

FCHNOLOGIES

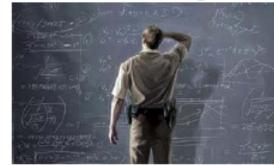
Weather durability testing and failures in terrestrial flat plate PV modules

Allen Zielnik Atlas Material Testing Technology LLC

2nd Atlas/NIST Workshop on Photovoltaic Materials Durability November 13-14, 2013, NIST, Gaithersburg, MD

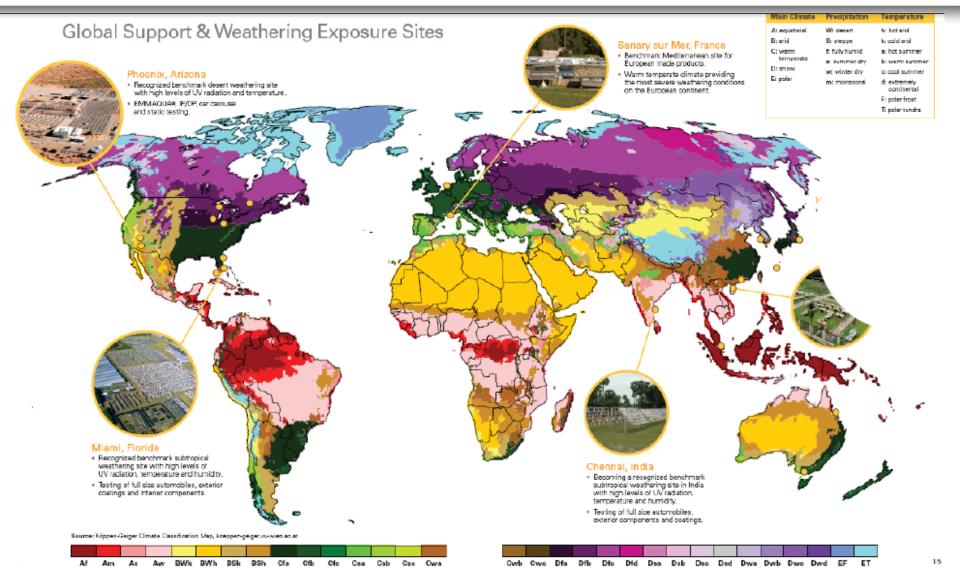
ACCELERATING YOUR EXPERTISE

About Atlas – 4 key weathering businesses


- Weathering Testing Services
- Laboratory Weathering Instruments
 Instruments
 Instruments
 Instruments

