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Outline
Exchange-Correlation Functional in DFT: Uncertainty 

Quantification and Propagation

Quantifying uncertainties when using surrogate (DFT) 

models trained with a few ab initio simulations

 Design of Experiments: What are the most informative 

simulations needed for predicting a given QoI?

 A few words on stochastic coarse-graining: A Bayesian 

generative approach

 Scalable UQ for Multiscale Problems: A Graph-Theoretic 

Approach (EP, Belief propagation, etc.)
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 DFT energy functional (as a function of charge density):

o E[n] = Uext[n] + T0[n] + Uee[n] + Exc[n]

 Uext[n]: Interaction with external potential

 T0[n]: non-interacting kinetic energy

 Uee[n]: classical electro-electron-interaction

 Exc[n]: exchange-correlation energy, unknown

 Different levels of approximations for

o Local density approx. (LDA)

o Generalized gradient approx. (GGA)

o Meta-Generalized gradient approx. (meta-GGA) (used here)

o Hybrid (including exact exchange)

DFT: Exhange Correlation Energy
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R. Jones et al. (1989)

R. Jones (2015)

W. Kohn and L. Sham (1965)

J. P. Perdew et al. (2001)

http://dx.doi.org/10.1103/RevModPhys.61.689
http://dx.doi.org/10.1103/RevModPhys.87.897
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj19O-UgbjJAhULwBQKHZqXBgcQFggdMAA&url=http://link.aps.org/doi/10.1103/PhysRev.140.A1133&usg=AFQjCNF9NB1heaAY3raL86SHMlonowyD8A&bvm=bv.108194040,d.ZWU
http://dx.doi.org/10.1063/1.1390175


We work within the meta-GGA framework, it provides good 

cost-accuracy trade-off.

 Furthermore, we will focus on the exchange energy only:

We look for the exchange enhancement factor Fx(s, a) as a 

linear regression model using Legendre polynomials:

 Rescale s and a on [-1,1] based on earlier non-empirical 

functionals: PBEsol, MS, etc.
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4J. Wellendor et al. (2014)

http://dx.doi.org/10.1063/1.4870397


 The model for the exchange energy functional, Ex[n], is:

We use a data driven Bayesian framework to find the 

expansion coefficients

– Coefficients are random variables

– The exchange energy accounts for uncertainty:

● model error (meta-GGA framework)

● limited data (used in the training of the model)
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M. Aldegunde, J. Kermode, N. Zabaras, JCP (submitted, 2015)

Use PBE functional

http;/www.zabaras.com/


 Bayesian linear regression, we need:

– Likelihood: assume Gaussian with noise precision b

– Priors on parameters:

• Gaussian for coefficients 

• Gamma for noise precision b

 The resulting posterior is:

 The predictive distribution is a Student t-distribution:
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 Hyperparameters?

– a0, b0, m0, S0

– Sparsity inducing prior: relevance

vector machine

● m0=0; S0=diag(a-1
0, …, a-1

M-1)

– Use of evidence approximation: 

maximize the log of the marginal likelihood:
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M. E. Tipping (2001), C. Bishop (2006), Bilionis & Zabaras (2014)

http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf
https://www.springer.com/us/book/9780387310732
http://www.zabaras.com/


 Train the model with atomization energies for molecules 

and solids.
• For a material M=AnA

BnB
…

 In solids, we can add indirect measurements using an 

equation of state (adds extra uncertainty):
• Given the atomization energy (E0), equilibrium volume (V0), 

bulk modulus and pressure derivative (B0, B1) we can obtain 

the energy of the strained material:
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Training Data

A. B. Alchagirov et al. (2001)
Manuel Aldegunde (WCPM)

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.63.224115


 Predicting cohesive (atomization) energies:
• Explicit expression (Student t-distribution)

9

Atomization Energies

M. Aldegunde, J. Kermode, N. Zabaras,, JCP (2016)
Manuel Aldegunde (WCPM)
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Lattice Constants and Bulk Moduli
 Run self-consistently for five different strains to compute 𝑛𝑖

∗ (use 𝑚𝑁 as the 

average model)

 Sample from 𝑝 𝜉, 𝛽|𝑡 and run non-self consistent simulation using 𝑛𝑖
∗

 Fit the EOS to the values from this X energy (Bayesian fit)

 Sample coefficients from the fitting 𝑝 𝛾|𝐸 to calculate V0, B0, B1

Manuel



 Histogram of the band gap of 

Silicon obtained from sampling 

realizations of the XC 

functional. 

