engineering laboratory

May 20-23, 2018 Stamford, CT Assessing the Effect of Backcoatings and Fire Barrier Technologies on Upholstered Furniture Flammability

Mauro Zammarano

Project Leader, Reduced Flammability of Residential Upholstered Furniture, Flammability Reduction Group, Engineering Laboratory, National Institute of Standards and Technology, USA.

> Recent Advances in Flame Retardancy of Polymeric Materials BCC Meeting on Flame Retardancy

Disclaimer

Some of the data in this presentation hasn't been through NIST review process and should be considered experimental / draft results. However, the data has been analyzed by subject matter experts within the research team and is believed to be scientifically sound and consistent with the integrity expected of NIST research

Outline

- Residential-Upholstered-Furniture (RUF): moving away from Flame Retardants (FRs)
- Fire safe RUF without Flame Retardants
 NIST Silicone Backcoating
- Fire Barriers
- Testing (CUBE TEST)

composite cone-based-test for assessing Fire Barriers and Backcoatings

Residential Upholstered Furniture (RUF)

RUF fires are the largest cause of civilian deaths in US home fires*

How can we reduce RUF fire deaths?

- 1. Fire Prevention (ignition suppression)
- \Rightarrow Reduce smoldering ignitions (most frequent ignition source 1st item)
- 2. Fire Mitigation (heat release rate reduction)

 \Rightarrow >90 % of casualties from fires spreading beyond the initial burning object \Rightarrow >70 % from fires spreading outside the initial fire room**

*J.R. Hall Jr, Estimating Fires When a Product is the Primary Fuel But Not the First Fuel, With an Application to Uphol.Furn., NFPA, 2014. **Ahrens, Home Fires that Began with Upholstered Furniture, NFPA, 2017

NFPA 277: Sudden Death of a Draft Standard Flaming test for RUF

- 2014: started development of NFPA 277
- April 2018: NFPA Standard Council voted to cease NFPA 277
- NFPA stated that [1]:

- The <u>concerns about the toxicity of flame</u> <u>retardant chemicals</u> raised by participants, including first responders, need to be answered.

[1] https://www.nfpa.org/News-and-Research/News-and-media/Press-Room/News-releases/2018/NFPA-Standards-Council-votes-to-cease-standards-development-of-NFPA-277

Other Positions

 Fire Fighters: It would appear that any proposed new fire test designed to resists ignition from a second item and/or designed to limit growth of Heat Release Rate will require much higher levels of FR than those required to pass TB117. Probably at similar levels or exceeding TB133 (15-30%)"

Why Do Fire Fighters Support the Banning of Flame Retardants? Joseph Fleming PFFM (Professional Fire Fighters of Massachusetts) http://greensciencepolicy.org/wp-content/uploads/2018/02/6-Fleming_FRDPresentation_2518.pdf

CPSC recommends to refrain from intentionally adding nonpolymeric, organohalogen FRs

[CPSC Docket No. CPSC-2015-0022, Sept'17]

•

State of Maine first State banning all flame retardants in RUF
 Effective on Jan 1 2018 - https://www.mainelegislature.org/legis/bills/bills_128th/billtexts/HP013801.asp

Other Positions

 Fire Fighters: It would appear that any proposed new fire test designed to resists ignition from a second item and/or designed to

CPSC Docket No. CPSC-2015-0022, Sept'17

State of Maine first State banning all flame retardants in RUF
 Effective on Jan 1 2018 - https://www.mainelegislature.org/legis/bills/bills_128th/billtexts/HP013801.asp

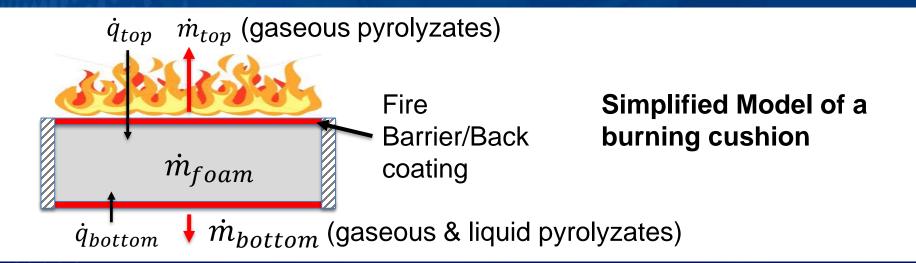
What is NIST doing?