TECHNOLOGIES

Custom Test Systems

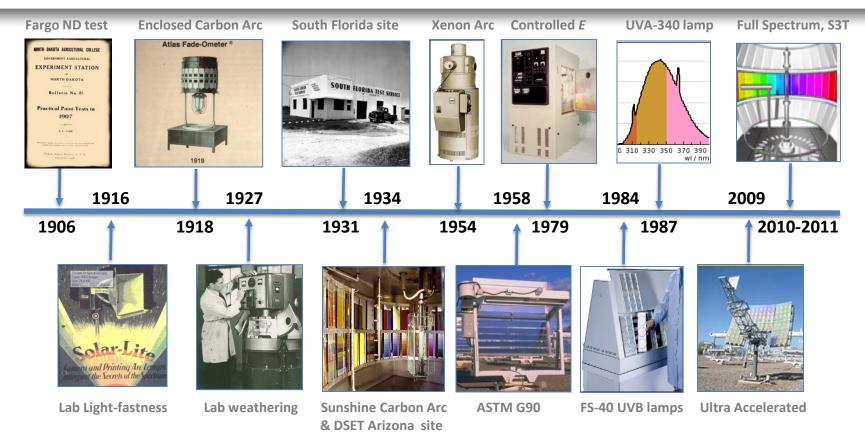

Global Consulting

Benchmark weathering exposure test sites

MEASUREMENT & CALIBRATION TECHNOLOGIES

Approximately 22 global sites available for test exposures

Atlas Worldwide Exposure Network



		7					
Location	Latitude	Longitude	Elevation (m)	Average Ambient Temperature (°C)	Average Ambient RH (%)	Rainfall (mm)	Total Radiant Energy (MJ/m²)
Miami, FL	25° 56' N	80° 25' W	2	23	79	1686	6234
Jacksonville, FL	30° 29' N	81° 42' W	8	20	76	1303	5800
New River, AZ	33° 54' N	112° 08' W	610	22	33	338	7324
Prescott, AZ	34° 39' N	112° 26' W	1531	12	65	1093	7000
Chicago, IL	41° 47' N	87° 45' W	190	10	69	856	5100
Louisville, KY	38° 11' N	85° 44' W	149	13	67	1092	5100
Sanary, France	43° 08' N	5° 49' E	110	13	64	1200	5500
Hoek van Holland, Netherlan	51° 57' N	4° 10' E	6	10	87	800	3800
Lochem, Netherlands	52° 30' N	6° 30' E	35	9	83	715	3700
Singapore (Changi Airport)	1° 22' N	103° 59' E	15	27	84	2300	6030
Melbourne, Australia	37° 49' S	144° 58' E	35	16	62	650	5385
Townsville, Australia	19° 15' S	146° 46' E	15	25	70	937	7236
Choshi, Japan	35° 43' N	140° 45' E	53	14	78	1682	4659
Miyakojima, Japan	24° 44' N	125° 19' E	50	23	76	1741	4894
Ottawa, Canada	45° 20' N	75° 41' W	103	6	73	1910	4050
Sochi, Russia	43° 27' N	39° 57' E	30	14	77	1390	4980
Dhahran, Saudi Arabia	26° 32' N	50° 13' E	92	26	60	80	6946

Weathering testing milestones

MEASUREMENT & CALIBRATI TECHNOLOGIES

100 year history

Brief Recap

- 1970 Atlas (DSET Laboratories) Atlas Super-MAQ[™] durability exposure tests of original Skylab (SL-1) PV modules for NASA/JPL
- **1995** NREL installs first Atlas XR-260 large scale xenon weathering device specifically for PV testing (& standard Atlas xenon Weather-Ometers)
- **1996** NREL installs Atlas SolarClimatic 1600 metal-halide "global" solar environmental chamber
- 2008 Atlas attended NREL PV Reliability Workshop no discussion of weathering
- **2009** Atlas Technical Conference on Accelerating Ageing and Evaluation (ATCAE-Solar) introduces Atlas 25+ PV module weathering test program
- 2010 Program cycle modifications for improved parameter control in larger solar/environmental chambers to accommodate larger module sizes
- 2011 Added more options/modifiers (such as coastal-marine, alpine) and evaluations (such as EL, wet-leakage current) to Atlas 25+
- 2012 Added Atlas 25+ Certification accreditation option
- **2013** Atlas 25+ 2013 edition implements additional climate options and test additions. Certified additional Atlas 25+ test partners in Taiwan, China, Korea.
- **2014** (Pending) Establish new climate parameters (China zones, etc.)

Weathering testing basic tenets (basic)

Based on over 100 years of weatherability testing across all industries:

- Material/product weathering is the result of:
 - Chemical and/or physical degradation processes which may occur simultaneously or sequentially
 - Multiple, simultaneous and continually varying extrinsic environmental stresses which often act synergistically; steady state conditions are rarely encountered in nature
 - Intrinsic material sensitivity (e.g., UV, thermal, etc.) to specific or combined stresses (interaction effects) or cycles
- Weathering tests (outdoor or laboratory)
 - Must reproduce the same physical and chemical degradation as the service exposure
 - Should reproduce and combine, at a minimum, the 3 primary stress factors of solar radiation, temperature and moisture, as well as their natural cycles, *unless demonstrated as not needed* (e.g., UV degradation not influenced by thermal effects)
 - Test Acceleration Factors are highly material and property specific; are often not linear with exposure; high acceleration factors often result in poor correlation
 - High irradiance has proven a valid technique for greater test acceleration, even in the absence of strict reciprocity. High overstress of other factors is usually problematic.
 - Materials/products should be tested in as close to an operational configuration as possible

"Weathering" & IPVQATF, IEC, etc.

