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Future Needs of Characterization and Metrology 

for Silicon Qubits in Quantum Computing

Neil Zimmerman, Rick Silver, Xiqiao Wang

NIST

Fuechsle, M, etc., A single-atom transistor. 
Nat Nano 2012, 7, (4), 242-246. Koppinen, Stewart, Zimmerman, IEEE TED 

2013

How do we

• Find and identify single 

atoms?

• Measure 500 000 000 

coherence times?

• Quantify how strain 

produces devices?

• ….



“I’d rather uncover less than cover more”

• Please ask questions
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Outline

• Quantum Computing

– Beyond CMOS

– The potential of quantum computing: Quantum 

parallelism

• Characterization future needs of Si qubits

– Structural

– Electrical

• Summary of needs
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Quantum Computing in Beyond CMOS

(most recent BC full 
chapter, IRDS 2016 
similar)
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The Potential of a Quantum Computer (QC)

• Computer science: QC 

can solve problems not 

possible with any classical 

computer

– Eg, factorizing large integers 

aka cracking passwords

• Why is this?

– “Superposition” means all 

possible iterations are 

solved at the same time!
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The Potential of a Quantum Computer (QC)

• Computer science: QC 

can solve problems not 

possible with any classical 

computer

– Eg, factorizing large integers 

aka cracking passwords

• Why is this?

– “Superposition” means all 

possible iterations are 

solved at the same time!

• Decoherence destroys 

superposition (bad).

classical

4 runs

1

0

1

1

quantum

1 run

00 +
01 +
10 +
11

00 +
01 +
11 +
10

“quantum parallelism”
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Some necessary items for a QC

• Si qubits with electron spin as the state variable (cf
charge on the gate of a MOSFET switch)
– Need Tcoherence/Tswitch > 103 (assumes QEC).

• Eg, switching time 1 ns

• No decoherence for 1 ms

– Need up to 500 million qubits all operating correctly

• No decoherence

• No drift or other gross problems

– Need up to 3 X 1013 (30 Tb) of classical bits

• Other candidates:
– Atoms and ions

– Superconducting qubits

– …
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Outline

• Quantum Computing

– Beyond CMOS
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parallelism
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Two prototypes of Si qubits

“single atom” “quantum dot”

Patterned P atoms Si/SiO2 multi-gate

encased in Si multi-layer MOSFET

Fuechsle, M, etc., A single-atom transistor. 
Nat Nano 2012, 7, (4), 242-246. Koppinen, Stewart, Zimmerman, IEEE TED 

2013
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A smattering of metrology and characterization 

needs

• Just illustrative, not exhaustive

Fuechsle, M, etc., A single-atom transistor. 
Nat Nano 2012, 7, (4), 242-246. Koppinen, Stewart, Zimmerman, IEEE TED 

2013
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A smattering of needs: Decoherence

measurements

• Decoherence measurements – need 99.9% fidelity

– For a single qubit, need to repeat 100’s of microwave 

pulses 1000’s of times

– For 500 000 000 qubits?!?

Fuechsle, M, etc., A single-atom transistor. 
Nat Nano 2012, 7, (4), 242-246. Koppinen, Stewart, Zimmerman, IEEE TED 

2013

Veldhorst et al, Nature Nanotech 2014
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Aside: Everything is harder at low temperatures

• Many of the measurements we discuss must be 

done at low temperatures.

– Limited number of leads

– Can’t see inside dewar

– Power < 1 mW  current < 1 mA!
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A smattering of needs: 28Si isotopic enrichment

• Spin qubits were in GaAs, but nuclear spins cause decoherence

• In Si, isotope 5% 29Si (bad)

• Want << 10-4 29Si – this SIMS measurement down to 1 ppm!

Fuechsle, M, etc., A single-atom transistor. 
Nat Nano 2012, 7, (4), 242-246. Koppinen, Stewart, Zimmerman, IEEE TED 

2013

Dwyer et al, J Phys D 2014

depth
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A smattering of needs: dopant “monolayer” 

thickness

• How do we measure the thickness of an epitaxial 1 nm 

layer?

Fuechsle, M, etc., A single-atom transistor. 
Nat Nano 2012, 7, (4), 242-246.

