Correlation of Surface and Film Chemistry with Mechanical Properties in Interconnects

Ying Zhou, Guanghai Xu, Tracey Scherban Jihperng Leu, Grant Kloster and Chih-I Wu Logic Technology Development, Intel Corporation, Hillsboro, OR 97124, USA

2003 International Conference on Characterization and Metrology for ULSI Technology

Outline

- Introduction
- **Experimental**
- **FILD Surface Chemistry and ALD Activity**
- **FILD Surface Chemistry and Adhesion**
- **FILD Film Chemistry and k, Mechanical Properties**
- Conclusions

intel

Introduction

- To meet RC delay goals and minimize cross-talk, lower k dielectric films are required for 90 nm process technology and beyond.
- As the k is lowered, mechanical properties including elastic modulus, hardness, cohesive strength, and interfacial adhesion are generally reduced.
- Fundamental understanding of surface, interface and bulk chemistry and their relationship to electrical and mechanical properties are critical for material selection and integration.
- Close collaboration between disciplines is needed to make the learnings value added.

Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

Features

- Surface Sensitivity :Top 1nm, ppm level
- Molecular Specificity
- Sub-micron spatial resolution
- Depth profiling with an additional sputtering ion beam

intel

ILD Surface Chemistry Dictates TiN Atomic Layer Deposition(ALD) Activity

CVD Organosilicate ---- Siloxane Structure

in

CVD Organosilicate (left): SiCH₃ Termination Oxide (right): SiOH Termination

NO ALD TiN on the Organosilicate TiCl₄+ Si-CH₃ \rightarrow No reaction

Thick ALD TiN on Oxide $TiCl_4 + Si-O-H \rightarrow ClxTi-O-Si + HCl$ $ClxTi-O-Si + NH_3 \rightarrow NHyClzTi-O-Si + HCl$

Mass Spectrum of a Polymer ILD: Aromatics

In

Thick ALD TiN on the Polymer

intel

A Possible Bonding Configuration of Ti to the Aromatics: Coordination with π Electrons

Surface Chemistry Impacts Barrier/ILD Adhesion

Strong Adhesion between a CVD Ti Based Barrier and the Polymer ILD H₂ Plasma Pretreatment Degrades Adhesion

H₂ Plasma Treatment Increases H Content in the Hydrocarbon Fragments

int_{el}.

 Hydrogenation Pathways
(1) Decrease the Density of π Electrons --Less Bonding between Ti and the Polymer
(2) Reduce Crosslinkng in the Film

Hydrogenated Products are Less Thermally Stable

Explains

 Delamnation of the barrier on H₂ treated film upon thermal treatment;

 Reduction/elimination of delamination by 200-400C anneal of H₂ treated film prior to barrier deposition

Film Chemistry of the CVD Organosilicate and Mechanical Properties

Modulus and Cohesive Strength Decrease with Higher Si-CH₃ in the Film

Corresponding with Lower k

intel

E-beam Treatment Reduces Si-CH₃ and Increases Modulus and Hardness

Treatment	Elastic	Hardness
Conditions	Modulus	(GPa)
	(GPa)	
Untreated	9.9 ± 0.1	1.8 ± 0.1
UV-treated	8.5±0.9	1.7 ± 0.1
e-beam	22.8 ± 0.4	3.1±0.1
treated		
8 keV		
e-beam	12.8 ± 0.4	1.9 ± 0.1
treated		
3 keV		

int_{el} .

Surface functional groups of the ILDs dictate the TiN nucleation during ALD process

- methyl silane groups on organosilicate surface are not active; silanols are needed;
- Aromatics on polymers active
- Surface hydrogenation of the polymer degrades the barrier/polymer adhesion and thermal stability
 - Less Ti-C coordination
 - Decreased polymer crosslinking
- SiCH₃ in the film modulates the film elastic modulus, hardness, cohesive strength as well as dielectric constant.
- Fundamental understanding of chemistry of Cu-Low K interconnect interfaces is critical to technology development.