IEC TC82 WG2

• 61730 – 2 Testing

Awaiting weathering test - ISO 4892 -2 is being used as a place holder - high priority

Draft proposal to CEC

Photovoltaic Module "Qualification Plus" Testing

Sarah Kurtz, John Wohlgemuth, Michael Kempe, Nick Bosco, Peter Hacke, Dirk Jordan, David C. Miller, Timothy Silverman

National Renewable Energy Laboratory

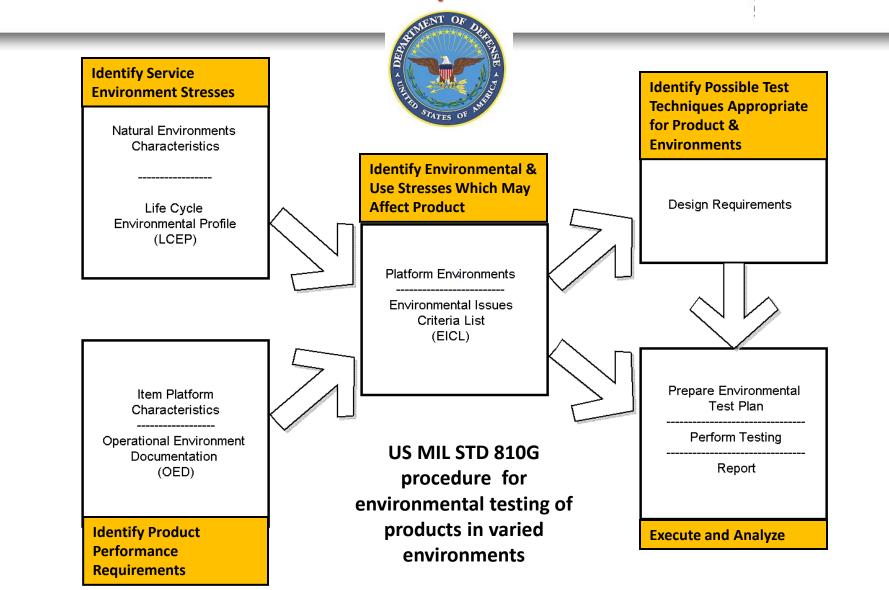
Test	Associated failure	"Qualification Plus" Origin or technical basis for test	
1. System voltage (potential-induced degradation)	Power loss for modules operating at large (positive or negative) bias voltage	Test method: IEC 62804; Pass criteria: studies correlating test with field results	
2. Thermal cycling	Solder bond or ribbon failure, usually associated with thermal fatigue	Extension of IEC 61215. Thermal cycling is known to identify this failure; field and modeling studies imply that longer testing may be beneficial.	
3. Dynamic mechanical load (DML)	Cracked cells that cause hot spots and power loss	IEC 62782. Studies have shown that the combination of DML and thermal cycling can uncover this failure.	
4. UV exposure for encapsulants	Discoloration and delamination of the encapsulant sometimes dominate the observed failures and cause power degradation	STR and other companies have successfully used this test to select EVA formulations for decades	
5. UV exposure for connectors/cables	Cracked connectors or cables	EN 50521 and draft for IEC 62852	
 UV exposure for junction boxes 	Loss of mechanical integrity for junction box	EN 50548 and draft for IEC 62790	
7. UV exposure for backsheets	Cracked backsheets have been observed and can lead to safety issues	EN 50548 and draft for IEC 62790	
8. Bypass diode thermal test	Failed bypass diodes and thermal degradation of junction box and/or potting	Logical extension of existing test to avoid junction box and diode failures that have been observed in the field	
9. Enhanced hot spot test	Localized heating from partial shading conditions	ASTM E2481-06	

"Weathering" & IPVQATF

Proposed rating system for climate and mounting

Proposal: Increase UV exposure with appropriate temperature & humidity. Use measurements and modeling to select temperatures.