 NIST SP1220 Workshop Report: Research Roadmap for Reducing the Fire Hazard of Materials in the Future (2018):

https://www.nist.gov/publications/workshop-report-research-roadmap-reducing-fire-hazard-materials-future

identified RUF as the top priority application for fire safety research in terms of overall impact on the fire problem

NIST project - Low Heat Release Upholstered Furniture

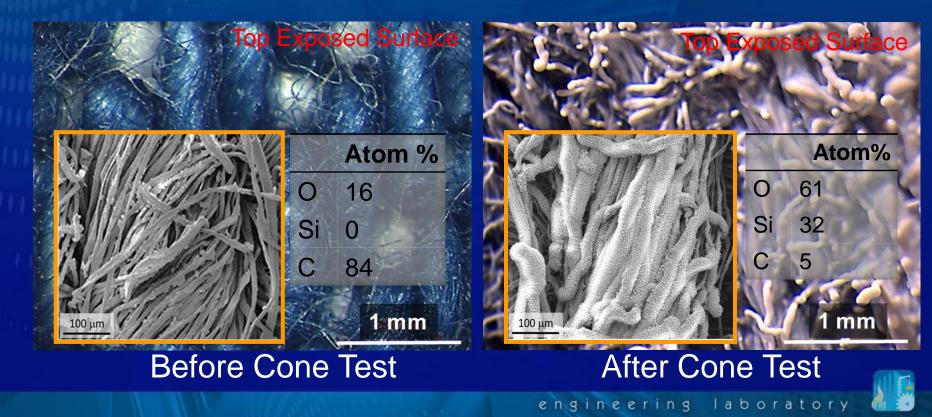

Project Objectives:

- low heat release rate RUF without the need for fire FR.
- bench-scale methodology for predicting the RUF flaming hazard.
- robust standard reference cigarettes for smoldering ignition testing
- bench-scale methodology for predicting the RUF smoldering hazard.

Fire Barriers

Reduce flammability without the use of chemical FRs by reducing

(1) Heat Transfer and (2) Mass Transfer (of pyrolyzates produced by foam decomposition)



NIST Silicone Backcoating

Zammarano et al., Smoldering and Flame Resistant Textiles via Conformal Barrier Formation, Adv. Mat. Interf., Nov 2016

FORMULATION (Flexible Pre-ceramic):

- Vinyl terminated PDMS crosslinked by Pt-catalyzed hydrosilation.
- Vinyl-modified aluminum-hydroxide (65 % by mass)
- vinyl-modified nanosilica (13 % by mass)
- Ethyl acetate (solvent)

