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Abstract We develop a numerical method of semiconductor transmission line, and microstrip lines
determining the magnitude of characteristic  on silicon substrates.
impedance required by causal power-normalized In this paper we discuss the numerical method
circuit theories from its phase using a Hilbert- used in [5] and [6] to determine the characteristic
transform relationship. We also estimate the impedance required by the causal power-normalized

uncertainty in the method. circuit theory of [1], and estimate the uncertaintyZi |
caused by errors in its phase. We test the estimates
INTRODUCTION with a Monte-Carlo experiment.

We develop a numerical algorithm for computing CAUSAL CHARACTERISTICIMPEDANCE
the magnitude of the characteristic impedafge)
required in the causal power-normalized waveguide The complex pmwarried by the forward
circuit theory of [1] from its phase. We determined the mode is given by an integral of the Poynting vector
phase o, from an integral of the Poynting vector over over the cross section of the guide:
the cross section of the guides, as required by the power
normalization of [1], using the full-wave method of [2].

We assess the error of the algorithm, which uses a h s th lar ¢ is the longitudinal
. : . . wherew is the angular frequencyijs the longitudina
Hilbert-transform relationship to determine the g d ¥ g

. . coordinate,Z is the unit vector in the direction of
magnitude oz, from its phase.

The causal waveguide circuit theory of [1] marries propagationy = (xy) is the transverse position vector,
o . ., andE, andH, are the transverse electric and magnetic
the power normalization of [3] and [4] with additional

. . . fields. The power normalization of the circuit theories
constraints that enforce simultaneity of the theory’s P

voltages and currents and the actual fields in the circuit.Of [3]and [4] require that the phase angl&pbe set

These additional constraints not only guarantee that thgqual tothe phase pf, which from(1) is independent

network parameters of passive devices in this theory argf z gnd 's a fixed ?roperty of thf} guide: th%t |s,_they
causal, but they determine the characteristic impedancEzeqlJIre argZOT((:_» B Zr?([)*(w» t; ars@(oo, )_) -
Z,(w) of a single-mode waveguide within a positive a.rg(o+(u),z)). 'S condition on the p asg 53. > a

. - direct consequence of the power-normalization of the
frequency-independent multiplier. References [5] and

. - ircuit theori nd is requir nsure that the time-
[6] examine some of the implications of [1], determining cireuit theories, and is required to ensure that the time

the characteristic impedance required by that theory inaveraged power in the guide is equal to the product of

. . the voltage and the conjugate of the current [3].
a lossless coaxial waveguide, a lossless rectangular e _
The causal circuit theory of [1] imposes the same

waveguide, an infinitely wide metal-insulator- o N
power normalization, so aify) = argp.). In addition,

p,(w,2) = fEt(oo,r,z)XHt*(w,r,z)-z‘dr, 1)
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that theory requires that, be minimum phase. That is,
[1] requires

H(In|Zyw)|) = argp,(@)],

which, with the aid of [7], can be shown to be the
Hilbert transform of4).

) Because the calculations of grg(are time

consuming, we determine apg) at only a limited

where H is the Hilbert transform. This condition number of frequency points. However, the numerical
ensures that voltage (or current) excitations in the guidélgorithm requires that the input data be uniformly
do not give rise to a current (or voltage) response beforépaced in frequency, so we add data points with

the excitation begins.
Once argg,) is determined by the power condition
(1), the space of solutions fa,| is defined by

1Z,(@)| - je HEER.OD 3)
where A is a real positive frequency-independent
constant that determines the overall
normalization [1]. Eqn(3) results from two facts: the

Hilbert transform has a null space consisting of the
constant functions, andH[H][f(w)]] = -f(w) +C
wherec is a real frequency-independent constant.

NUMERICAL CALCULATION OF |Z,|

To determineZ,|, we use the full-wave method of
[2] to calculate argy,) and a discrete Hilbert transform
to calculateZ,| from(3). For many quasi-TEM guides
incorporating lossless dielectricsZ, approaches
JRjwC at low frequencies, and apg) approaches

argfp,) and its derivative equal to 0 @0 andw=w,

to the set of arg(), wherew, is much larger than the
largest frequency at which we calculated pyg(@nd
use a cubic spline to interpolate arg(over the entire
frequency range.

HIGH-FREQUENCYERRORS

impedance

During the interpolation procedure, we assumed
that argp,) approached 0 smoothly outside of the
region in which we performed full-wave calculations,
while argp,) may in fact display a complicated
behavior at high frequencies. In addition, the periodic
extension implicit in the discrete Hilbert transform may
introduce additional high-frequency error in grg(
Because the Hilbert transform is not a local transform,
errors in argg,) at these high frequencies will create
errors in the calculated magnitude 4f at lower
frequencies.