IEC 60721-2-1 Climate Designation	Mounting classes			
	Rack mount	Close-roof mount		
Moderate	500 thermal cycles or DML + 200 TC	500 thermal cycles or DML + 200 TC		
(Temperate)	Increased UV exposure at 60°C*	Increased UV exposure at 80°C*		
Warm Damp,	500 thermal cycles or DML + 200 TC	500 thermal cycles or DML + 200 TC		
Equable (Tropical)	Increased UV exposure at 80°C*	Increased UV exposure at 100°C*		
Extremely Warm Dry	500 thermal cycles or DML + 200 TC	500 thermal cycles or DML + 200 TC		
(Desert)	Increased UV exposure at 80°C*	Increased UV exposure at 100°C*		


*Temperatures are estimates; final values TBD, but should vary with mounting/climate.

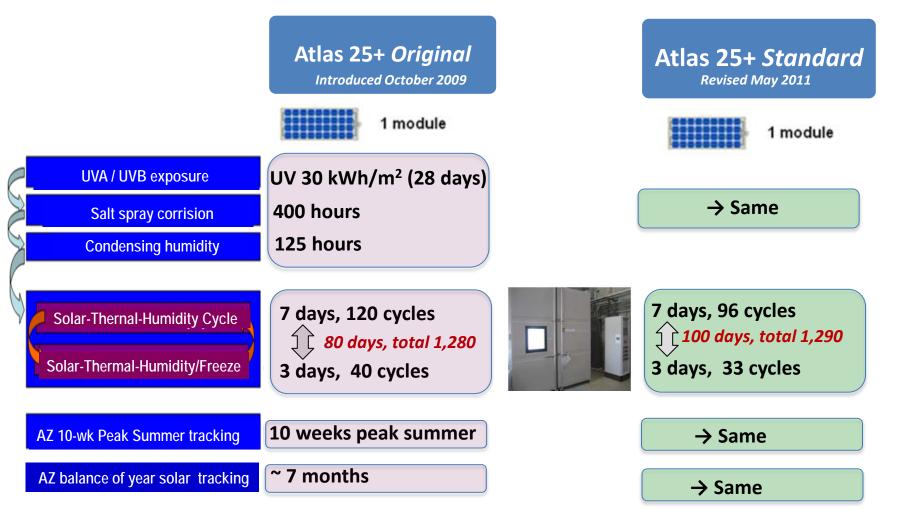
NATIONAL RENEWABLE ENERGY LABORATORY

9

Proposal for Comparative PV Module Rating System, Sarah Kurtz, John Wohlgemuth, Tony Sample, Masaaki Yamamichi, Michio Kondo 4th International PV Module QA Forum, October 10, 2013

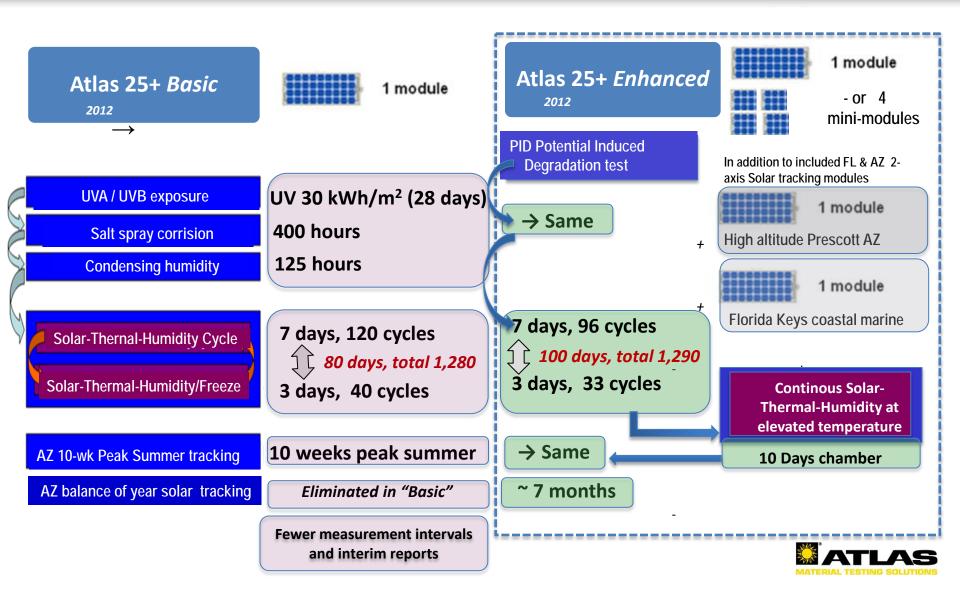
Environmental test tailoring in defense industry (US/NATO) - A model for Atlas 25+ development