 Black vertical line: average XC 

functional. 

 Red dotted vertical line: PBE 

functional. 

 Black dotted vertical line: 

experimental value.

Uncertainty in band structure: DFT

 We run a self-consistent calculation of the solid of interest 

(PBE)

 Calculate band structure with fixed density

 For each sample of the XC coefficients different band 

structure

11Semilocal XC functionals cannot 

reproduce the experimental data 



Example: Band gap of bulk Si 

from Kohn-Sham (KS) energies 

(grey) and from the G0W0

approximation (QP) (red). The 

experimental (black) and mean 

values are shown as vertical lines 

for reference.

UQ in Band Structure: Quasi-Particle Approximation

 Use GW approximation of the self-energy Σ = 𝑖𝐺𝑊∗of many-body 

system of electrons. Modelling the interaction of charged particles 

with the polarization they induce in the surrounding medium (QP). 

 Approximate the quasi-particle energies non-self consistently as a 

correction to the KS energies (GPAW) - G0W0 quasi-particle 

approximation. 

 The results will depend on the XC coefficients sample and this will 

give rise to a probability model for the band structure

12
* G=Green’s function of the single particle, 

W=Screened Coulomb interaction



WHY SURROGATES WORK IN ALLOY MODELING?
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*J. M. Sanchez, F. Ducastelle, and D. Gratias, Physica A 128, 334 (1984).

 Replace VASP response surface with surrogate model
 What should the surrogate model be?

 Quantum Mechanical energy invariant under space group operations 

of the lattice
 Surrogate must account for this

 Possible (and popular) surrogate in alloy modeling:
 The Cluster Expansion*

Accounts for symmetries

Expansion coefficients (ECI)

Correlation functions

(Basis)



THE CLUSTER EXPANSION
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*Sanchez, J. M. Physical Review B 81.22 (2010)

(Not general

in this form)

 Corresponds to: Multidimensional discrete Fourier transform*

 Generalized Ising model (map atoms to integers)

 For binary alloys correlation functions reduce to simple products of 

atoms σ on atomic sites:



PARAMETRIZATION
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 Infinite series: True response surface is part of parametrization class

 Truncation required: 
 How do we choose truncated parametrization?

 y Xb 



Posterior on QoI

 Observe data set D and form the posterior

 Our choice, using Laplace-inspired priors on the ECI:

 Expectations wrt. p() are not in closed form!

 Solution: We need to sample from it
 Standard Markov chain Monte Carlo (MCMC) does not suffice

 Solution: Use RJMCMC*

lassok = model

complexity

(# of clusters)

*Green, Peter J. Biometrika 82.4 (1995)

We need to model this
Determined by QoI

Uncertainty on the QoI

16

http://biomet.oxfordjournals.org/content/82/4/711.short


3 basis functions

dimensionality
Standard MCMC applies

within each fixed-basis-function

space (update ECI J)

Visualizing RJMCMC

17



2 basis functions

3 basis functions

Space of ECI values

to go with the (fixed) basis functions

Trans-dimensional jumps only

possible in RJMCMC

dimensionality

Visualizing RJMCMC
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Ground State Predictions

Example: Formation energies of 

MgLi from DFT (black circles) and 

CE (blue crosses). Also shown the 

ground state line from DFT (black) 

and from CE (dashed blue with 

red confidence interval). Results

using up to 5 point clusters.

The inset shows uncertainty in the 

structures forming the GSL. Red 

bar indicates the DFT prediction

0

( ) ( )
M

i i

i

E   


 σ σ

 Fit ECI to formation energies (from DFT)

 Training values for the formation energies obtained from 

DFT simulations

 Training configurations generated by the maps tool in ATAT

 Uncertainty in predicted energy and also structures forming 

the GSL
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COMPUTING THERMODYNAMIC QUANTITIES

20

Temperature T

Composition

To perform average:

Sample a bunch of states

with probability:

Traditional solution:

Traditional Markov Chain

Monte Carlo (MCMC). 

Go to each T and 

thermalize+take M samples.

Obtain

Start

End

A peak (divergence in the limit of an infinite 

lattice) in the specific heat signals the phase 

transition. 