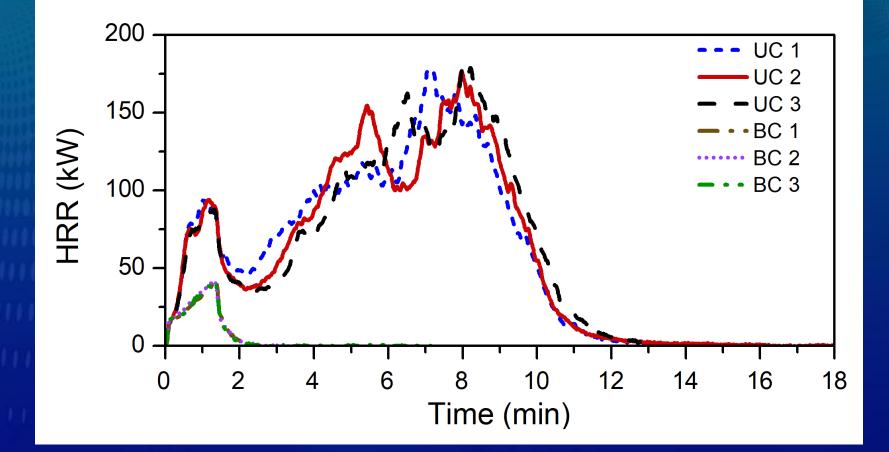
Silicone Backcoating – Large Scale

- Four cushion **mock-ups**:
- California TB 133 burner
 (18 kW square burner) 80 s
- Cover Fabric (Cotton velvet):
 Uncoated (UC) vs. Backcoated (BC)

Sample	Area density [g m ⁻²]	Thickness [mm]
Uncoated	447±3	1.3 ±0.2
Backcoated	813±16	1.5 ±0.3

Uncoated Mock-up

Backcoated Mock-up



Seams are Critical

- Backcoated fabric: no sign of failure
- Kevlar thread failure

HRR

Triplicate tests with high repeatability

Data Summary

	Peak HRR	Total Heat Release	Mass Loss	EHC
	[kW]	[MJ]	[%]	[kJ/g]
Uncoated	179±2	59.2 ±0.7	95.5 ±0.8	22.6 ±0.1
Backcoated	24±1	1.3 ±0.1	3.8 ±0.1	8.3 ±0.5

Backcoated sample after test

Backcoattencoatenpleamipheutteovestabric

Smoldering Ignition Resistance

NIST Docket number: 15-026US1 **U.S. PATENT** filed on April 21, 2016

Playback Speed: 500 x On the Left

Filling: Cal TB 117-2013 Polyurethane Foam

Fabric: Backcoated Cotton Velvet

Heat source: SRM 1196 cigarette

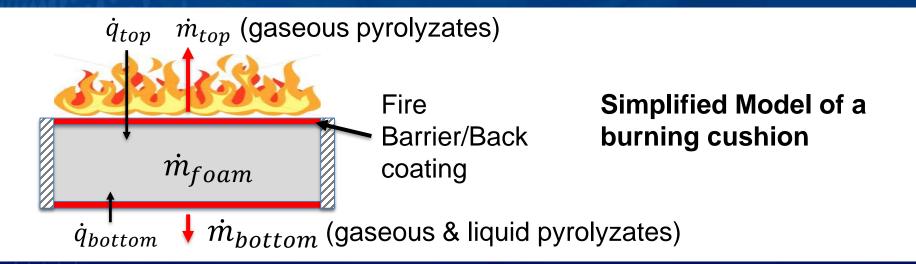
On the Right

Filling: Cal TB 117-2013 Polyurethane Foam

Fabric: Uncoated Cotton Velvet (TB 117-2013, Type 2)

Heat source: SRM 1196 cigarette

Backcoated


Uncoated

Fire Barriers

Reduce flammability without the use of chemical FRs by reducing

(1) Heat Transfer and (2) Mass Transfer (of pyrolyzates produced by foam decomposition)

Challenge - Design a bench-scale test capable of capturing the effect of Heat Transfer and Mass Transfer on HRR of RUF after ignition

Cone Calorimetry for RUF

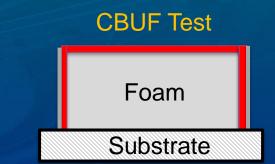
<u>CBUF Test</u> (*de-facto* standard)
 Foam Size: ≈ 4" × 4" × 2"
 ≈ (102 × 102 × 51) mm³

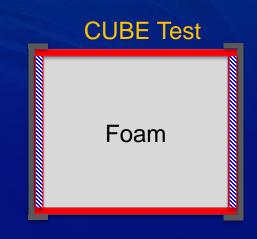
NIST Cube Test
 Foam Size: ≈ 41/4" × 41/4" × 41/4"
 ≈ (108 × 108 × 108) mm³

Cube test: capturing mass transfer effects

POOL FIRE!