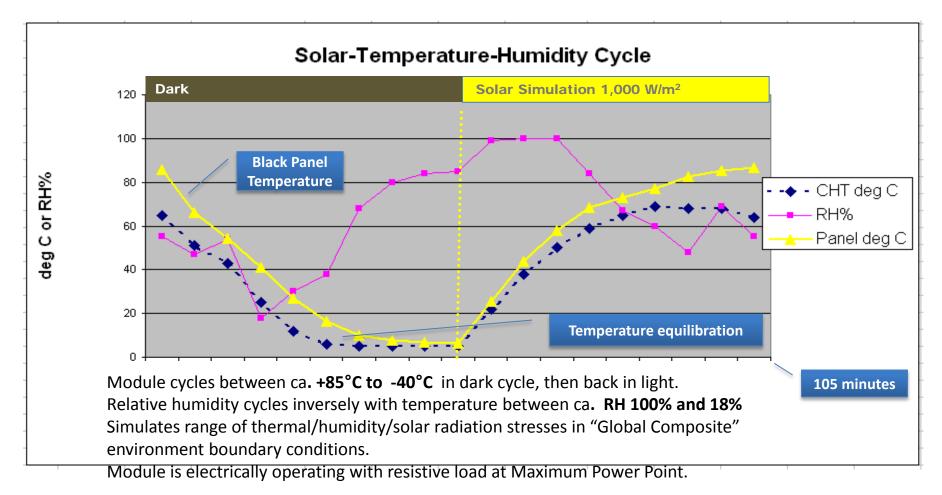
Department of Defense Test Method Standard for Environmental Engineering Considerations and Laboratory Tests


Atlas 25+ weathering test tenets (basic)

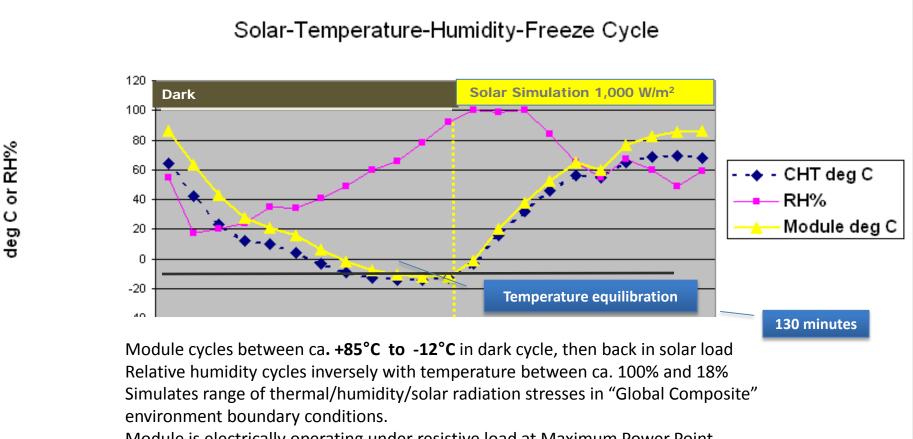
Designed to weather stress modules to various climates