We believe the 

monolayer (green 

curve) is about 

5 Å thick.
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A smattering of needs: single atom overgrowth 

thickness, etc.

• We would like to characterize the Si overlayer

– Thickness

– Purity But we don’t know exactly where the

– Crystallinity, … overlayer starts!

Fuechsle, M, etc., A single-atom transistor. 
Nat Nano 2012, 7, (4), 242-246.

Si

P+ monolayer?

Si
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A smattering of needs: single atom locations

• For CMOS now, and even more for single atom devices, 

knowledge of the location of every individual dopant is crucial

Fuechsle, M, etc., A single-atom transistor. 
Nat Nano 2012, 7, (4), 242-246.

• STM imaging 

(slow)

• No deeper 

than 5 nm

• Required 

isolated 

dopant

Usman et al, Nature Nanotech 2016
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A smattering of needs: dopant identification

• Given background doping of wafers, we need to identify 

the species

• Can be done by comparing I(V) and modelling

Koppinen, Stewart, Zimmerman, IEEE TED 
2013

Lansbergen et al, Nature Phys 2008
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A smattering of needs: strain-induced quantum 

dots

• Stress and strain are very important in CMOS, for 

enhancing mobility

Koppinen, Stewart, Zimmerman, IEEE TED 
2013
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A smattering of needs: strain-induced quantum 

dots

• Stress and strain are very important in CMOS, for 

enhancing mobility

• We have discovered that they also can change the device 

electrical geometry completely!

Koppinen, Stewart, Zimmerman, IEEE TED 
2013

Thorbeck, Zimmerman, AIP Adv 2016

A quantum 
dot forms
without 
voltages
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A smattering of needs: defect-induced time 

instability

• “Charge offset drift” – similar to VT shift

Koppinen, Stewart, Zimmerman, IEEE TED 
2013

time (days)

Stewart, Zimmerman, Appl. Sci. 2016
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Outline

• Quantum Computing

– Beyond CMOS
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parallelism

• Characterization future needs of Si qubits
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Need Single atom or  
quantum dot

New or 
extension?

Challenge 1 Challenge 2 Known 
technique
destructive?

1 ppm isotopes both extension SIMS? Atom probe? Yes

1 nm monolayer 
thickness

Single atom extension Epitaxial - hard
to find

Atom probe? Yes?

Location of 
monolayer

Single atom extension Epitaxial - hard
to find

STEM/EDS? Yes

Strain-induced 
dots

Quantum dot extension Re-focus existing 
techniques

Deliberate 
design for tighter 
geometry?

yes

Coherence time both new 99.9% 500 000 000 
qubits

No

Single atom 
location

Single atom new STM – slow Low temperature No

Dopant 
identification

Quantum dot new SET - slow Low temperature no

Charge offset 
drift

Quantum dot new SET - slow Low temperature no

Summary of needs



3/29/2017

L:\internal\SET_team\Neil\Power Point\talks\17_3 FCMN

28

Need Single atom or  
quantum dot

New or 
extension?

Challenge 1 Challenge 2 Known 
technique
destructive?

1 ppm isotopes both extension SIMS? Atom probe? Yes

1 nm monolayer 
thickness

Single atom extension Epitaxial - hard
to find

Atom probe? Yes?

Location of 
monolayer

Single atom extension Epitaxial - hard
to find

STEM/EDS? Yes

Strain-induced 
dots

Quantum dot extension Re-focus existing 
techniques

Deliberate 
design for tighter 
geometry?

yes

Coherence time both new 99.9% 500 000 000 
qubits

No

Single atom 
location

Single atom new STM - slow Low temperature No

Dopant 
identification

Quantum dot new SET - slow Low temperature no

Charge offset 
drift

Quantum dot new SET - slow Low temperature no

Summary of needs

Need to know strain at low T!
Need EBSD Power < 1 mW!
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Great new ideas needed!
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Josh Pomeroy, Michael Stewart, 
Curt Richter, NIST
Alan Seabaugh, UND
Jim Clarke, Intel

Research performed in part at 
the NIST Center for Nanoscale 
Science and Technology
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25 25 229
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19 62 199

19 79 177

45 97 155

46 130 168


