

Advanced Mask Inspection and Metrology

Nobuyuki Yoshioka and Tsuneo Terasawa*

Semiconductor Leading Edge Technologies Inc. (Selete) *MIRAI – ASET(Association of Super- Advanced Electronics Technologies)

28 March, 2003

2003 International Conference on Characterization and Metrology for ULSI Technology

<u>Outline</u>

- Introduction
- Requirements of photomask for resolution enhancement
- Defect inspection for photomask
- Metrology for Photomask
- Activity of Inspection for NGL mask
- •Summary

Introduction

- Requirements of photomask for resolution enhancement
- Defect inspection for photomask
- Metrology for Photomask
- Activity of Inspection for NGL mask
- •Summary

Wavelength Gap

Selete

Quality specifications Items of photomask

Roadmap for Photo Mask Technology

Selete

ITRS - 2002 Update	2001		2003	2004	2006	2007
Optical Mask Requirements	130nm		100nm	90nm	70nm	65nm
Lithography technology	Optical		Optical	Optical	Optical	Optical
Magnification	4		4	4	4	4
Mask minimum image size(nm)	360		260	212	160	140
Mask OPC feature size(nm) Opaque	180		130	106	80	70
Image placement(nm,multi-point)	27		21	19	15	14
CD uniformity(nm,3sigma)						
Isolated line(MPU gates) Bin.	7.4		5.1	4.2	3.4	2.5
Dense lines(DRAM half pitch)	10.4		8.0	7.2	5.6	4.2
Contact/vias	8.0		6.1	5.3	4.3	3.2
Linearity(nm)	19.8		15.2	13.7	10.6	9.9
CD mean to target(nm)	10.4		8.0	7.2	5.6	5.2
Defect size(nm)	104	\Box	80	72	56	52
Data volume(GB)	64		144	216	486	729
Mask design grid(nm)	8		4	4	4	4
Att.PSM trans. Mean dev. (+/-% target)	5		5	5	4	4
Att.PSM trans. Uniformity (+/-% target)	4		4	4	4	4
Att.PSM phase Mean dev. (+/-deg.)	4		3	3	3	3
ALT. PSM phase Mean dev. (+/-deg.)	2		2	2	1	1
ALT.PSM phase Uniformity (+/-deg.)	2		2	2	1	1

Introduction

•<u>Requirements of photomask for resolution</u> <u>enhancement</u>

Defect inspection for photomask

- Metrology for Photomask
- Activity of Inspection for NGL mask

•Summary

Defect Printability as Defect Positions

Defects in assist bar area shows low printability

Selete Effect of Contact Hole Size & Serif Variations

Increase of Aggressiveness in OPC Technology

- Rule Based → Model Based → Rule + Model Based
- Aggressive OPC is inevitable option in low k1 lithography

Introduction

 Requirements of photomask for resolution enhancement

Defect inspection for photomask

- Metrology for Photomask
- Activity of Inspection for NGL mask

•Summary

Revised Reticle Defect Size in ArF Lithography

Year of Production		2003	2004	2005	2006
		100nm	90nm	80nm	70nm
Wafer minimum half pitch (Wafer minimum half pitch (nm)		90	80	70
Mask minimum image size (nm)	260	212	180	160
Mask OPC feature size (nm) O	paque	130	106	90	80
CD uniformity: Isolated lines (MPU g	gates) Binary	5.1	4.2	3.7	3.4
CD uniformity: Dense lines DRAM	CD uniformity: Dense lines DRAM half pitch)		7.2	6.4	5.6
Defect size of ITRS (nm	Defect size of ITRS (nm)		72	64	56
Cridat (mm)	1:1 pitch	103	96	91	58
Cr dot (nm)	1:2 pitch	109	100	93	90
Cratic (nm)	1:1 pitch	80	76	65	35
Cr extension (mm)	1:2 pitch	85	89	91	93
Quanciza dafaat (nm)	1:1 pitch	35	29	19	10
Oversize delect (IIII)	1:2 pitch	40	36	30	22
Undersite defect (mm)	1:1 pitch	25	21	14	7
	1:2 pitch	30	27	23	16