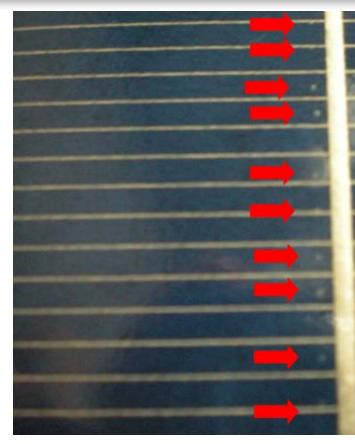
- Intended to complement, not duplicate or replace current or proposed extended IEC tests for evaluating longer term weathering effects (>10 yrs)
- Combines high cycle count of combined full-spectrum solar radiation with thermal/humidity day/night and seasonal cycling (Atlas large scale solar/environmental chamber)
- Test parameters are climate derived (Hot-Dry desert, Hot-Humid, Temperate, and "global composite"
- Sequences with extended UVA/UVB, salt fog, condensing humidity exposures and outdoor 2-axis solar tracking (Arizona including peak summer) not compatible with solar/environmental chamber testing
- Adds Arizona and South Florida 2-axis tracking outdoor exposures
- Optional add-ons for high-altitude (Prescott, AZ), coastal-marine atmosphere, etc.
- Modules are electrically operating whenever exposed to solar (sun or simulated)
- Multiple measurements: IR thermography, EL, IV, wet-leakage, visual, etc.
- Primarily "black box" approach to replicate weather, not specific failure modes


Atlas 25 + "global composite" environmental test cycle (other climates available)


Both include FL & AZ 2-axis Solar tracking modules for one year

"Global Composite Climate" cycle STH

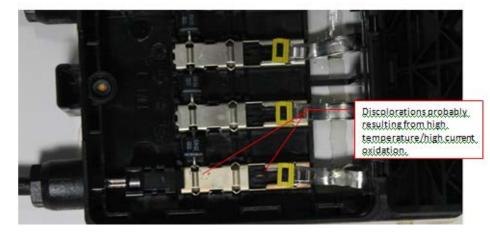

Simulates Spring-Summer-Autumn seasonal climate boundaries.

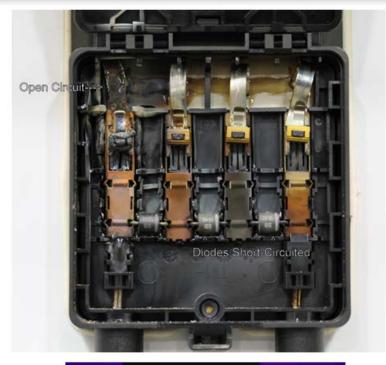

"Global Composite Climate" module cycle STH/F

Simulates high-latitude Winter seasonal climate.

Module is electrically operating under resistive load at Maximum Power Point.

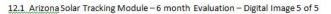
Florida (August) @ 6-month 2-axis tracker