Appendix 4 of [1] develops a bound for the error

+1/4 asw approaches 0. If this is the case, we choosq«n Z)| at a given frequency when the argy,) is

the parametea so that the function

+m/4 (oo O)

—_— >
1+ ajw|/8

<

(4)

is nearly equal tar/4 at the low frequencies and is

known exactly up to some greater frequetpgybut is
unknown abovey,. The result is

2
0

Zy()
Zy(®)

w
<

<
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small at the high frequencies we are interested in. Then

we add(4) to argp.), eliminating the discontinuity at
=0, perform the discrete Hilbert transform(8), and
subtract the function

1
2[1- (aw/8)]

aw

8

In

()

whereZ, is the actual characteristic impedance zid

is the value of characteristic impedance we determine
from incorrect assumptions about the high-frequency
behavior of argf,) abovew,.

Figure 1 illustrates the algorithm applied to the
5-um wide microstrip lines on a 1 um thick oxide layer
supported by a 10D-cm silicon substrate described in
[6]. In this case we chodeso as to matciz{’| and the



1000 confirming the conclusion of [6]: the power/oxide-
i S voltage definition does not yield a causal result.
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a [ ° e W -===- High-freauency bounds
= . Fower/current
N o Foweovaliege We expect that errors in our calculated values of
N ° ower/oxi de-voltage
op . arg(,) will also create errors iZ{'|, the value oz,
‘. we calculate from argf). Since the Hilbert transform
® cc0e o is unitary, the root-mean-square (RMS) error iz} |
& oL is the same as the RMS error in ar( Although
Frequency (GHz) small pointwise errors in angy() do not always imply
Fig. 1. The magnitude daf, determined with different ~ small pointwise errors iZ{’|, we might guess that if
definitions for the 5-um wide microstrip lines or1@0Q- the error in our calculations of apg(w)) had a

cm silicon substrate described in [6]. The bounds were

determined fron{6) with w, = 150 GHz. Gaussian distribution with standard deviatigrthen

the errors in our calculations of Ify](w)| might also
magnitude of the power/total-voltage characteristichave a Gaussian distribution with the same standard
impedance at 0.005 GHz, the lowest frequency at whiclgeviation.
we performed full-wave calculations. The figure For comparison purposes, we first choasso

compares the causal result calculated with the algorithmhat the average value of ;'fZ| is 0. To accomplish
described in this work (solid line) to the conventional this we chosé, with

power/total-voltage (circles) and power/center-

conductor-current definitions (squares) discussed in [6], ni = __Z In
and shows that the agreement with these conventional (w)
definitions is good.

Fig. 1 also shows the characteristic impedanceyherew, are theN frequencies at which we calculated
calculated from the power/oxide-voltage definition IZ. Next, we hypothesize that if the errors in arg(p )
discussed in [6] in solid circles. Here the voltage pathare normally distributed with mean 0 and standard
used to defineZ, extended from the bottom of the deviations, then the errora In|Zy'| in In|Z’| will also
microstrip signal conductor through the oxide to the pe approximately normally distributed with mean 0
surface of the silicon substrate. We argued in [6] thatgnd standard deviation. Finally, if o is small we
the discrepancies between this definition and the CaUSQixpectA|ZO|/|ZO| ~ A In|Zy/|, whereA|Zy| =|Z'] - | Zol-
calculation are large enough to conclude that the \ve performed a Monte-Carlo experiment that
power/oxide-voltage definition cannot be causal. supports this hypothesis. In the experiment we

Fig. 1 shows in dashed lines the error bounds fronyecalculated Z,| twenty times, each time adding
(6) calculated withw, = 150 GHz. These bounds limit random phase errors of Gausian distribution=(
the maximum error we could have made in our(.0175 radians) to our calculated values of@jg(
calculation of the causal, caused by unexpected Figure 2 compareso? an estimate of the 95%
behavior in arg§,) above 150 GHz. The bounds confidence interval foA|Z,|/|Z,| (long dashes), and the
indicate that the differences between the causal andym of(6) for w, = 150 GHz and & (solid line) to the
power/oxide-voltage definitions cannot be attributed to deviations we observed in the Monte-Carlo experiment.
unexpected high-frequency behavior of @aP(  The figure shows the differences between our initial

calculation of 4| performed with unperturbed data

o @b, ©))
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Fig. 2. Comparison of actual deviations in our Monte-Carlo 12l
experiment, the in-bandyZstimate, and the sum of the in- Fig. 3. Comparison of the actual distribution of errors in

band estimate and the high-frequency error bound. our Monte-Carlo experiment to the expected Gaussian
distribution.

and our calculations with perturbed data. The figure
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