Combustion Efficiency \downarrow


Fabric to Foam ratios

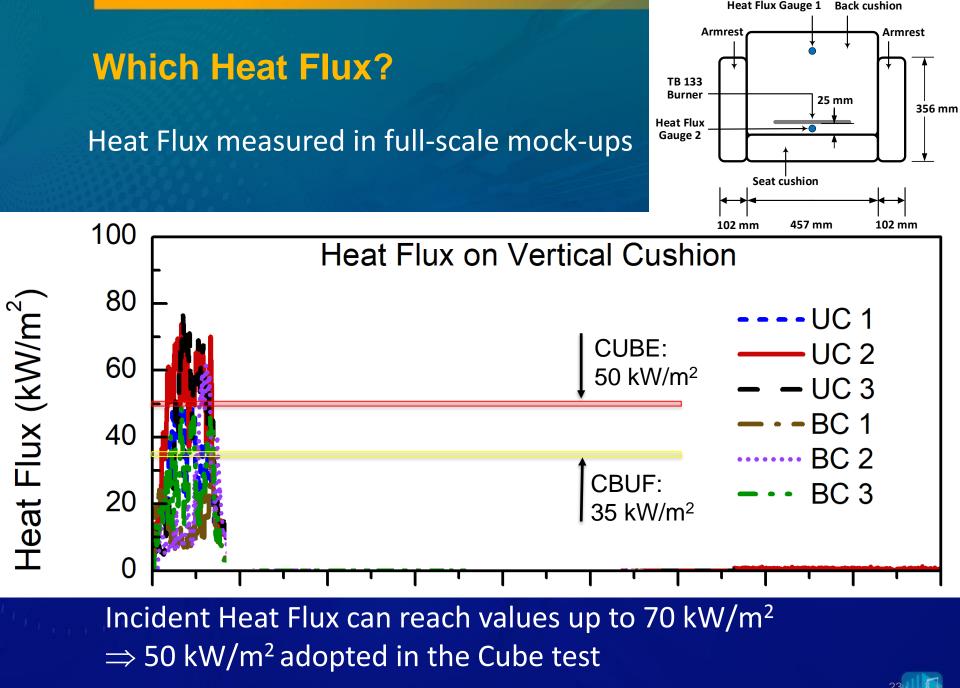

	Area _{fabric} /Volume _{foam} (m ⁻¹)			
RUF Cushion*	19.1			
Cube	19.0			
CBUF	58.8			

*(610×737×152)cm³≈ (24×29×6)in.³

For ρ_{foam} =29 kg/m³ and ρ_{fabric} = 0.4 kg/m²

	Mass _{foam} /Mass _{fabric}			
RUF Cushion*	3.8			
Cube	3.8			
CBUF	1.2			

engineering laboratory


20

CBUF Test: Sample Preparation (~30 min+24h)

