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Sensors in IoT

2



Yasser Shoukry (UC Berkeley/UCLA/UPenn) SMC: Satisfiability Modulo Convex Optimization

Sensors in IoT
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Type 1: Physical Spoofing Attacks 
(Attacks from the Environment)
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Message #1: Physical Attacks on IoT 
sensors are feasible
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GPS Spoofing Attacks: Navigation
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Spoofing Attacks: Automotive Systems
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Spoofing Attacks: Quadrotors
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• Power grid consists of multiple generators and loads.

• These generators MUST be synchronized to 
maintain the stability of the power grid

• Phasor Measurement Units (PMU) are used to 
measure the phase differences between generators 

• Two attack vectors:

• GPS attacks (used for time-sync)

• False data injection attacks
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Spoofing Attacks: Power Grid
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Spoofing Attacks: Medical Devices
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Spoofing Attacks: Medical Devices
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Under/Over infusion
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Spoofing Attacks: Self-Driving Cars
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J. Petit, et. al, “Remote Attacks on 

Automated Vehicles Sensors:

Experiments on Camera and LiDAR”

blackhat 2015. Black Hat talk: 
https://www.youtube.com/watch?v=C29UGFs

IWVI

https://www.youtube.com/watch?v=C29UGFsIWVI
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Message #1: Physical Attacks on IoT 
sensors are feasible
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Message #1.1:  information-security 
offers no defense against these attacks!
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Type II: Cyber Attacks
(Software or Communication)
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Message #1: Physical Attacks on IoT 
sensors are feasible, but cyber attacks 
maybe easier, but leads to the same 

consequences
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Message #1.1:  information-security 
offers no defense against these attacks!
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Beyond Sensor Physical Spoofing
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Beyond Sensor Physical Spoofing
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Message #1: Physical Attacks on IoT 
sensors are feasible, but cyber attacks 

maybe easier but leads to the same 
consequences
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Message #1.1:  information-security 
offers no defense against these attacks!
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Attack Consequences ?

Are they always catastrophic?
How many sensors a hacker need to attack
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Message #2: Attacks on small sets of IoT 
sensors can lead to catastrophic 

consequences
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Smart Traffic System
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Smart Traffic System
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Smart Traffic System
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Smart Traffic System



Yasser Shoukry (UC Berkeley/UCLA/UPenn) SMC: Satisfiability Modulo Convex Optimization 25

Smart Traffic System
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Smart Traffic System
One malicious car can disturb the whole system
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Smart Traffic System

Simulation using traffic data sets and urban simulators (SUMO) 
supports the same conclusion

Without attacks, average travel time is 4 minute
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• Attacks on PMUs are “unobservable” by current anomaly 
detection units.

• Some PMUs are more critical than others.

• In certain scenarios, attacking one PMU is enough to 
destabilize portions of the grid
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GPS Spoofing Attacks: Power Grid
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Physical Layer Countermeasures
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Message #3: Hardening the physics of 
the sensors is hard but needed
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Physical Authentication
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Physical Authentication
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Data Analytics Countermeasures
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Message #4: Data analytics techniques 
that leverage heterogeneous 

redundancy in information seems a 
feasible solution
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Resilient Data Analytics: Automotive
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Resilient Data Analytics: Quadrotors

36

Under attack - no protection
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Resilient Data Analytics: Quadrotors
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Under attack - with protection
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Resilient Data Analytics: Traffic Systems
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Resilient Data Analytics: Power Systems
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Message #4: Data analytics techniques 
that leverage heterogeneous 

redundancy in information seems a 
feasible solution but what about Big-

data, how to handle massive amounts of 
data to find discrepancies?
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Message #4: Data analytics techniques 
that leverage heterogeneous 

redundancy in information seems a 
feasible solution but what about Big-

data, how to handle massive amounts of 
data to find discrepancies?

Open research problem!
41
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Message #5: Sensor information can be 
used to infer much more than what is 

expected
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Sensor Privacy
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Barometer
(smart phones) Pressure Location [Martin’15]

Gyroscope
(smart phones) Orientation Speech, Passwords 

[Michalevsky’15]

Smart meter Electricity Usage TV watching habits
[Greveler11, Enev11]

GPS Location Religion, health habits
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Privacy-Aware Data Analytics

• Beyond cryptography (securing the communication channel 
is enough)

• Differential privacy is a technique that corrupts the data 
before sharing it with the cloud

• Not always the answer. In some scenarios it may be useless.

• Example: localization in smart cities.
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Message #6: DoS attacks on sensor 
information can be harmful as well
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Summary
• Attacks on IoT sensors are feasible

• Attacks on small sets of IoT sensors can 
lead to catastrophic consequences

• Hardening the physics of the sensors is 
hard but needed

• Data analytics techniques that leverage 
heterogeneous redundancy in information 
seems a feasible solution

• Privacy-aware data analytics is also needed 
to solicit participation from users. 48


	Sensor Spoofing:�Attacks and Consequences
	Sensors in IoT
	Sensors in IoT
	Type 1: Physical Spoofing Attacks �(Attacks from the Environment)
	Message #1: Physical Attacks on IoT sensors are feasible
	GPS Spoofing Attacks: Navigation
	Spoofing Attacks: Automotive Systems
	Spoofing Attacks: Quadrotors
	Spoofing Attacks: Power Grid
	Spoofing Attacks: Medical Devices
	Spoofing Attacks: Medical Devices
	Spoofing Attacks: Self-Driving Cars
	Message #1: Physical Attacks on IoT sensors are feasible
	Type II: Cyber Attacks�(Software or Communication)
	Message #1: Physical Attacks on IoT sensors are feasible, but cyber attacks maybe easier, but leads to the same consequences
	Beyond Sensor Physical Spoofing
	Beyond Sensor Physical Spoofing
	Message #1: Physical Attacks on IoT sensors are feasible, but cyber attacks maybe easier but leads to the same consequences
	Attack Consequences ?��Are they always catastrophic?�How many sensors a hacker need to attack
	Message #2: Attacks on small sets of IoT sensors can lead to catastrophic consequences
	Smart Traffic System
	Smart Traffic System
	Smart Traffic System
	Smart Traffic System
	Smart Traffic System
	Smart Traffic System
	Smart Traffic System
	GPS Spoofing Attacks: Power Grid
	Physical Layer Countermeasures
	Message #3: Hardening the physics of the sensors is hard but needed
	Physical Authentication
	Physical Authentication
	Data Analytics Countermeasures
	Message #4: Data analytics techniques that leverage heterogeneous redundancy in information seems a feasible solution
	Resilient Data Analytics: Automotive
	Resilient Data Analytics: Quadrotors
	Resilient Data Analytics: Quadrotors
	Resilient Data Analytics: Traffic Systems
	Resilient Data Analytics: Power Systems
	Message #4: Data analytics techniques that leverage heterogeneous redundancy in information seems a feasible solution but what about Big-data, how to handle massive amounts of data to find discrepancies?
	Message #4: Data analytics techniques that leverage heterogeneous redundancy in information seems a feasible solution but what about Big-data, how to handle massive amounts of data to find discrepancies?Open research problem!
	Slide Number 42
	Message #5: Sensor information can be used to infer much more than what is expected
	Sensor Privacy
	Privacy-Aware Data Analytics
	Slide Number 46
	Message #6: DoS attacks on sensor information can be harmful as well
	Summary

