Sensor Spoofing: Attacks and Consequences

Yasser Shoukry

Resilient Cyber-Physical Systems Lab Department of Electrical and Computer Engineering University of Maryland, College Park

Sensors in IoT

Sensors in IoT

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Type 1: Physical Spoofing Attacks (Attacks from the Environment)

Message #1: Physical Attacks on IoT sensors are feasible

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

GPS Spoofing Attacks: Navigation

Mark L. Psiaki (Cornell) and Todd E. Humphreys (UT Austin)

Spoofing Attacks: Automotive Systems

Y. Shoukry, et. al, "NoninvasiveSpoofing Attacks for Anti-LockBraking Systems," CHES 2013

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Spoofing Attacks: Quadrotors

- Y. Son, et. al, "Rocking Drones with
- Intentional Sound Noise on Gyroscopic
- Sensors," USENIX Security 2015.

Spoofing Attacks: Power Grid

- Power grid consists of multiple generators and loads.
- These generators MUST be synchronized to maintain the stability of the power grid
- Phasor Measurement Units (PMU) are used to measure the phase differences between generators
- Two attack vectors:
 - GPS attacks (used for time-sync)
 - False data injection attacks

Spoofing Attacks: Medical Devices

Pacemaker leads Right_atrium Right_ventricul	
T,	Fibrillation signal
Timmer Martin	Peaks matching injected signal

D. Kune, et. al, "Ghost Talk: Mitigating

EMI Signal Injection Attacks against

Analog Sensors," IEEE S&P 2013.

Spoofing Attacks: Medical Devices

Pacemaker leads Right Atrium Right Night Ventricule
Fibrillation signal
, internet the second
Peaks matching

D. Kune, et. al, "Ghost Talk: MitigatingEMI Signal Injection Attacks againstAnalog Sensors," IEEE S&P 2013.

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Y. Park, et. al, "This Ain't Your Dose: SensorSpoofing Attack on Medical Infusion Pump,"WOOT 2016.

Spoofing Attacks: Self-Driving Cars

EOUIPMENT

Emitting laser:

Osram SPL-PL90 (\$43.25) Max. output: 25W for 100 ns Viewing angle: 9°

Receiving photodetector: Osram SFH-213 (\$0.65)

f 🔽 Y 🖡

By <u>Mark Harris</u> Posted 4 Sep 2015 | 19:00 GMT

J. Petit, et. al, "Remote Attacks on

Automated Vehicles Sensors:

Experiments on Camera and LiDAR"

blackhat 2015. Black Hat talk:

https://www.youtube.com/watch?v=C29UGFs

<u>IWVI</u>

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

850 nm

BLINDING CAMERA

White Spot

650 nm

940 nm

SPOOFING LIDAR (3/3)

nat you see on screen is a the wall, and its spoofed echoes at 50-100 meters.

365 nm

Message #1: Physical Attacks on IoT sensors are feasible

Message #1.1: information-security offers no defense against these attacks!

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Type II: Cyber Attacks (Software or Communication)

Message #1: Physical Attacks on IoT sensors are feasible, but cyber attacks maybe easier, but leads to the same consequences

Message #1.1: information-security offers no defense against these attacks!

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Beyond Sensor Physical Spoofing

Beyond Sensor Physical Spoofing

Message #1: Physical Attacks on IoT sensors are feasible, but cyber attacks maybe easier but leads to the same consequences

Message #1.1: information-security offers no defense against these attacks!

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Attack Consequences ?

Are they always catastrophic? How many sensors a hacker need to attack

Message #2: Attacks on small sets of IoT sensors can lead to catastrophic consequences

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

One malicious car can disturb the whole system

Simulation using traffic data sets and urban simulators (SUMO) supports the same conclusion

Without attacks, average travel time is 4 minute

GPS Spoofing Attacks: Power Grid

- Attacks on PMUs are "unobservable" by current anomaly detection units.
- Some PMUs are more critical than others.
- In certain scenarios, attacking one PMU is enough to destabilize portions of the grid

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Physical Layer Countermeasures

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Message #3: Hardening the physics of the sensors is hard but needed

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Physical Authentication

Physical Authentication

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Data Analytics Countermeasures

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Message #4: Data analytics techniques that leverage heterogeneous redundancy in information seems a feasible solution

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Resilient Data Analytics: Automotive

Resilient Data Analytics: Quadrotors

Resilient Data Analytics: Quadrotors

Resilient Data Analytics: Traffic Systems

Resilient Data Analytics: Power Systems

Message #4: Data analytics techniques that leverage heterogeneous redundancy in information seems a feasible solution but what about Bigdata, how to handle massive amounts of data to find discrepancies?

Message #4: Data analytics techniques that leverage heterogeneous redundancy in information seems a feasible solution but what about Bigdata, how to handle massive amounts of data to find discrepancies? **Open research problem!**

Message #5: Sensor information can be used to infer much more than what is expected

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Sensor Privacy

Electricity Usage

TV watching habits [Greveler11, Enev11]

Gyroscope (smart phones)

Barometer (smart phones) Orientation

Speech, Passwords [Michalevsky'15]

Pressure

Location

Location [Martin'15]

Religion, health habits

GPS

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Privacy-Aware Data Analytics

- Beyond cryptography (securing the communication channel is enough)
- Differential privacy is a technique that corrupts the data before sharing it with the cloud
- Not always the answer. In some scenarios
 - Example: localization in smart cities.

Message #6: DoS attacks on sensor information can be harmful as well

Yasser Shoukry (UC Berkeley/UCLA/UPenn)

Summary

- Attacks on IoT sensors are feasible
- Attacks on small sets of IoT sensors can lead to catastrophic consequences
- Hardening the physics of the sensors is hard but needed

- Data analytics techniques that leverage heterogeneous redundancy in information seems a feasible solution
- Privacy-aware data analytics is also needed

Yasser Shoukry (UC Berkeley/UCLA/UPennto solicitypartsicipation from unsersion