Cube Test: Sample Preparation

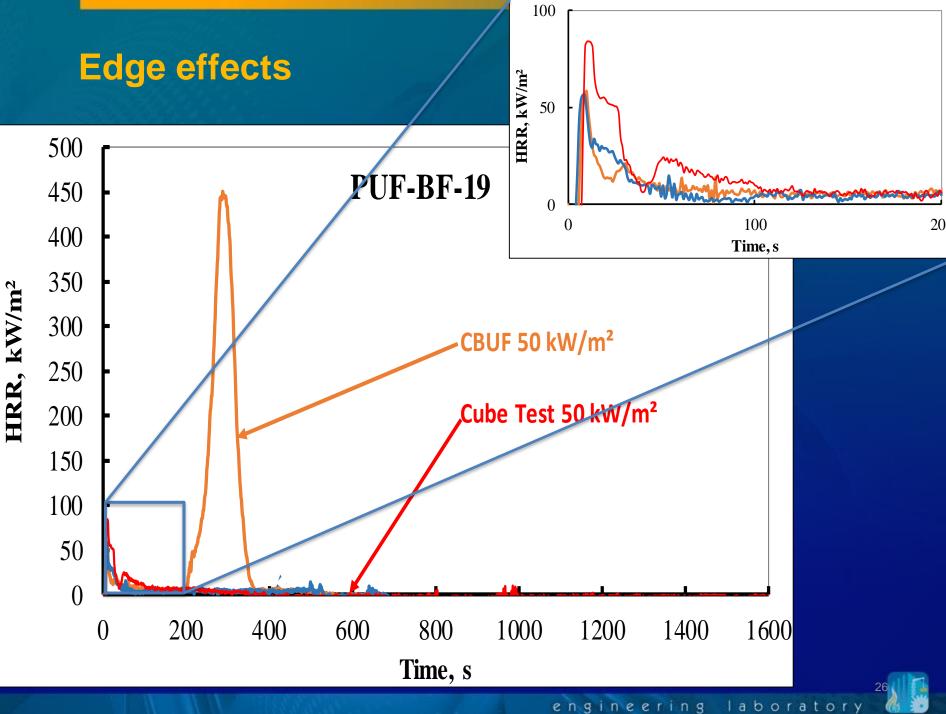
Correlation between CUBE and CBUF tests

- 11 Commercial Barriers were tested in triplicate tests in the CUBE and CBUF test
 - Type barrier: woven, non-woven, knitted, backcoated
 - Thickness range: 0.5 mm to 10 mm
 - FRs: X, Sb, P, N, Si
- 1 Foam:
- No-FR, TB117-2013 foam

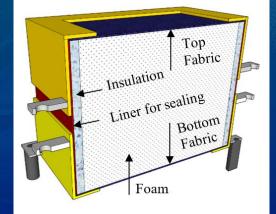


Edge Effects

BF19 - External Heat Flux: 50 kW/m2


Playback Speed: 32x

Cube Test



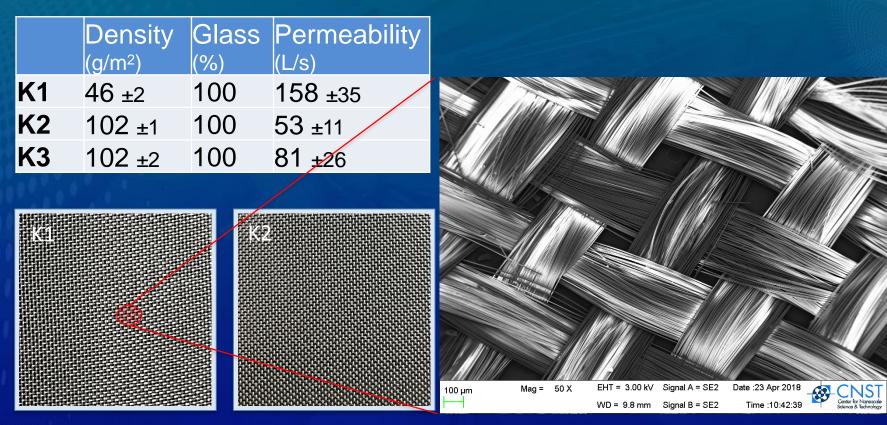
Failure Induced by Barrier Shrinkage

Certain fire barriers tend to shrink (e.g., cellulosics)

