Reflective Small Angle Electron Scattering to Characterize Nanostructures on Opaque Substrate

Wen-Li Wu¹, Lawrence H. Friedman²

Wei-En Fu³ and Yunsan Chien³

¹Materials Science and Engineering Division, Materials Measurement Laboratory National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

²Materials Measurement Science Division, Materials Measurement Laboratory National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

> ³Center of Measurement Science Industrial Technology Research Institute, Hsinchu, Taiwan

OUTLINE

- Purposes and experiment results Wen-Li Wu
- Simulations Lawrence H. Freidman

WHY SMALL ANGLE **ELECTRON** SCATTERING (SAES)

To circumvent the difficulties encountered by GISAXS; i.e.

- Large footprint
- Lack of laboratory based and compact X-ray sources with sufficient brilliance

US Patent 9390888: Apparatus and method of applying small-angle electron scattering to characterize nanostructures on opaque substrate

Inventors: Wu; Wen-Li (Hsinchu, TW), Chien; Yun-San (Kaohsiung, TW), Fu; Wei-En (Taoyuan, TW), Chen; Yen-Song (Taipei, TW), Ho; Hsin-Chia (Hsinchu County, TW)

Applicant: Industrial Technology Research Institute, Hsinchu, Taiwan

Small Angle e-beam Scattering (SAES)

- e-beam has the following advantages for scattering applications in comparison to X-ray;
 - EM lens and other optical components have been well developed
 - High intensity focus beam available with a focal spot size of a few nanometers – footprint can be much smaller than X-ray (a major problem for GISAXS)
 - Scattering cross section is ~10⁴ greater than that of X-ray for all materials – incident beam intensity is no longer a show stop for SAES
- E-beam has also the following disadvantages;
 - Complicate interactions with matters including elastic, inelastic scattering, secondary electron and multiple scattering – data interpretation can be challenging
 - Low penetration power SAES has to be operated in a reflective mode or back scattering mode; a complementary but NOT a replacement for Xray based metrologies for buried or HAR structures
 - Extreme short wavelength, often in picometers. This results in very small scattering angles

$\lambda = h / \sqrt{2m_0 eV (1 + eV / 2m_0 c^2)}$

Short wavelength of e-beam — a great spatial resolution

V/kV	Non rel. λ / pm	Rel. λ / pm	$m \ge m_0$	v / 10 ⁸ m/s
100	3.86	3.70	1.20	1.64
200	2.73	2.51	1.39	2.09
300	2.23	1.97	1.59	2.33
400	1.93	1.64	1.78	2.48
1000	1.22	0.87	2.96	2.82

Table 1: Properties of electrons depending on theacceleration voltage.

Figure 4.4 Reflectivity vs external incident angle from the Fresnel equation.

Fresnel Coefficient of reflection for electron

reflectivity =
$$\left| \frac{\Gamma - \sqrt{\Gamma^2 + U}}{\Gamma + \sqrt{\Gamma^2 + U}} \right|^2$$
.

Then using $\Gamma = k \sin \vartheta_i$, $k = 0.512\sqrt{E}$ and $U = V_I/3.81$ with E = 10 keV and $V_I = 10$ V,

For crystalline Silicon V₁ = 12.1 ± 1.3 V Y.C. Wang *et al*, Appl. Phys. Lett., 70(10), 1296 (1997)

Existing Art: Reflective High Energy Electron Diffraction (RHEED)

- For surface lattice or atomic distance measurements, e.g. in MBE
- No lens after sample, i.e. for 10nm repeats the sample to detector distance needs to be 10m or more also at very low grazing angle
- Use only elastic reflected electrons

5-100 kV

Electron

gun

1-5°

Sample holder with the azimuthal rotation

NIST

IL1

MATERIAL MEASUREMENT LABORATORY

......

}_____

.........

	HD: 40m	3LS
CL1	1.92	1.93
CL2	Х	Х
CL3	2.39	1.43
САр	•	\bullet
CM	0	0
OB	0	0
OBA	Х	Х
OBM	0	0
FLAp	Х	Х
IL1	1.04	0.91
IL2	2.29	3.04
IL3	1.18	1.15
PL	3.36	3.36

Carbon film with 2160 lines /mm or 463 nm repeat

A preliminary SAES results from a Copper line grating (CAp100 w/o ObjAp)

NIST

Reflective Small Angle Electron Scattering: Simulations

Lawrence H. Friedman Wen-Li Wu

National Institute of Standards and Technology USA

Wei-En Fu Yunsan Chien

Center of Measurement Science Industrial Technology Research Institute, Taiwan

National Institute of Standards and Technology U.S. Department of Commerce

RSAES Simulations

Two key questions

- Is $\theta, \phi < 1^{\circ}$ interesting?
- Is the signal strong?

Method

- $\bullet \left(\nabla^2 + k^2 U(\vec{x}) \right) \psi(\vec{x}) = 0$
- $U(\vec{x}) = (\text{mean internal potential}) i (\text{quantum decoherence})$
- Radiative boundary conditions

Reflected Intensity = 0.3...1

Line height = 0-13 nm Pitch = 10 nm Line width = 5 nm

Line height = 5 nm

scanning

Source Elevation = 0.005°

integrating

Source Elevation = 0.005°

Pitch Sensitivity

slit / theta-scan

Height Sensitivity

NIST

Line Width Sensitivity

Shape Sensitivity

Side–Wall Angle: 90°

Final Notes

- full dynamic simulation of Reflective Small Angle Electron Scattering.
- efficiency in the 0.3 to 1.0 range for structures smaller than 10 nm
- useful geometric information
- different aperture/scanning modes
- extension possible to:

rough pseudo-periodic bi-periodic