“ERROR BARS” ON PHASE TRANSITIONS

21

99 % Bayesian

interval
19.7 K

5 runs



Example: Phase diagram of 

SiGe. Red line: median of the 

simulations with the 95% 

confidence interval. Black line

(below red line): result with 

ATAT's ECI. Grey lines: 

realisations with different ECI

Phase Diagram: SiGe
 ATAT also calculates phase boundaries with using “phb”

 ECI sampling → different realizations of the phase 

diagram

 Uncertainty in the phase diagram using a Monte Carlo 

approach
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Input space

Energy

Input space

How do we find structures that are maximally

informative about the thermodynamic

quantity of interest (under a budget)?

?

Temperature

S
p
e
c
if
ic

 h
e
a
t

Use surrogate to

compute phase

transition:

Which structures in

the input space tells

us most about where

the transition happens?

Design of Experiments

23



Bayesian Design of Experiments
 Denote a set of thermodynamic parameters ω

Temperature, pressure, concentration, etc.

 We consider quantities of interest in the form

where the arg min must satisfy any ω constraints

 G is the thermodynamic potential whose 

minimization gives the thermodynamically stable 

structures at ω

 For ground state structures of binary alloy AxB1-x

(phase diagram at T=0), ω = {x} where x is the 

concentration

24



Bayesian Design of Experiments

 Consider the improvement offered by a 

candidate structure:

 But G-tilde is hypothetical: it is predicted 

by the CE surrogate (thus function of ), so 

we don’t know which G-tilde to use

Therefore, take the expectation of I(…) 

to integrate out this lack of knowledge:

What we have now (observed)

Candidate promises this via surrogate

predictive distribution

25

Expectation is over all possible

values of the surrogate  𝐺 when

predicting on structure  𝜎



Bayesian Design of Experiments

 The expectation* is computed analytically 

based on the Gaussianity of the Bayesian 

predictive distribution:

 Then choose the next structure σ(N+1)

which satisfies
… and run the expensive

simulator on that

structure

26

 Maximization is carried

out on a pre-computed

grid in this work (so we select

the grid point with largest EI).

 Generally one can use a 1D 

maximization routine (e.g. 

MCMC)

*Schonlau, Matthias, William J. Welch, and D. R. Jones (Phys. & Eng. Sciences, Am. Stat. Assoc., 1996)



 Keep selecting structures

(expanding the design)

based on thermodynamic

expected improvement until

termination conditions are met

27

 We need knowledge of G because

we need to know the current lowest 

estimate of the thermodynamic 

potential function.

 GN is lowest observed value of

thermodynamic potential function at

iteration N

From surrogate model at iteration N

(surrogate changes each iteration)

*Kristensen, J., Bilionis, I., Zabaras, N. (JCP, submitted, 2015)

*



EAM potential

TiAl: Find the ground state

line among ~35,000 structures

 We start with 4 structures 

 We find the exact ground 

state line with only 89 total 

input structures!

Thermodynamic expected

improvement

True ground

state line

(pre-computed)

Current known

ground state line

28

J. Kristensen, I. Bilionis, 

N. Zabaras, JCP, 2016



1. Compare to other structure

acquisition strategies:

+ Random selection (rnd)

+ Choose smallest structures (sml)

+ Choose the structure which has

the largest predictive variance

(uncertainty sampling: us)

2. We further develop our method

to account for the cost of computing

structures (important for DFT, e.g.):

Different values

of λ: Different

strategies (all

Pareto-optimal)
29

Let Nj,at be the number of atoms

per configurational unit cell of 

structure j, σ(j), then the cost is:

(same cost exponent as DFT)
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Stochastic Coarse Graining
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Stochastic Coarse Graining

Hard Optimization

• Fine Simulations

• CG Simulations

• Noisy gradients
 I. Bilionis & N. Zabaras, 

Journal of Chemical Physics, 

138, 044313, 2013.

 Markus Schöberl, P.S. 

Koutsourelakis, N. Zabaras, 

JCP, 2016.



32

Stochastic Coarse Graining
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Simulation of Fine Scale System
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Ensemble Averages
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Ensemble Averages

 Markus Schöberl, P.S. 

Koutsourelakis, N. Zabaras, 

JCP, 2016.



Scalable UQ for Multiscale Problems
 Due to the multiscale features, the spatial domain D is discretized 

into 
 fine grid                   where Nh is the number of fine elements. 

 coarse grid                   where Nc is the number of coarse elements.