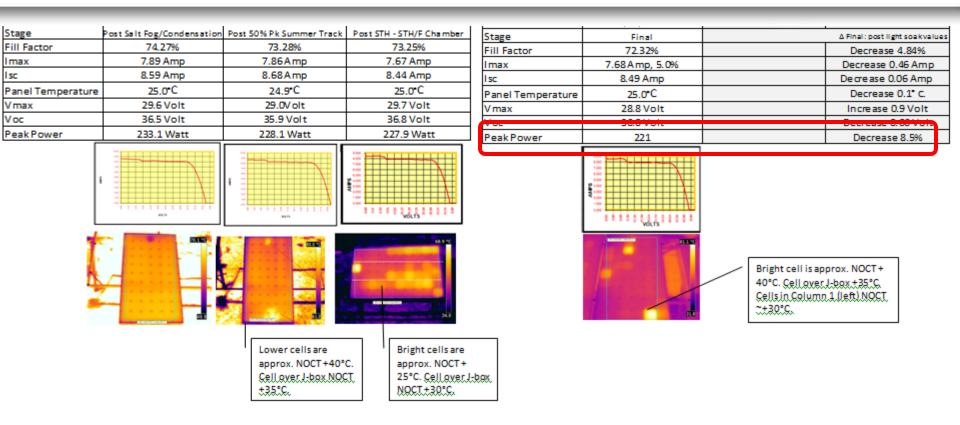

Power loss mean 4.2% at end of test


Evolution of "spots" during chamber tests

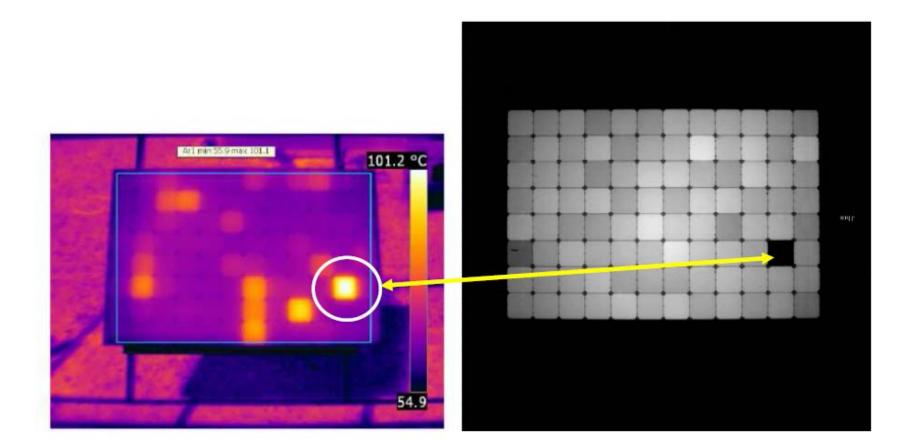
Note all data shown is proprietary and may not be of commercial products

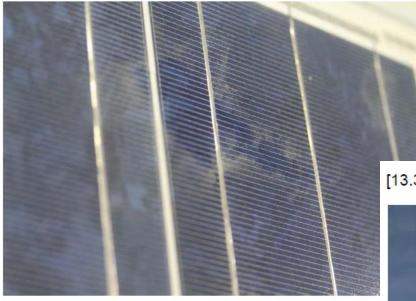
103.11 Report - Post Solar Thermal-Humidity & Solar Thermal-Humidity/Freeze cycles Primary Lab Module 139 Digital Images (2 of 5)

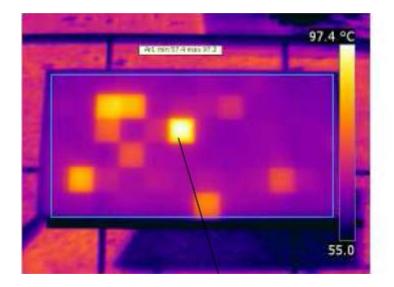




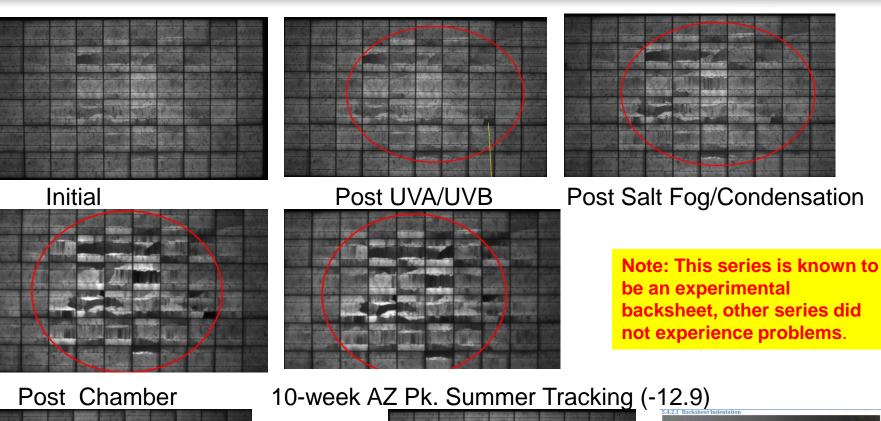
Frame Corrosion

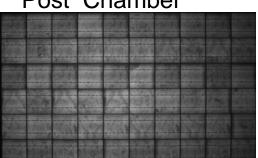


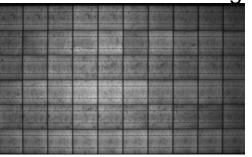




[13.2.2e] Mildew retention on face of glass (not easily seen on photos).