CBUF: Barrier is not constrained Cube Test: Barrier is constrained by edge seal

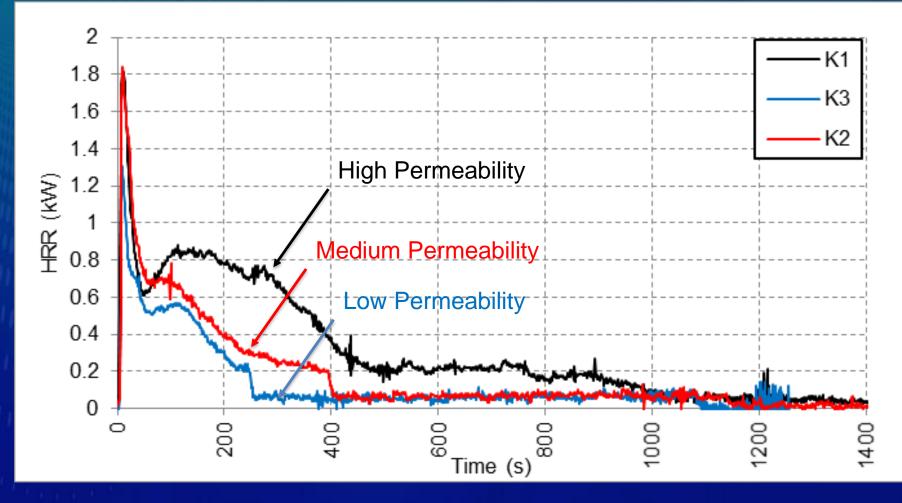
No stress induced failure

Shrinkage induces stress and possible failure


Cube Test: Effect of Bottom Upholstery Fabrics

The cube test captures the effect of bottom fire barrier

FR-free barriers: Glass Fabrics


3 fabrics (K1, K2, K3), 100% Glass, no sizing

Pictures of the 3 glass fabrics (25 mm by 25 mm)

K1: Plain weave, nominally 48.5 g/m^2 (1.43 oz/yd²) K2: Plain weave, nominally 107.1 g/m² (3.16 oz/yd²) K3: Satin weave, nominally 107.1 g/m² (3.16 oz/yd²)

Glass Fabrics as Fire Barriers – Cube Performance

Glass fabrics appear to be very effective even at a very low areal densities of 46 g/m² In a typical cushion the glass would account for less than 3 % of the mass of the cushion

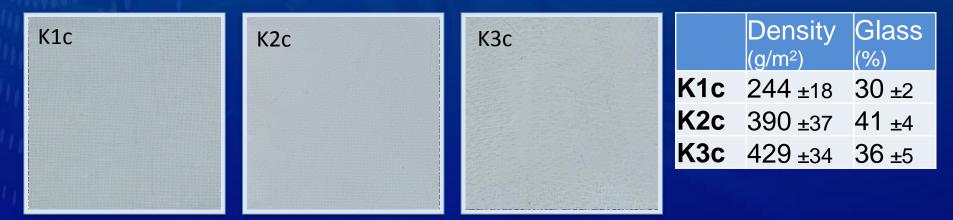
Glass Fabrics as Fire Barriers – Summary

	ti (s)		AHR (kW)		EHC (MJ/kg)	Foam ML (%)
Foam	2 ±1	10.2 ±0.3	4.6 ±0.2	938 ±15	27.0 ±0.3	97 ±2
K1+Foam	3 ±1	1.8 ±0.1	0.35 ±0.14	461 ±24	21.2 ±0.2	58 ±4
K2+Foam	5 ±1	1.4 ±0.1	0.17 ±0.03	238 ±71	13.9 ±0.7	47 ±11
K3+Foam	5 ±1	1.7 ±0.1	0.16 ±0.02	237 ±17	16.8 ±0.9	39 ±2

The use of glass fabrics as fire barriers induces:

- 6- to 7-fold reduction in PHRR
- 1.3- to 2-fold reduction in EHC

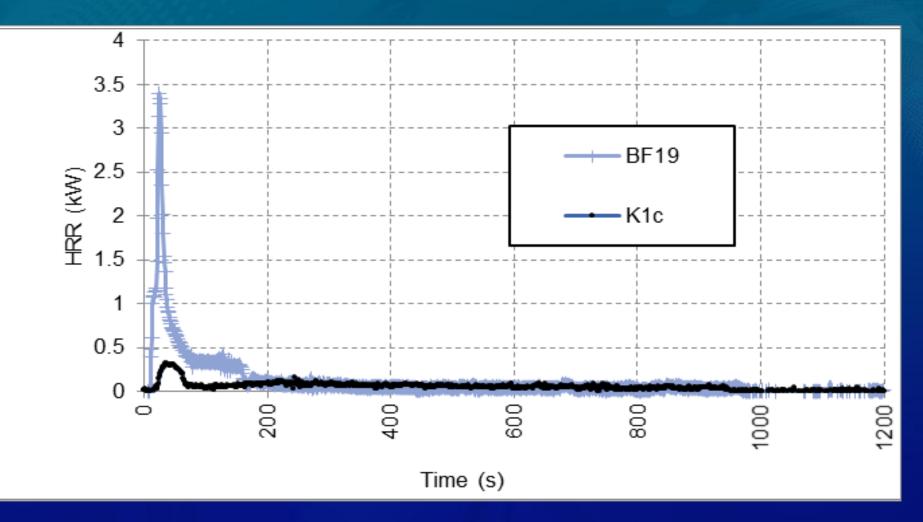
Combustion Efficiency \downarrow



Glass Fabrics + Silicone Coating

SILICONE COATING FORMULATION:

Vinyl terminated PDMS crosslinked by Pt-catalyzed hydrosilation.


- □ Vinyl-modified aluminum-hydroxide (65 % by mass)
- vinyl-modified nanosilica (13 % by mass)
- Ethyl acetate (solvent)

Sample size shown (25 mm by 25 mm)

Case Western Reserve University: Kimberly DeGracia, PhD Candidate, Prof. David A Schiraldi

Glass Fabrics + Silicone Coating – Cube

Glass Fabrics + Silicone Coating – Cube

	Ignition time	Peak HRR	AHR	THR	EHC	Mass Loss
	(S)	(kW)	(kW)	(KJ)	(MJ/kg)	(%)
Foam	2 ±1	10.2 ±0.3	4.6 ±0.2	938 ±15	27.0 ±0.3	97 ±2
K1+Foam	3 ±1	1.8 ±0.1	0.35 ±0.14	461 ±24	21.2 ±0.2	55.4 ±3.7
K2+Foam	5 ±1	1.4 ±0.1	0.17 ±0.03	238 ±71	13.9 ±0.7	42.6 ±10.3
K3+Foam	5 ±1	1.7 ±0.1	0.16 ±0.02	237 ±17	16.8 ±0.9	35.1 ±1.5
K1c+Foam	25 ±4	0.3 ±0.02	0.051 ±0.003	55 ±7	-	5.9 ±0.25
K2c+Foam	35	0.58	0.05	54	-	2.33
K3c+Foam	31	0.62	0.04	51	-	2.9

The addition of the coating to the glass fabrics induces:

- 7-fold increase in ignition time
- 2- to 8-fold reduction in Peak HRR
- 9- to 18-fold reduction in Mass Loss of the foam

Conclusions

- NIST developed silicone backcoatings have proven to be an effective all-in-one solution for fire-safe RUF
- A bench-scale test for fire barriers has been developed at NIST
- Glass Fabrics appear to be effective Fire Barriers

Ongoing NIST research (Real-scale tests):

- Feasibility of Low Heat Release Furniture without FRs
- Full-scale performance prediction by Cube test

engineering laboratory

THANK YOU!

Acknowledgements:

Flammability Reduction Group, NIST:

Shonali Nazaré, Randy Shields, Ickchan Kim, Andre Thompson, William M. Pitts, Sung Chan Kim, Isaac Leventon, Anthony Hamins, Dick Gann, Rick Davis

Case Western Reserve University:

Kimberly DeGracia, PhD Candidate, Prof. David A Schiraldi

Contact Information: Mauro Zammarano Phone: 301-975-5244 e-mail: mauro.zammarano@nist.gov