 Stochastic input
 assume a constant property on each fine element, i.e.

 local property on coarse element Ek:                              such that 
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Probabilistic Modeling of SPDEs
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• Each response ui , hk is only correlated to its neighboring nodes 

(including local feature ak) within the same coarse element.
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Probabilistic Modeling of SPDEs
 Apply the definition of energy function in these sub-problems, the 

local energy functions are expressed by

where 

 Since the functions of local features ak in the energy functions are 

unknown, a nonparametric model is adopted

with unnormalized Gaussian kernels
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Probabilistic Modeling of SPDEs
 The complete probabilistic model for p(u,h|a) is factorized as a 

product of potential functions measuring the interactions between 

random variables
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Inference in Graphs
 A challenge arises in the update of messages between hidden 

variables. Although analytic expressions of p(a) and p (ξ|a) are 

explicit, the joint distribution of hidden variables ξ could be 

complicated such that the links between them are implicit when 

stochastic input has been removed from the graph.

 To bypass the difficulties in passing messages between hidden 

variables, the graphical model is transformed as follows:
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Messages in Belief Propagation
 For all messages except those between hidden variables, since there 

is no prior information, they are represented non parametrically (as 

weighted Gaussian mixtures)

 Without loss of generality, consider the message from factor node            

to variable node ui

 At iteration n of the BP algorithm, the messages between factor 

nodes and variables are updated by
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Stochastic Multiscale Models: A Graph 
Theoretic Approach

42
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Predicted physical responses given a 

realization of stochastic input (a)-(c) x-

velocity, y-velocity and pressure obtained 
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(a) (b)

(c) (d)

Predicted variance of x-velocity (a) MC simulation with 106 samples, and probabilistic model 
trained by (b) 20, (c) 40, (d) 60 data.

u

0.023

0.021

0.019

0.017

0.015

0.013

0.011

0.009

0.007

0.005

0.003

0.001

u

0.028

0.025

0.022

0.019

0.016

0.013

0.01

0.007

0.004

0.001

u

0.025

0.022

0.019

0.016

0.013

0.01

0.007

0.004

0.001

u

0.025

0.022

0.019

0.016

0.013

0.01

0.007

0.004

0.001

Predicted Variance

43



44

Multiscale Disk Forging: Microstructure Uncertainty

Location-specific  microstructures
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[Due to symmetry, 2D forging 

problem is actually solved]
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js
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  A Uncertainty propagation 

problem addressed by 

solving an inference 

problem on the graph

[P. Chen & N. Zabaras, JCP, 2014]

[J. Wan & N. Zabaras, JCP, 2014]
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Linking Mesoscale

and Macroscale via 

the integration point

Finite discretization of 

microstructure

http://www.sciencedirect.com/science/article/pii/S0021999113003306
http://www.sciencedirect.com/science/article/pii/S0021999113003471


Stochastic Multiscale Models: A Graph 
Theoretic Approach

 Pose multiscale SPDEs in graphs
 Factorize conditional PDF of responses 

using `clique’ potentials. 
 Introduce hidden variables to account for 

coarse graining – naturally leads to a deep 
learning machine.

 Fully non-parametric approach
 All parameters are learned with local 

inference (EM, SMC, Variational,..)
 Conditional & marginal PDFs are computed 

with approximate inference (e.g. EP). 
 The probabilistic graphical model can be used 

for multiple UQ tasks: E.g. as a surrogate 
model and for inverse problem solution!

 Data and models become one and the same! 

 J. Wan and N. Zabaras, JCP, 2014  

 P. Chen and N. Zabaras, JCP, 2014,2015 
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ITS ALL ABOUT DATA

 Experimental and simulation data used to design predictive models for 

quantities of interest

 E.g. Quantifying uncertainty in the Exchange Correlation functional and 

propagating it to QoI

 Designing predictive surrogate models for materials design: quantifying 

epistemic uncertainty from limited training data

 Computing the most informative simulations to collect online data for 

training a Bayesian model for predicting a particular CoI. 

 Stochastic Multiscale Modelling provides challenges that present UQ 

methods cannot handle

 Data-driven definition of coarse grained variables and their evolution (from 

variational to fully Bayesian approaches), non-parametric modelling, 

capturing & propagating information loss during coarse graining

 Curse of Dimensionality: Its all about data-driven (local) exploration of 

correlations within and across scales (partitioning the space vs the data)

 Approximate inference (on graphs) a promising scalable UQ approach 

(Deep Learning)