Selete Inspection Image in Various Wavelength

Requirement of mask defect inspection

<u>Requirements and Issues for</u> <u>Photomask Inspection</u>

Technology node	130 nm		90 nm	65 nm	45 nm
Detection sensitivity (D) *	104 nm		72 nm	52 nm	35 nm
Inspection wavelength (I)	257 nm	365 nm	257 nm	200 nm	160 nm
Numerical Aperture	0.75	0.75	0.75	0.75	0.75
Nominal resolution (R) **	209 nm	296 nm	209 nm	163 nm	130 nm
Ratio of sensitivity and resolution (D/R)	0.5	0.35	0.34	0.32	0.27

*Minimum defect size which can be detected

**Rayleigh Limit : 0.61 I /NA

266nm wavelength Defect Inspection Tool

Main body

Image processing unit

✓ Development by joint with Selete and NEC

Target Spec.

<u> </u>		
Defect Sensitivity :	80nm	-
Inspection mode:	Die-Die,Die-Data	
Inspection Optical:	2 Beams Scan	
Inspection Wavelength:	266nm	

Present Progress Data

Defect type				
Sensitivity	75nm	70nm	70nm	60nm

Development of 198.5nm laser for mask inspection tool

(a) Optical schematic of sum-frequency generation cavity

(b) Experimental Set up
 (c) 50 mW power
 Semiconductor Leading Edge Technologies, Inc.

Deep UV sensitive CCD Architecture

Selete <u>Development of 198.5nm wavelength mask inspection tool</u>

Introduction

Requirements of photomask for resolution enhancement

Defect inspection for photomask

Metrology for Photomask

•Activity of Inspection for NGL mask

Summary

Requirements and Issues for Photomask Metrology

Year of production	2003 100 nm	2004 90 nm	2007 65 nm
Mask minimum image size (at 4X, nm)	260	220	160
Minimum OPC size (opaque 4X, nm)	130	110	80
Mask image placement technology	21	19	16
Mask CD metrology tool precision (P/T=0.2 for isolated lines, binary)	1.3	1.1	0.7
Mask CD metrology tool precision (P/T=0.2 for isolated lines, alternated)	1.75	1.6	1.15
Mask CD metrology tool precision (P/T=0.2 for dense lines, binary)	1.6	1.45	0.85
Mask CD metrology tool precision (P/T=0.2 for contact/vias)	1.2	1.05	0.65
Phase metrology precision (P/T=0.2)	0.4	0.4	0.2

ETCOENA

140

157nm Wavelength Aerial Image Measurement System Zeiss AIMS157

Internally Public Pub

157nm Wavelength Mask Phase Measurement

Lasertec MPM157

Phase Sift = $P - P_{0}$, T% = I/I_0

Introduction

- Requirements of photomask for resolution enhancement
- Defect inspection for photomask
- Metrology for Photomask

Activity of Inspection for NGL mask

•Summary

EPL mask defect inspection

*: 260nm (4x)

Selete

Inspection image for EPL mask (Optical vs SEM)

DUV Optical Microscope (Wavelength : 266nm)

Selete

SEM (HOLON EST-100)

EB inspection system for EPL mask

High Speed

TDI-CCD Image with EB inspection system

70-nm node logic pattern

Selete

Design : 280 nm on mask

TDI-CCD Image with EB inspection system

100-nm node DRAM pattern

Selete

Design : 360 nm on mask

EUV mask & process

EUV mask phase defect inspection

Summary

- The minimum feature size of ULSI devices becomes smaller than wavelength of exposure light used in optical lithography.
- The mask technology such as OPC and PSM with the current large NA projection exposure tool provides the fine features with approximately a half of exposure wavelength. Since a mask is the original edition of semiconductor patterns, precise control of the mask aperture size becomes critical.
- The requirements of mask pattern defects also becomes critical. In order to achieve the higher defect sensitivity, the defect inspection tools with UV(266nm) / DUV(198nm) laser are developed.
- CW-deep UV laser source for mask inspection tool has been developed.
- As 157nm mask metrology tool, aerial image monitor tool and phase measurement tool are developed.
- Inspection technologies for EPL and EUVL mask are under development.
 - EPL mask: EB imaging system
 - EUV mask: At-wavelength phase defect detection system.