscale
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