[13.3.3g]Some mildew formation on side of frame and between frame and glass.



1-yr FL Tracking (-5.7%)

Indentation on backsheet Indentation

1Yr AZ Tracking (-4.5%) BS defect

IG SOLUTIONS

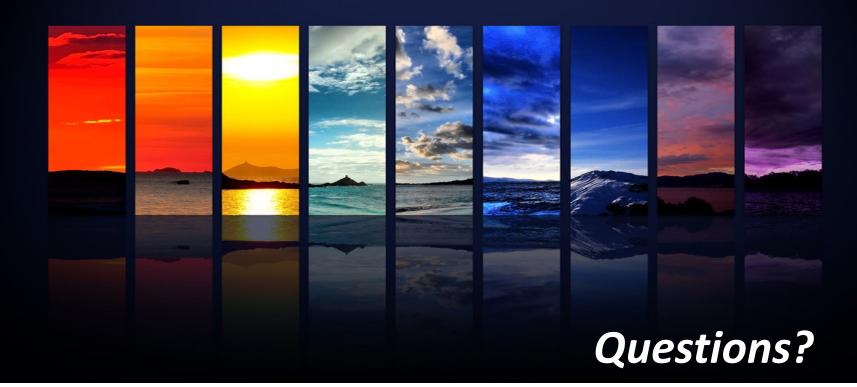
EK°

MEASUREMENT & CALIBRATION

TECHNOLOGIES

	Florida Tracking Module 2	Arizona Tracking Module 2	Lab Module 2
Date	April 10, 2013	January 28, 2013	February 8, 2013
Stage	Final (Washed)	Final	Final post STH – STH/F Chamber
Fill Factor (%)	72.5 [∆ +0.3]	72.1 [∆ +0.1%]	66.0 [∆ -6.7%]
Imax (Amp)	7.77 [Δ -0.18 (Δ -2.3%)]	7.80 [Δ -0.21 (Δ -2.6%)]	7.56[Δ -0.55 (Δ -6.8%)]
Isc (Amp)	8.52 [Δ -0.41 (Δ -4.6%)]	8.57 [Δ -0.31 (Δ -3.5%)]	8.51 [Δ -0.28 (Δ -3.2%)]
Panel Temp. (°C.)	24.9	25.0	25.1
Vmax (Volt)	28.13 [Δ +1.00 (Δ +3.6%)]	28.04 [Δ -0.53 (Δ -1.9%)]	25.5 [Δ -1.88 (Δ -6.6%)]
Voc (Volt)	35.37 [Δ -0.58 (Δ -1.6%)]	35.39 [Δ -0.42 (Δ -1.2%)]	35.70 [Δ -0.3 (Δ -0.8%)]
Peak Power (Watt)	218.6 [Δ 0-13.3 (Δ -5.7%)]	218.6 [Δ -10.2 (Δ -4.5%)]	200.4 [Δ -29.7 (Δ -12.9%)]

Note: Control Module 2 Peak Power [Δ -4.9 Watts (Δ -2.1%)]


Observations and summary

- Modeling and client field data (available and provided for some but not all modules) for power loss was generally consistent with ~ 5-10+ years field experience for multiple technologies (AF's are mode & property dependent)
- Modules types tested had all already met current IEC qualification tests
- Some modules had 2X extended chamber tests (global-composite cycle)
- Diode failures (one module series) were consistent with reported field failures
- Some front glass and backsheet types were particularly subject to dirt and/or mildew pickup and retention in Florida
- May provide additional information on longer term weather & climate-related durability/performance for module types as a complement to IEC-type qualification and material-level weathering tests.

Allen Zielnik

Senior Consultant – Weathering Science Atlas Material Testing Technology LLC Chicago, IL USA +1 773 289 5570 Al.Zielnik@Ametek.com