Review of First Principles Comparisons to Pure Elements

Zi-Kui Liu, Manjeera Mantina, Swetha Ganeshan, Chelsey Zacherl Department of Materials Science and Engineering The Pennsylvania State University www.phases.psu.edu

PENNSTATE

Summary of steps taken when transforming from *M*'s to *D*'s

Atomic mobility and tracer diffusion coefficient

$$D_i^* = RTM_i$$

$$M_{i} = \frac{D_{i}^{*}}{RT} = \frac{D_{i}^{0*}}{RT} \cdot e^{-\frac{Q_{i}^{*}}{RT}} = \frac{1}{RT} e^{\frac{-Q_{i}^{*} + RT \ln(D_{i}^{0*})}{RT}}$$

Mobility modeling in the similar way as thermodynamic modeling

• Solution phases $(A, B, C...)_x(a, b, c...)_y$

$$M_{i} = \frac{1}{RT} \exp\left(\frac{\Delta G_{i}}{RT}\right) \qquad \Delta G_{i} = -Q_{i} + RT \ln(D_{i}^{*0})$$

$$\begin{split} \Delta G_i &= \sum_j \sum_m y_j^I y_m^{II} \Delta G_i^{j:m} + \sum_j \sum_{k>j} \sum_m y_j^I y_k^{II} y_m^{II} \Delta G_i^{j,k:m} \\ &+ \sum_j \sum_n \sum_{m>n} y_j^I y_n^{II} y_m^{II} \Delta G_i^{j:n,m} \end{split}$$

Jonsson, Z. Metallkd., Vol.86, 1995, 686-692.

PENNSTATE

Mobility model parameters

- $\Delta G_i^{j:m}$ For species *i* when the first and second sublattices are occupied by species *j* and *m*.
- $\Delta G_i^{j,k:m}$ Interaction parameter between *j* and *k* in the first sublattice when the second sublattice is occupied by *m*.
- $\Delta G_i^{j:n,m}$ Interaction parameter between *n* and *m* in the second sublattice when the first sublattice is occupied by *j*.

Diffusion: Formation and migration of vacancy

 When between atoms 1 and 2 (saddle configuration), the diffusion atom is in an unstable state with imaginary frequency.
PENNSTATE

Vacancy formation and migration

$$c = \exp\left(\frac{-\Delta_f G}{k_B T}\right) = \exp\left(-\frac{\Delta_f H}{k_B T}\right) \exp\left(\frac{\Delta_f S}{k_B}\right)$$

$$w = \tilde{v} \exp\left(-\frac{\Delta_m G}{k_B T}\right) = \tilde{v} \exp\left(\frac{\Delta_m S}{k_B}\right) \exp\left(-\frac{\Delta_m H}{k_B T}\right)$$

However, the entropy and enthalpy at the saddle point could not be evaluated due to the unstable vibrational mode

Mitigate the unstable vibrational mode at the saddle point

$$w = \tilde{v} \exp\left(\frac{\Delta_m S}{k_B}\right) \exp\left(-\frac{\Delta_m H}{k_B T}\right) = v * \exp\left(-\frac{\Delta_m H}{k_B T}\right)$$

• Transition state theory

$$\boldsymbol{v}^* = \frac{\prod_{i=1}^{3N-3} \boldsymbol{v}_i}{\prod_{j=1}^{3N-4} \boldsymbol{v}_j'}$$

Eyring's Reaction Rate Theory

- Partition function
- Atom jump frequency

$$Z = \exp\left(\frac{-G}{k_B T}\right)$$

 $w = \frac{k_B T Z_{sd}^*}{h Z_{eq}} \xrightarrow{*} \text{remove the images}$ of the saddle c

* remove the imaginary frequency of the saddle configuration

$$w = \frac{k_B T}{h} \exp\left(\frac{S_{sd,N-1}^* - S_{eq,N-1}}{k_B}\right) \exp\left(-\frac{H_{sd,N-1}^* - H_{eq,N-1}}{k_B T}\right)$$
$$D = fa^2 Cw = \frac{1}{6} fr^2 z \exp\left(\frac{H_{sd,N-1}^* - \frac{N-1}{N}H_N}{k_B T}\right) \exp\left(\frac{S_{sd,N-1}^* - \frac{N-1}{N}S_N}{T}\right)$$
PENNSTATE

Eyring, J. Chem. Phys., Vol.3, 1935, 107

Diffusion in hcp

- Two diffusion directions
 - $D_x = \frac{1}{2}Ca^2(3w_A f_{Ax} + w_B f_{Bx})$

$$D_z = \frac{3}{4} C c^2 w_B f_{Bz}$$

PENNSTATE

- W_A jump within basal plane
- $-W_{B}$ jump between adjacent basal planes
- $-f_{ij}$ partial correlation factors for jumps A and B
- Correlation factor for host and impurity atom jump a function of W_A/W_B
- Other quantities have similar definitions as cubic system.

Mullen, *Phys Rev.* 124, 1723 (1961)

First-principles calculations based on density functional theory

Many-body Schrödinger's equation $\hat{H}\Psi(\vec{R}_1, \vec{R}_2, ..., \vec{R}_N, \vec{r}_1, \vec{r}_2, ..., \vec{r}_n) = E\Psi(\vec{R}_1, \vec{R}_2, ..., \vec{R}_N, \vec{r}_1, \vec{r}_2, ..., \vec{r}_n)$ Born-Oppenheimer approximation Many-electron Schrödinger's equation $\hat{H}\psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_n) = E\psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_n)$ **Density Functional Theory** $E = E[\rho(\vec{r})]$ Set of one-electron Schrödinger's equation

$$PENNSTATI \left[-\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{e^2}{4\pi\varepsilon_0} \sum_{I=1}^N \frac{Z_I}{\left|\vec{r} - \vec{R}_I\right|} + \frac{e^2}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')}{\left|\vec{r} - \vec{r}'\right|} d^3\vec{r}' + V_{XC}[\rho(\vec{r})] \right] \psi_i(\vec{r}) = \varepsilon_i \psi_i(\vec{r}) P HASES$$

Thermodynamic, kinetic & physical properties at finite temperatures

Phonon calculations based on the supercell method

FCC Self-Diffusion Data

	1	Pb	Nachtrieb, Handler, Journal of Chemical Physics, 23, 9, 1955
-	2	Ag	Hehenkamp, Th. and Faupel, F., Acta metall., 1983, 31, 691
			C. T. Tomizuka and E. Sonder - 1956 - Self-Diffusion in Silver - Physical Review
	3	AI	Volin, Annealing Kinetics of voids and self-diffusion coefficient in aluminum
			T. S. Lundy and J. F. Murdock - 1962 - DIFFUSION OF AL-26 AND MN-54 IN ALUMINUM - Journal of Applied Physics
	4	Cu	A. Kuper, H. Letaw, L. Slifkin, E. Sonder and C. T. Tomizuka - 1954 - SELF-DIFFUSION IN COPPER - Physical Review
	5	Au	B. Okkerse - 1956 - SELF-DIFFUSION OF GOLD - Physical Review
	6	γ-Fe	F. S. Buffington, K. Hirano and M. Cohen - 1961 - SELF DIFFUSION IN IRON - Acta Metallurgica.pdf
	7	Pt	Catteneo, Self-Diffusion in Platinum, Philosophical Magazine
	8	Ni	Hoffman. Self Diffusion in Solid Nickel. T AIMME. 1956

PENNSTATE

251

Aluminum

Mantina, "First-principles calculation of selfdiffusion coefficients," Phys. Rev. Lett., Vol.100, 2008, 215901.

Sandberg, "Self-diffusion rates in Al from combined first-principles and model-potential calculations," Phys. Rev. Lett., Vol.89, 2002, 065901.

Copper

Mantina, PhD Thesis, Penn State, 2008

8 5 5

PHASES IT

Nickel

19

HCP Self Diffusion Data

Mg

Mantina, PhD Thesis, Penn State, 2008

8 5 5

PHASES

22

Ti

23

Zn

Mantina, PhD Thesis, Penn State, 2008

1 8 5 5

Cd

Hf

Be

BCC Self Diffusion Data

Have not systematically collected yet

Self-diffusion coefficients in bcc

Impurity diffusion data from our first-principles calculations

- In fcc Al
 - Cu, Mg, Si, Li
 - 3d: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn
- In hcp Mg: Cd, Sn
- In bcc Mo: W
- In bcc W: Mo

PENNSTATE

Capability and Challenges

- First-principles procedures to calculate selfdiffusion coefficients and *impurity diffusion coefficients* are developed for fcc, bcc, hcp structures.
- Challenges for diffusion in
 - Magnetic elements
 - Wang, Phys. Rev. B, Vol.78, 2008, 104113.
 - Unstable phases at 0 K, such as hcp-Al
 - Ozolins, Phys. Rev. Lett., Vol.102, 2009, 065702.

Magnetic phases

- Gibbs energy of vacancy formation and migration as a function of temperature
- Treatment of magnetic property as a function of temperature
 - A magnetic phase at finite temperatures is a mixture of various magnetic states such as non-magnetic (NM), anti-ferromagnetic (AFM), ferromagnetic (FM)
 - Its partition function is a sum of the partition function of individual magnetic states

Magnetic transition in Ce from non-magnetic α to magnetic γ

Predicted temperature-volume phase diagram

Predicted heat capacity for second-order magnetic transition

PHASES

Unstable states

- Two cases
 - the transition state (saddle point)
 - zero Kelvin
- Phonon approach is not applicable due to imaginary frequencies, soft modes.
- Debye model to obtain free energy – Testing system: Ti
 - Testing system: Ti

Future work on magnetic and unstable states

- First-principles calculations for various magnetic states with and without vacancy and at the saddle point
- Debye model for states with soft modes
- Free energy functions for all states
- Nonmagnetic elements: free energy difference between the saddle point and equilibrium state without vacancy
- Magnetic elements
 - Partition function to get free energy of the system as a function of temperature
 - Free energy difference at the saddle point and equilibrium state without vacancy

